DATA SHEET # **GENERAL PURPOSE CHIP RESISTORS** RC_L series ±0.1%, ±0.5%, ±1%, ±5% Sizes 0075/0100/0201/0402/0603/0805/ 1206/1210/1218/2010/2512 RoHS compliant & Halogen free YAGEO Phícomp # SCOPE This specification describes RC series chip resistors with lead free terminations made by thick film process. # <u>APPLICATIONS</u> • All general purpose application #### **FEATURES** - Halogen Free Epoxy - RoHS compliant - · Products with lead free terminations meet RoHS requirements - · Pb-glass contained in electrodes, resistors element and glass are exempted by **RoHS** - Reducing environmentally hazardous wastes - High component and equipment reliability - Saving of PCB space - None forbidden-materials used in products/production #### ORDERING INFORMATION - GLOBAL PART NUMBER Global part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value. # **GLOBAL PART NUMBER** # RC XXXX X X X XX XXXX L (2) (3) (4) (5) (1) #### (I) SIZE 0075/0100/0201/0402/0603/0805/1206/1210/1218/2010/2512 #### (2) TOLERANCE $B = \pm 0.1\%$ $D = \pm 0.5\%$ $F = \pm 1.0\%$ $J = \pm 5.0\%$ (for jumper ordering, use code of J) ### (3) PACKAGING TYPE R = Paper taping reel K = Embossed taping reel S = ESD safe reel (0075/0100 only) ## (4) TEMPERATURE COEFFICIENT OF RESISTANCE - = Based on spec. ### (5) TAPING REEL 07= 7 inch dia, Reel 10=10 inch dia. Reel 13=13 inch dia. Reel 7W = 7 inch dia. Reel & $2 \times$ standard power 7N = 7 inch dia. Reel, ESD safe reel (0075/0100 only) 3W = 13 inch dia. Reel & 2 x standard power ## (6) RESISTANCE VALUE There are 2~4 digits indicated the resistance value. Letter R/K/M is decimal point Example: $97R6 = 97.6\Omega$ $9K76 = 9760\Omega$ $IM = 1,000,000\Omega$ #### (7) DEFAULT CODE Letter L is the system default code for ordering only.(Note) #### **ORDERING EXAMPLE** The ordering code for a RC0402 0.0625W chip resistor value $100K\Omega$ with ±5% tolerance, supplied in 7-inch tape reel of 10,000 units per reel is: RC0402JR-07100KL. # NOTE - I. All our RSMD products meet RoHS compliant and Halogen Free. "LFP" of the internal 2D reel label mentions "Lead Free Process". - 2. On customized label, "LFP" or specific symbol can be printed. SERIES 0075 to 2512 # **MARKING** # RC0075 / RC0100 / RC0201 / RC0402 No Marking ### RC0603 1%, 0.5%,E24 exception values 10/11/13/15/20/75 of E24 series 1%, 0.5%, E96 refer to EIA-96 marking method, including values 10/11/13/15/20/75 of E24 series 5%, E24 series: 3 digits First two digits for significant figure and 3rd digit for number of zeros # RC0805 / RC1206 / RC1210 / RC2010 / RC2512 1%, 0.5%, E24/E96 series : 4 digits First three digits for significant figure and 4th digit for number of zeros 5%, E24 series: 3 digits First two digits for significant figure and 3rd digit for number of zeros #### RC1218 E-24 series: 3 digits, ±5% First two digits for significant figure and 3rd digit for number of zeros Both E-24 and E-96 series: 4 digits, ±1% & ±0.5% First three digits for significant figure and 4th digit for number of zeros For further marking information, please see special data sheet "Chip resistors marking". <u>4</u> # CONSTRUCTION The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal imbedded into a glass and covered by a second glass to prevent environmental influences. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy coat, finally the two external terminations (matte tin on Ni-barrier) are added, as shown in Fig. 9. ### **Outlines** # **DIMENSION** Table I | TYPE | L (mm) | W (mm) | H (mm) | I _I (mm) | I ₂ (mm) | |--------|-----------|-----------|-----------|---------------------|---------------------| | RC0075 | 0.30±0.01 | 0.15±0.01 | 0.10±0.01 | 0.08±0.03 | 0.08±0.03 | | RC0100 | 0.40±0.02 | 0.20±0.02 | 0.13±0.02 | 0.10±0.03 | 0.10±0.03 | | RC0201 | 0.60±0.03 | 0.30±0.03 | 0.23±0.03 | 0.10±0.05 | 0.15±0.05 | | RC0402 | 1.00±0.05 | 0.50±0.05 | 0.35±0.05 | 0.20±0.10 | 0.25±0.10 | | RC0603 | 1.60±0.10 | 0.80±0.10 | 0.45±0.10 | 0.25±0.15 | 0.25±0.15 | | RC0805 | 2.00±0.10 | 1.25±0.10 | 0.50±0.10 | 0.35±0.20 | 0.35±0.20 | | RC1206 | 3.10±0.10 | 1.60±0.10 | 0.55±0.10 | 0.45±0.20 | 0.40±0.20 | | RC1210 | 3.10±0.10 | 2.60±0.15 | 0.55±0.10 | 0.45±0.15 | 0.50±0.20 | | RC1218 | 3.10±0.10 | 4.60±0.10 | 0.55±0.10 | 0.45±0.20 | 0.40±0.20 | | RC2010 | 5.00±0.10 | 2.50±0.15 | 0.55±0.10 | 0.45±0.15 | 0.50±0.20 | | RC2512 | 6.35±0.10 | 3.10±0.15 | 0.55±0.10 | 0.60±0.20 | 0.50±0.20 | # **ELECTRICAL CHARACTERISTICS** Table 2 | CHARAC-
TERISTICS | POWER | OPERATING
TEMPERATURE
RANGE | MAXIMUM
WORKING
VOLTAGE | MAXIMUM
OVERLOAD
VOLTAGE | DIELECTRIC
WITHSTANDING
VOLTAGE | RESISTANCE
RANGE | | JUMPER
CRITERIA | |----------------------|--------|-----------------------------------|-------------------------------|--------------------------------|---------------------------------------|--|---|---| | RC0075 | 1/50 W | -55°C to 125°C | 10V | 25V | 25V | 5% (E24)
10Ω≦R≦1ΜΩ
1% (E24/E96)
10Ω≦R≦1ΜΩ
Jumper<50mΩ | 10Ω≦R<100Ω
-200~+600ppm°C
100Ω≦R≦1MΩ
±200ppm°C | Rated Current
0.5A
Maximum
Current
1.0A | | RC0100 | 1/32 W | -55°C to 125°C | 15V | 30V | 30V | 5% (E24) IΩ≦R≦22MΩ I% (E24/E96) IΩ≦R≦10MΩ 0.5% (E24/E96) 33Ω≦R≦470KΩ Jumper<50mΩ | IΩ≦R< $IΩΩ$ -200 ~ $+600$ ppm°C $I0Ω$ ≤ R < $I0ΩΩ$: $±300$ ppm/°C $I0Ω$ ≤ R ≤ $I0ΜΩ$: $±200$ ppm/°C $I0ΜΩ$ < R ≤ $I0MΩ$: $±200$ ppm/°C | Rated Current
0.5A
Maximum
Current
1.0A | $\frac{5}{10}$ Chip Resistor Surface Mount RC_L SERIES **0075 to 2512** | - | Table | 2 | |---|-------|---| | 1 | | | | CHARAC-
TERISTICS | POWER | OPERATING
TEMPERATURE
RANGE | MAXIMUM
WORKING
VOLTAGE | MAXIMUM
OVERLOAD
VOLTAGE | DIELECTRIC
WITHSTANDING
VOLTAGE | resistance
range | TEMPERATURE
COEFFICIENT | JUMPER
CRITERIA | |----------------------|--------|-----------------------------------|-------------------------------|--------------------------------|---------------------------------------|---|---|---| | RC0201 | 1/20 W | -55°C to 125°C | 25 Y | 50V | 50V | 5% (E24) IΩ≦R≦I0MΩ I% (E24/E96) IΩ≦R≦I0MΩ 0.1%, 0.5% (E24/E96) I0Ω≦R≦IMΩ Jumper<50mΩ | IΩ≦R≦I0Ω
-100~+350ppm°C
I0Ω <r≦i0mω
±200ppm°C</r≦i0mω
 | Rated Current
0.5A
Maximum
Current
1.0A | | RC0402 | 1/16 W | -55°C to 155°C | 50V | 100V | 100V | 5% (E24) IΩ≦R≦22MΩ I% (E24/E96) IΩ≦R≦10MΩ 0.1%, 0.5% (E24/E96) I0Ω≦R≦IMΩ Jumper<50mΩ | IΩ≦R≦I0Ω
±200ppm°C
I0Ω <r≦i0mω
±I00ppm°C
I0MΩ<r≦22mω
±200ppm°C</r≦22mω
</r≦i0mω
 | Rated Current
I.0A
Maximum
Current
2.0A | | | I/8W | -55°C to 155°C | 50V | I00V | 100V | 5% (E24)
ΙΩ≦R≦ΙΜΩ
Ι% (E24/E96)
ΙΩ≦R≦ΙΜΩ | IΩ≦R≦IMΩ
±200ppm°C | | | RC0603 | 1/10 W | -55°C to 155°C | 75V | 150V | 150V | 5% (E24) IΩ≦R≦22MΩ I% (E24/E96) IΩ≦R≦10MΩ 0.1%, 0.5% (E24/E96) I0Ω≦R≦IMΩ Jumper<50mΩ | IΩ≦R≦I0Ω
±200ppm°C
I0Ω <r≦i0mω
±100ppm°C
I0MΩ<r≦22mω
±200ppm°C</r≦22mω
</r≦i0mω
 | Rated Current
I.0A
Maximum
Current
2.0A | | | 1/5 W | -55℃ to 155℃ | 75V | 150V | 150V | 5% (E24)
IΩ≦R≦IMΩ
I% (E24/E96)
IΩ≦R≦IMΩ | IΩ≦R≦IMΩ
±200ppm°C | | | RC0805 | 1/8 W | -55°C to 155°C | 150V | 300V | 300V | 5% (E24) IΩ≦R≦I00MΩ I% (E24/E96) IΩ≦R≦I0MΩ 0.1%, 0.5% (E24/E96) I0Ω≦R≦IMΩ I0%, 20% (E24) 24MΩ≦R≦I00MΩ Jumper<50mΩ | $\begin{split} & I\Omega \leqq R \leqq I0\Omega \\ & \pm 200 ppm^{\circ}C \\ & I0\Omega < R \leqq I0M\Omega \\ & \pm I00 ppm^{\circ}C \\ & I0M\Omega < R \leqq 22M\Omega \\ & \pm 200 ppm^{\circ}C \\ & 24M\Omega < R \leqq I00M\Omega \\ & \pm 300 ppm^{\circ}C \end{split}$ | Rated Current
2.0A
Maximum
Current
5.0A | | | 1/4 W | -55℃ to 155℃ | 150V | 300V | 300V | 5% (E24)
IΩ≦R≦IMΩ
I% (E24/E96)
IΩ≦R≦IMΩ | IΩ≦R≦IMΩ
±200ppm°C | | # FOOTPRINT AND SOLDERING PROFILES For recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting" Table 2 | CHARAC-
TERISTICS | POWER | OPERATING
TEMPERATURE
RANGE | MAXIMUM
WORKING
VOLTAGE | MAXIMUM
OVERLOAD
VOLTAGE | DIELECTRIC
WITHSTANDING
VOLTAGE | resistance
range | TEMPERATURE
COEFFICIENT | JUMPER
CRITERIA | |----------------------|-------|-----------------------------------|-------------------------------|--------------------------------|---------------------------------------|---|--|--| | RC1206 | 1/4 W | -55°C to 155°C | 200V | 400V | 500V | 5% (E24) IΩ≦R≦I00MΩ I% (E24/E96) IΩ≦R≦I0MΩ 0.1%, 0.5% (E24/E96) I0Ω≦R≦IMΩ I0%, 20% (E24) 24MΩ≦R≦I00MΩ Jumper<50mΩ | $\begin{split} & \hspace{0.1cm} 0.1c$ | Rated Current
2.0A
Maximum
Current
10.0A | | | 1/2 W | -55°C to 155°C | 200V | 400V | 500V | 5% (E24)
IΩ≦R≦IMΩ
I% (E24/E96)
IΩ≦R≦IMΩ | IΩ≦R≦IMΩ
±200ppm°C | | | RC1210 | 1/2 W | -55°C to 155°C | 200V | 500V | 500V | 5% (E24) IΩ≦R≦22MΩ I% (E24/E96) IΩ≦R≦10MΩ 0.1%, 0.5% (E24/E96) I0Ω≦R≦IMΩ Jumper<50mΩ | IΩ≦R≦I0Ω
±200ppm°C
I0Ω <r≦i0mω
±I00ppm°C
I0MΩ<r≦22mω
±200ppm°C</r≦22mω
</r≦i0mω
 | Rated Current
2.0A
Maximum
Current
10.0A | | RC1218 | ΙW | -55°C to 155°C | 200V | 500V | 500V | 5% (E24) IΩ≦R≦IMΩ I% (E24/E96) IΩ≦R≦IMΩ 0.1%, 0.5% (E24/E96) I0Ω≦R≦IMΩ Jumper<50mΩ | IΩ≦R≦I0Ω
±200ppm°C
I0Ω <r≦imω
±I00ppm°C</r≦imω
 | Rated Current
6.0A
Maximum
Current
10.0A | | RC2010 | 3/4 W | -55°C to 155°C | 200V | 500V | 500V | 5% (E24) IΩ≦R≦22MΩ I% (E24/E96) IΩ≦R≦10MΩ 0.1%, 0.5% (E24/E96) I0Ω≦R≦IMΩ Jumper<50mΩ | IΩ≦R≦I0Ω
±200ppm°C
I0Ω <r≦i0mω
±I00ppm°C
I0MΩ<r≦22mω
±200ppm°C</r≦22mω
</r≦i0mω
 | Rated Current
2.0A
Maximum
Current
10.0A | | RC2512 | ΙW | -55°C to 155°C | 200V | 500V | 500V | 5% (E24) IΩ≦R≦22MΩ I% (E24/E96) IΩ≦R≦10MΩ 0.1%, 0.5% (E24/E96) I0Ω≦R≦IMΩ Jumper<50mΩ | IΩ≦R≦I0Ω
±200ppm°C
I0Ω <r≦i0mω
±I00ppm°C
I0MΩ<r≦22mω
±200ppm°C</r≦22mω
</r≦i0mω
 | Rated Current
2.0A
Maximum
Current
10.0A | | | 2 W | -55°C to 155°C | 200V | 400V | 500V | 5% (E24)
ΙΩ≦R≦ΙΜΩ
Ι% (E24/E96)
ΙΩ≦R≦ΙΜΩ | IΩ≦R≦IMΩ
±200ppm°C | | # PACKING STYLE AND PACKAGING QUANTITY Table 3 Packing style and packaging quantity | PACKING STYLE | PAPER TAPINO | G REEL (R) | | ESD SAFE REEL (S)
(4MM WIDTH, IMM
PITCH PLASTIC
EMBOSSED) | EMBOSSED
TAPING REEL | |----------------|--------------|-------------|--------------|--|-------------------------| | REEL DIMENSION | 7" (178 mm) | 10" (254mm) | 13" (330 mm) | 7" (178 mm) | 7" (178 mm) | | RC0075 | | | | 20000 | | | RC0100 | 20000 | | 80000 | 40000 | | | RC0201 | 10000 | 20000 | 50000 | | | | RC0402 | 10000 | 20000 | 50000 | | | | RC0603 | 5000 | 10000 | 20000 | | | | RC0805 | 5000 | 10000 | 20000 | | | | RC1206 | 5000 | 10000 | 20000 | | | | RC1210 | 5000 | 10000 | 20000 | | | | RC1218 | | | | | 4000 | | RC2010 | | | | | 4000 | | RC2512 | | | | | 4000 | #### **NOTE** For tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing". # **FUNCTIONAL DESCRIPTION** #### **OPERATING TEMPERATURE RANGE** RC0402 to RC2512 Range: -55°C to +155°C (Fig. 10-1) RC0075 to RC0201 Range: -55°C to +125°C (Fig. 10-2) # **POWER RATING** Each type rated power at 70 °C: RC0075=1/50W RC0100=1/32W RC0201=1/20W RC0402=1/16W, 1/8W RC0603=1/10W, 1/5W RC0805=1/8W, 1/4W RC1206=1/4W, 1/2W RC1210=1/2W RC1218=1W RC2010=3/4W RC2512=1W, 2W # **RATED VOLTAGE** The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula: $$V = \sqrt{(PxR)}$$ or max. working voltage whichever is less V = Continuous rated DC or AC (rms) working voltage (V) P = Rated power (W) $R = Resistance value (\Omega)$ 10 # TESTS AND REQUIREMENTS # Table 8 Test condition, procedure and requirements | TEST | TEST METHOD | PROCEDURE | REQUIREMENTS | |---------------------------------------|---|---|--| | Temperature Coefficient of Resistance | MIL-STD-202 Method 304 | At +25/–55°C and +25/+125°C Formula: | Refer to table 2 | | (T.C.R.) | | T.C.R= $\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)}$ | | | | | $R_1(t_2 - t_1)$ Where $t_1 = +25$ °C or specified room temperature | | | | | t_1 =-55 °C or +125 °C test temperature | | | | | R ₁ =resistance at reference temperature in ohms | | | | | R ₂ =resistance at test temperature in ohms | | | Life/ Endurance | MIL-STD-202 Method 108A
IEC 60115-1 4.25.1 | At 70±2°C for 1,000 hours; RCWV applied for 1.5 hours on and 0.5 hour off, still air required | $0075: \pm (5\% + 100 \text{m}\Omega)$ $< 100 \text{m}\Omega \text{ for jumper}$ $01005: \pm (3\% + 50 \text{m}\Omega)$ $< 100 \text{m}\Omega \text{f or jumper}$ $Others:$ $\pm (1\% + 50 \text{m}\Omega) \text{ for B/D/F tol}$ $\pm (3\% + 50 \text{m}\Omega) \text{ for J tol}$ $< 100 \text{mR for jumper}$ | | High
Temperature
Exposure | MIL-STD-202 Method 108A
IEC 60068-2-2 | I,000 hours at maximum operating temperature depending on specification, unpowered. | 0075 : \pm (5%+100m Ω)
<100m Ω for jumper
01005 : \pm (1% +50m Ω)
< 50m Ω f or jumper
Others:
\pm (1%+50m Ω) for B/D/F tol
\pm (2%+50m Ω) for J tol
<50mR for jumper | | Moisture
Resistance | MIL-STD-202 Method I06G | Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for 10d with 25°C / 65°C 95% R.H, without steps 7a & 7b, unpowered Parts mounted on test-boards, without condensation on parts | $0075: \pm (2\% + 100 \text{m}\Omega)$ $< 100 \text{m}\Omega \text{ for jumper}$ $01005: \pm (2\% + 50 \text{m}\Omega)$ $< 100 \text{m}\Omega \text{f or jumper}$ Others: $\pm (0.5\% + 50 \text{m}\Omega) \text{ for B/ D/F tol}$ $\pm (2\% + 50 \text{m}\Omega) \text{ for J tol}$ $< 100 \text{mR for jumper}$ | | Humidity | IEC 60115-1 4.24.2 | Steady state for 1000 hours at 40°C / 95% R.H. RCWV applied for 1.5 hours on and 0.5 hour off | 0075: \pm (5%+100m Ω) no visible damage 01005: \pm (3% +50m Ω) $<$ 100m Ω f or jumper Others: \pm (1%+50m Ω) for B/D/F tol \pm (2%+50m Ω) for J tol $<$ 100mR for jumper | Chip Resistor Surface Mount RC_L CL S SERIES **0075 to 2512** | Thermal
Shock | MIL-STD-202 Method 107G | -55/+125°C Note Number of cycles required is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air - Air | 0075/01005: \pm (1% +50m Ω)
< 50m Ω f or jumper
Others:
\pm (0.5%+50m Ω) for B/D/F tol
\pm (1%+50m Ω) for J tol
< 50mR for jumper | |----------------------------------|---|---|---| | Short Time
Overload | IEC 60115-1 4.13 | 2.5 times RCWV or maximum overload voltage which is less for 5 seconds at room temperature | $0075/01005: \pm (2\% + 50 m\Omega)$ $< 50 m\Omega f \ or \ jumper$ Others: $\pm (1\% + 50 m\Omega) \ for \ B/D/F \ tol$ $\pm (2\% + 50 m\Omega) \ for \ J \ tol$ $< 50 mR \ for \ jumper$ No visible damage | | Board Flex/
Bending | IEC 60115-1 4.33 | Device mounted or as described only I board bending required bending time: 60±5 seconds 0075/0100/0201/0402:5mm; 0603/0805:3mm; 1206 and above:2mm | 0075/01005: \pm (1% +50m Ω)
< 50m Ω f or jumper
Others:
\pm (1%+50m Ω) for B/D/F/J tol
<50mR for jumper
No visible damage | | Solderability
- Wetting | J-STD-002 test B | Electrical Test not required Magnification 50X SMD conditions: Ist step: method B, aging 4 hours at 155°C dry heat 2nd step: leadfree solder bath at 245±3°C Dipping time: 3±0.5 seconds | W ell tinned
(>95% covered)
No visible damage | | -Leaching | J-STD-002 test D | Leadfree solder ,260°C, 30 seconds immersion time | No visible damage | | -Resistance to
Soldering Heat | MIL-STD-202 Method 210F
IEC 60115-1 4.18 | Condition B, no pre-heat of samples Leadfree solder, $260^{\circ}\text{C} \pm 5^{\circ}\text{C}$, 10 ± 1 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol | $0075: \pm (3\% + 50 \text{m}\Omega)$ $< 50 \text{m}\Omega \text{ for jumper}$ $01005: \pm (1\% + 50 \text{m}\Omega)$ $< 50 \text{m}\Omega \text{ for jumper}$ $Others:$ $\pm (0.5\% + 50 \text{m}\Omega) \text{ for B/D/F tol}$ $\pm (1\% + 50 \text{m}\Omega) \text{ for J tol.}$ $< 50 \text{mR for jumper}$ | No visible damage # **REVISION HISTORY** | REVISION | DATE | CHANGE NOTIFICATION | DESCRIPTION | |-----------|---------------|---------------------|--| | Version 9 | Mar. 06, 2018 | - | - Add 0.5%/1% marking rule for RC0603 \sim RC2512 based on marking datasheet | | Version 8 | July 10, 2017 | - | - Add "3W" part number coding for 13" Reel & double power | | Version 7 | Mar. 7, 2017 | - | - Add 10" packing | | Version 6 | Feb.15, 2017 | - | - Extend RC0805 and RC1206 resistance range to 100Mohm | | Version 5 | Oct. 06, 2016 | - | - Description: Update Dimension of I2 of RC2512 (2W) | | Version 4 | Jan. 22, 2016 | - | - update resistance range | | Version 3 | Dec. 24, 2015 | - | - Updated test and requirements | | Version 2 | Jul. 23, 2015 | - | - Updated test and requirements | | Version I | Jan. 21, 2015 | - | - ESD Safe Reel update | | Version 0 | Dec. 15, 2014 | - | - First issue of this specification | [&]quot;Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN." # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Thick Film Resistors - SMD category: Click to view products by Yageo manufacturer: Other Similar products are found below: CR-05FL7--150R CR-05FL7--19K6 CR-05FL7--243R CR-05FL7--40K2 CR-05FL7--698K CR-12FP4--324R CR-12JP4--680R M55342K06B1E78RS3 M55342K06B6E19RWL M55342K06B6E81RS3 M55342M05B200DRWB M55342M06B4K70MS3 MC0603-511 JTW 742C083750JTR MCR01MZPF1202 MCR01MZPF1601 MCR01MZPF1800 MCR01MZPF6201 MCR01MZPF9102 MCR01MZPJ113 MCR01MZPJ121 MCR01MZPJ125 MCR01MZPJ751 MCR03EZHJ103 MCR03EZPFX2004 MCR03EZPJ270 MCR03EZPJ821 MCR10EZPF1102 MCR18EZPJ330 RC0603F1473CS RC0603F150CS RC1005F1152CS RC1005F1182CS RC1005F1372CS RC1005F183CS RC1005F1911CS RC1005F1912CS RC1005F203CS RC1005F2052CS RC1005F241CS RC1005F2431CS RC1005F3011CS RC1005F303CS RC1005F4321CS RC1005F4642CS RC1005F471CS RC1005F4751CS RC1005F5621CS RC1005F6041CS RC1005J106CS