
I2C_SLAVE

I2C Slave Serial Interface Controller
Rev. 2.0

Key Design Features

● Synthesizable, technology independent IP Core for FPGA and
ASIC

● Supplied as human readable VHDL (or Verilog) source code

● Phillips® I2C-bus compliant

● User defined I2C slave address

● Configurable number of 8-bit read/write configuration registers
up to a maximum of 128

● Configurable number of 8-bit read-only status registers up to a
maximum of 128

● Features standard I2C register addressing common to most I2C
peripherals

● Fully configurable clocking allows Standard (100kHz), Fast
(400kHz) and custom data rates exceeding 20 MHz

● Compatible with a wide range of I2C master devices such as
Micro-controllers and COTs ICs

Applications

● I2C slave communication

● Inter-chip board-level communications

● Standard 2-wire comms between a wide range of I2C
peripherals, micro-controllers and COTs ICs.

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

reset in Asynchronous reset low

scl in I2C input SCL clock pin as per I2C
specification

sda i/o I2C bi-directional SDA
data pin

as per I2C
specification

ad_flag out Address register write flag pulse high

wr_flag out Config register write flag pulse high

rd_flag out Config register read flag pulse high

ro_flag out Status register read flag pulse high

config
[num_config*8 - 1:0]

out Configuration register
output bits

data

status
[num_status*8 - 1:0]

in External status register
input bits

data

Block Diagram

Generic Parameters

Generic name Description Type Valid range

num_config Number of
configuration registers

integer 2 ≤ regs ≤ 128

num_status Number of
Status registers

integer 2 ≤ regs ≤ 128

slave_address 8-bit slave address of
the device on the I2C
bus (LSB is don't care)

std_logic
vector

“0000000X”
to
“1111111X”

General Description

The I2C_SLAVE IP Core is a Philips® I2C compliant slave interface
controller. The controller decodes the SCL and SDA bus signals and
converts them into a simple series of 8-bit read/write commands for
accessing a set of user-defined registers. These registers are defined as
either configuration registers or status registers.

Config registers provide general purpose read/write bits for the control of
external logic. Status registers are read-only and allow the state of
external pins to be monitored via the I2C interface. Both the config and
status bits are visible at the controller top-level ports.

The SCL port is an input driven by the I2C Master. The SDA port is
connected to a bi-directional tristate buffer. When the I2C controller is
inactive, both the SCL and SDA lines will be in a high impedance (high-Z)
state.

Note: The SCL and SDA pins should have external (or internal) pullups as
per the I2C specification.

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 1 of 4

Figure 1: I2C slave serial interface controller architecture

clk

reset
CONFIG

REGISTERS
(read/write)

I2C SLAVE
CONTROLLER

scl

PAD

Config reg #0

Config reg #1

Config reg #2

Config reg #n

config

STATUS
REGISTERS

(read only)

Status reg #0

Status reg #1

Status reg #2

Status reg #n

status

READ
MUX

8

8

8

8

8

address

write data

oe
PAD

ad
_f

la
g

w
r_

fla
g

rd
_f

la
g

ro
_f

la
g

sda

read
data

I2C_SLAVE

I2C Slave Serial Interface Controller
Rev. 2.0

The I2C slave controller is comprised of three main blocks as described
by Figure 1. These blocks are the I2C Slave Controller core the
Configuration register bank and the Status register bank.

I2C Slave Controller Core

The slave controller core is a state-machine that continually monitors the
state of the SCL and SDA lines and generates the appropriate signals on
the I2C bus.

In order for the slave to function correctly the system clock frequency to
SCL clock frequency must have a ratio of 8:1 or greater. That is, the
following formula must be satisfied such that:

f CLK ≥ f SCL∗ 8

f CLK = system clock frequency (Hz)
f SCL= I2C clock frequency (Hz)

To begin a data transfer, the state machine looks for a start command
which is defined by a stable SCL high signal with a falling SDA line. On
receipt of a start command, the slave will latch the slave address and the
r/w flag over the next eight consecutive bits.

If the slave address on the bus corresponds to the generic parameter
slave_address, then the controller will generate an acknowledge signal
and a data transfer may commence. If the slave address mismatches,
then the controller will not acknowledge the master and it will revert back
to it's idle state waiting for the next start condition.

Once the controller has been addressed correctly, the master may send
one of two possible commands to the slave. These commands are either
a register write or a register read. The I2C command sequences
understood by the slave controller are summarized by Figure 2 opposite.

Configuration and Status Register banks

The number of configuration registers accessible by the slave controller is
specified in the generic parameter num_config. Likewise, the number of
status registers is specified in the num_status generic.

Configuration registers are read/write addressable, while status registers
are read-only. Both types of registers are 8-bits wide with a maximum of
128 registers in each bank.

The type of register accessed is determined by the MSB of the register
address that is latched in the I2C command sequence (see Figure 2).
This means that the addresses from 0x00 to 0x7F access the
configuration register bank and the addresses from 0x80 to 0xFF are the
status register bank.

If the I2C master writes to a register address that doesn't exist then
nothing will happen. Reading a register that doesn't exist will result in the
value 0xFF being returned on the I2C bus.

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 2 of 4

Figure 2: I2C command sequence for a register byte write and a register
byte read

S
LA

V
E

 A
D

D
R

E
S

S
0

R
/W

 =
 '0

'

R
E

G
IS

T
E

R
 A

D
D

R
E

S
S

0
=

 C
on

fig
 r

eg
is

te
r

1
=

 S
ta

tu
s

re
gi

st
er

A
C

K
A

C
K

S
T

R
T

C
/S

S
LA

V
E

 A
D

D
R

E
S

S
1

R
/W

 =
 '1

'

R
E

G
IS

T
E

R
 R

E
A

D
 D

A
T

A
A

C
K

N
O

A

C
K

S
T

O
P

R
P

T

S
T

R
T

A
C

K
 f

ro
m

 S
la

ve

N
O

-A
C

K
 f

ro
m

 M
as

te
r

S
LA

V
E

 A
D

D
R

E
S

S
0

R
/W

 =
 '0

'

R
E

G
IS

T
E

R
 A

D
D

R
E

S
S

0
=

 C
on

fig
 r

eg
is

te
r

1
=

 S
ta

tu
s

re
gi

st
er

R
E

G
IS

T
E

R
 W

R
IT

E
 D

A
T

A

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

A
C

K
A

C
K

A
C

K
S

T
O

P
S

T
R

T
C

/S

A
C

K
 f

ro
m

 S
la

ve

R
E

G
IS

T
E

R
 W

R
IT

E
 S

E
Q

U
E

N
C

E

R
E

G
IS

T
E

R
 R

E
A

D
 S

E
Q

U
E

N
C

E

I2C_SLAVE

I2C Slave Serial Interface Controller
Rev. 2.0

Functional Timing

The slave controller IP Core accepts standard I2C bus timing. However,
in order to avoid spurious START and STOP commands being decoded
then the SDA line should only change on the SCL falling edge.

The SDA line should have a positive hold time (t_h) relative to the SCL
falling edge. It is recommended that this hold time is equal to at least one
system clock cycle. In addition, the SCL line should have a 50-50 duty
cycle +/- 10%.

The I2C timing specifications are shown in Figure 3 below.

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

i2c_slave_stim.txt Input stimulus text file

i2c_inbuf.vhd Input buffer

i2c_iobuf.vhd Bi-directional tristate buffer

i2c_config_bank.vhd Configuration register bank

i2c_status_bank.vhd Status register bank

i2c_slave_cont.vhd Main I2C slave controller

i2c_slave.vhd Top-level block

i2c_slave_file_reader.vhd Reads the I2C bus signals from a
text file

i2c_slave_bench.vhd Top-level test bench

Functional Testing

An example VHDL test bench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is as follows:

1. i2c_inbuf.vhd
2. i2c_iobuf.vhd
3. i2c_config_bank.vhd
4. i2c_status_bank.vhd
5. i2c_slave_cont.vhd
6. i2c_slave.vhd
7. i2c_slave_file_reader.vhd
8. i2c_slave_bench.vhd

The VHDL test bench instantiates the i2c_slave component together with
a file-reader module that reads the I2C bus signals from a text file. The
I2C slave address may be modified by changing the generic setting
slave_address on the slave controller component. The I2C clock
frequency can be modified by changing the t_period generic on the file
reader component. The value t_period is a clock divider setting that
specifies the system clock to SCL clock ratio.

The input text file is called i2_slave_stim.txt and should be put in the
current top-level VHDL simulation directory.

The I2C bus signalling is split into 4 phases on 4 consecutive lines. Each
line is comprised of two bits in the format 'A B' where 'A' specifies the
state of the SCL line and 'B' is the state of the SDA line. The values 'A'
and 'B' can either be specified as '0' (logic 0), '1' (logic '1') or 3 (tristate).

As an example, in order to send a start command, the text file should
read:

0 1 # SCL = 0, SDA = 1
1 1 # SCL = 1, SDA = 1
1 0 # SCL = 1, SDA = 0
1 0 # SCL = 1, SDA = 0

To send a single bit (in this case a '1') the text file may be written as:

0 1 # SCL = 0, SDA = 1
0 1 # SCL = 0, SDA = 1
1 1 # SCL = 1, SDA = 1
1 1 # SCL = 1, SDA = 1

In addition to setting up the input stimulus file with the desired I2C
commands, the user may also modify the generic parameters on the I2C
slave component as required.

In the default set up, the simulation must be run for around 10 ms during
which time the file-reader module will drive the I2C bus with the input
commands required to write and read all the config registers followed by a
read of all status registers.

The simulation generates the text file i2c_slave_out.txt which samples the
state of the SDA line on the rising SCL clock edge. The contents of this
file may be examined to verify the operation of the I2C slave controller.

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 3 of 4

Figure 3: I2C bus timing specifications

SCL

SDA

t_h t_h

I2C_SLAVE

I2C Slave Serial Interface Controller
Rev. 2.0

Synthesis and Implementation

The files required for synthesis and the design hierarchy is shown below:

● i2c_slave.vhd
○ i2c_slave_cont.vhd
○ i2c_config_bank.vhd
○ i2c_status_bank.vhd
○ i2c_iobuf.vhd
○ i2c_inbuf.vhd

The VHDL core is designed to be technology independent. However, as
a benchmark, synthesis results have been provided for the Xilinx® 7-
series FPGAs. Synthesis results for other FPGAs and technologies can
be provided on request.

There are no special constraints required for the synthesis and
implementation of the design. Trial synthesis results are shown with the
generic parameters set to: num_config = 8, num_status = 8.
slave_address = 0xD4.

Resource usage is specified after place and route of the design.

XILINX® 7-SERIES FPGAS

Resource type Artix-7 Kintex-7 Virtex-7

Slice Register 112 176 176

Slice LUTs 249 457 457

Block RAM 0 0 0

DSP48 0 0 0

Occupied Slices 93 199 186

Clock freq. (approx) 350 MHz 450 MHz 550 MHz

Revision History

Revision Change description Date

1.0 Initial revision 09/10/2008

1.1 Updated synthesis results for Xilinx® 6
series FPGAs

31/05/2012

2.0 Major release. General architecture change
based on config and status registers.
Updated synthesis results for Xilinx® 7
series FPGAs

14/06/2015

Copyright © 2015 www.zipcores.com Download this VHDL Core Page 4 of 4

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Development Software category:

Click to view products by Zipcores manufacturer:

Other Similar products are found below :

SRP004001-01 SW163052 SYSWINEV21 WS01NCTF1E W128E13 SW89CN0-ZCC IP-UART-16550 MPROG-PRO535E AFLCF-08-

LX-CE060-R21 WS02-CFSC1-EV3-UP SYSMAC-STUDIO-EIPCPLR 1120270005 SW006021-2H ATATMELSTUDIO 2400573 2702579

2988609 SW006022-DGL 2400303 88970111 DG-ACC-NET-CD 55195101-101 55195101-102 SW1A-W1C MDK-ARM SW006021-2NH

 B10443 SW006021-1H SW006021-2 SW006022-2 SW006023-2 SW007023 MIKROE-730 MIKROE-2401 MIKROE-499 MIKROE-722

MIKROE-724 MIKROE-726 MIKROE-728 MIKROE-732 MIKROE-734 MIKROE-736 MIKROE-738 MIKROE-744 MIKROE-928

MIKROE-936 1120270002 1120270003 1120275015 NT-ZJCAT1-EV4

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/development-software
https://www.x-on.com.au/manufacturer/zipcores
https://www.x-on.com.au/mpn/lantronix/srp00400101
https://www.x-on.com.au/mpn/microchip/sw163052
https://www.x-on.com.au/mpn/omron/syswinev21
https://www.x-on.com.au/mpn/omron/ws01nctf1e
https://www.x-on.com.au/mpn/omron/w128e13
https://www.x-on.com.au/mpn/toshiba/sw89cn0zcc
https://www.x-on.com.au/mpn/intel/ipuart16550
https://www.x-on.com.au/mpn/advantech/mprogpro535e
https://www.x-on.com.au/mpn/iei/aflcf08lxce060r21
https://www.x-on.com.au/mpn/iei/aflcf08lxce060r21
https://www.x-on.com.au/mpn/omron/ws02cfsc1ev3up
https://www.x-on.com.au/mpn/omron/sysmacstudioeipcplr
https://www.x-on.com.au/mpn/molex/1120270005
https://www.x-on.com.au/mpn/microchip/sw0060212h
https://www.x-on.com.au/mpn/microchip/atatmelstudio
https://www.x-on.com.au/mpn/phoenixcontact/2400573
https://www.x-on.com.au/mpn/phoenixcontact/2702579
https://www.x-on.com.au/mpn/phoenixcontact/2988609
https://www.x-on.com.au/mpn/microchip/sw006022dgl
https://www.x-on.com.au/mpn/phoenixcontact/2400303
https://www.x-on.com.au/mpn/crouzet/88970111
https://www.x-on.com.au/mpn/digiinternational/dgaccnetcd
https://www.x-on.com.au/mpn/honeywell/55195101101
https://www.x-on.com.au/mpn/honeywell/55195101102
https://www.x-on.com.au/mpn/idec/sw1aw1c
https://www.x-on.com.au/mpn/keil/mdkarm
https://www.x-on.com.au/mpn/microchip/sw0060212nh
https://www.x-on.com.au/mpn/microchip/b10443
https://www.x-on.com.au/mpn/microchip/sw0060211h
https://www.x-on.com.au/mpn/microchip/sw0060212
https://www.x-on.com.au/mpn/microchip/sw0060222
https://www.x-on.com.au/mpn/microchip/sw0060232
https://www.x-on.com.au/mpn/microchip/sw007023
https://www.x-on.com.au/mpn/mikroelektronika/mikroe730
https://www.x-on.com.au/mpn/mikroelektronika/mikroe2401
https://www.x-on.com.au/mpn/mikroelektronika/mikroe499
https://www.x-on.com.au/mpn/mikroelektronika/mikroe722
https://www.x-on.com.au/mpn/mikroelektronika/mikroe724
https://www.x-on.com.au/mpn/mikroelektronika/mikroe726
https://www.x-on.com.au/mpn/mikroelektronika/mikroe728
https://www.x-on.com.au/mpn/mikroelektronika/mikroe732
https://www.x-on.com.au/mpn/mikroelektronika/mikroe734
https://www.x-on.com.au/mpn/mikroelektronika/mikroe736
https://www.x-on.com.au/mpn/mikroelektronika/mikroe738
https://www.x-on.com.au/mpn/mikroelektronika/mikroe744
https://www.x-on.com.au/mpn/mikroelektronika/mikroe928
https://www.x-on.com.au/mpn/mikroelektronika/mikroe936
https://www.x-on.com.au/mpn/molex/1120270002
https://www.x-on.com.au/mpn/molex/1120270003
https://www.x-on.com.au/mpn/molex/1120275015
https://www.x-on.com.au/mpn/omron/ntzjcat1ev4

