

DATA SHEET

SURFACE MOUNT MULTILAYER CERAMIC CAPACITORS

Automotive grade HiCap X7R

6.3 V TO 100 V

I μF to 10 μF RoHS compliant & Halogen Free

YAGEO

Surface-Mount Ceramic Multilayer Capacitors | Automotive grade

 $\times 7R$

6.3 V to 100 V

SCOPE

This specification describes Automotive grade X7R series chip capacitors with lead-free terminations and used for automotive equipments.

<u>APPLICATIONS</u>

All general purpose applications Entertainment applications Comfort / security applications Information applications

FEATURES

- · AEC-Q200 qualified
- MSL class: MSL I
- AC series soldering is compliant with J-STD-020D
- · High component and equipment reliability
- The capacitors are 100% performed by automatic optical inspection prior to taping.

ORDERING INFORMATION - GLOBAL PART NUMBER

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

GLOBAL PART NUMBER

AC xxxx x x xxx x B x xxx

(1) (2) (3) (4) (5) (6) (7)

(I) SIZE - INCH BASED (METRIC)

0201 (0603) / 0402 (1005) / 0603 (1608) / 0805 (2012) / 1206 (3216)/ 1210 (3225) /1812 (4532)

(2) TOLERANCE

 $| = \pm 5\%$

 $K = \pm 10\%$

 $M = \pm 20\%$

Capacitance tolerance ±5% doesn't available for X7R full product range, please contact local sales before order

(3) PACKING STYLE

R = Paper/PE taping reel; Reel 7 inch

K = Blister taping reel; Reel 7 inch

P = Paper/PE taping reel; Reel 13 inch

F = Blister taping reel; Reel 13 inch

(4) TC MATERIAL

X7R

(5) RATED VOLTAGE

 $4 = 4 \ \lor$

5 = 6.3 V

6 = 10 V

7 = 16 V

8 = 25 V

G = 35 V

9 = 50 V

0 = 100 V

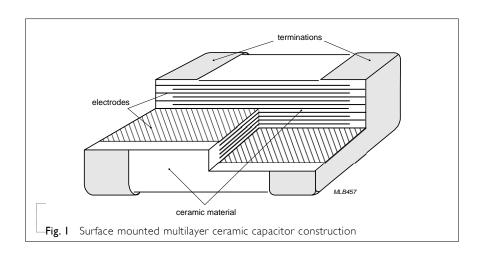
(6) PROCESS

B = X7R

(7) CAPACITANCE VALUE

2 significant digits + number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

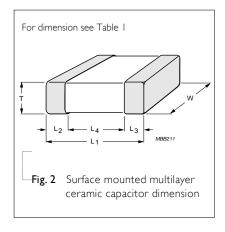

Example: $121 = 12 \times 10^{1} = 120 \text{ pF}$

×7R

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (Matte Sn). The terminations are lead-free. A cross section of the structure is shown in Fig.1.



DIMENSION

Table I For outlines see fig. 2

TYPE	L _I (mm)	W (mm)	T (MM)	L ₂ / L ₃ (min.	(mm) max.	L ₄ (mm) min.
0201	0.6 ±0.03	0.3±0.03	0.3±0.03	0.10	0.20	0.20
0402	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15	0.35	0.40
0603	1.6 ±0.10	0.8 ±0.10	0.8 ±0.10	0.20	0.60	0.40
	20.10.10	125 1010	0.6 ±0.10			
0805	2.0 ±0.10	1.25 ±0.10	0.85 ±0.10	0.25	0.75	0.70
	2.0 ±0.20	1.25 ±0.20	1.25 ±0.20			
	3.2 ±0.15	17.1015	0.6 ±0.10			
	3.2 ±0.15	1.6 ±0.15	0.85 ±0.10			
1206			1.15 ± 0.10	0.25	0.75	1.40
1200	3.2 ±0.30	1.6 ±0.20	1.25 ±0.20	0.25		1.40
			1.6 ±0.20			
	3.2 ±0.30	1.6 ±0.30	1.6 ±0.30			
	3.2 ±0.20	2.5 ±0.20	0.85 ±0.10			
	5.2 ±0.20	Z.3 ±0.20	1.25 ±0.20			
1210	3.2 ±0.30	2.5 ±0.20	1.6 ±0.20	0.25	0.75	1.40
	J.Z ±0.30	2.3 ±0.20	2.0 ±0.20			
	3.2 ±0.40	2.5 ±0.30	2.5 ±0.20			
1808	4.5 ±0.40	2.0 ±0.30	1.25 ±0.20	0.25	0.75	2.20
			0.85 ±0.10			
1812	4.5 ±0.40	3.2 ± 0.30	1.25 ±0.20	0.25	0.75	2.20
			1.6 ±0.20			

OUTLINES

Surface-Mount Ceramic Multilayer Capacitors | Automotive grade | ×7R | 6.3 V to 100 V

CAPACITANCE RANGE & THICKNESS FOR X7R

Γ	Table 2	Sizes fron	Sizes from 0603 to 0805											
	CAP.	0603				0805								
_		6.3V	10V	16 V	25 V	6.3 V	10 V	16 V	25 V	35 V	50 V			
	ΙμF	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1		1.25±0.2	1.25±0.2	1.25±0.2		1.25±0.2			
	2.2 uF						1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2				
	4.7 uF						1.25±0.2	1.25±0.2						
	I0 uF					1.25±0.2								

Γ	Table 3	Sizes 120)6				
(CAP.	1206					
_		6.3 V	10V	16V	25V	50 V	100 V
	ΙμF		1.15±0.10	1.15±0.10	1.60±0.2	1.60±0.2	1.60±0.2
	2.2 µF			1.60±0.2	1.60±0.2	1.60±0.2	1.60±0.2
	4.7 uF	1.60±0.2	1.60±0.2	1.60±0.2			
	10 uF						

Γ	Table 4	Sizes 12	10 to 1812			
(CAP.	1210			1812	
_		25 V	50V	100 V	50V	100V
Ī	ΙμF	1.25±0.20	1.25±0.20	2.0±0.2	1.60±0.2	1.60±0.2
	2.2 µF		2.0±0.2	2.0±0.2		
	4.7 µF	2.5±0.2	2.5±0.2			

NOTE

- I. Values in shaded cells indicate thickness class in $\ensuremath{\mathsf{mm}}$
- 2. Capacitance value of non E-6 series is on request

THICKNESS CLASSES AND PACKING QUANTITY

Table 5

Table 5								
	THICKNESS	DA CKII	NG CODE	_		QUANTITY	PER REEL	
SIZE CODE	CLASSIFICATION	FACKI	NG CODE	TAPE WIDTH	Ø180 MI	M / 7 INCH	Ø330 MN	1 / 13 INCH
	CLASSIFICATION	7 INCH	13 INCH		Paper	Blister	Paper	Blister
0201	0.3 ±0.03 mm	R	Р	8 mm	15,000		50,000	
0402	0.5 ±0.05 mm	R	Р	8 mm	10,000		50,000	
0603	0.8 ±0.1 mm	R	Р	8 mm	4,000		15,000	
0805	0.6 ±0.1 mm	R	Р	8 mm	4,000		20,000	
0805	0.85 ±0.1 mm	R	Р	8 mm	4,000		15,000	
	1.25 ±0.2 mm	K	F	8 mm		3,000		10,000
	0.6 ±0.1 mm	R	Р	8 mm	4,000		20,000	
1206	0.85 ±0.1 mm	R	Р	8 mm	4,000		15,000	
1206	1.0/1.15 ±0.1 mm	K	F	8 mm		3,000		10,000
	1.25 ±0.2 mm	K	F	8 mm		3,000		10,000
	0.85 ±0.1 mm	K	F	8 mm		4,000		10,000
	1.15 ±0.1 mm	K	F	8 mm		3,000		10,000
1210	1.25 ±0.2 mm	K	F	8 mm		3,000		10,000
	2.0 ±0.2 mm	K		8 mm		2,000		
	2.5 ±0.2 mm	K		8 mm		1,000		
	0.6 / 0.85±0.1 mm	K		I2 mm		2,000		
1812	1.15±0.1 mm	K		I2 mm		1,000		
1012	1.25±0.2 mm	K		I2 mm		1,000		
	1.6 ±0.2 mm	K		I2 mm		2,000		

PAPER/PE TAPE SPECIFICATION

Table 6 Dimensions of paper/PE tape for relevant chip size; see Fig.3

SIZE	SYMBOL Unit: mm										
CODE	A_0	B ₀	W	E	F	P ₀ (I)	P _I	P ₂	ØD ₀	K ₀	Т
0201	0.39 ± 0.06	0.70 ± 0.06	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.05	2.0 ± 0.05	2.0 ± 0.05	1.55 ± 0.03	0.38 ± 0.05	(0.47 / 0.55)±0.10
0402	0.70 ± 0.15	1.21 ± 0.12	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.05	2.0 ± 0.05	2.0 ± 0.05	1.50 +0.1 /-0	(0.75 / 0.60)±0.10	(0.85 / 0.70)±0.10
0603	1.05 ± 0.14	1.86 ± 0.13	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	1.50 +0.1 /-0	(1.05 / 0.95 / 0.75)±0.10	(1.15 / 1.05 / 0.85)±0.10
0805	1.50 ± 0.15	2.26 ± 0.20	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	1.50 +0.1 /-0	(1.05 / 0.95 / 0.75)±0.10	(1.15 / 1.05 / 0.85)±0.10
1206	1.90 ± 0.15	3.50 ± 0.20	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	1.50 +0.1 /-0	(0.95 / 0.75)±0.10	(1.05 / 0.85)± 0.10

NOTE

1. P_0 pitch tolerance over any 10 pitches is ± 0.2 mm

BLISTER TAPE SPECIFICATION

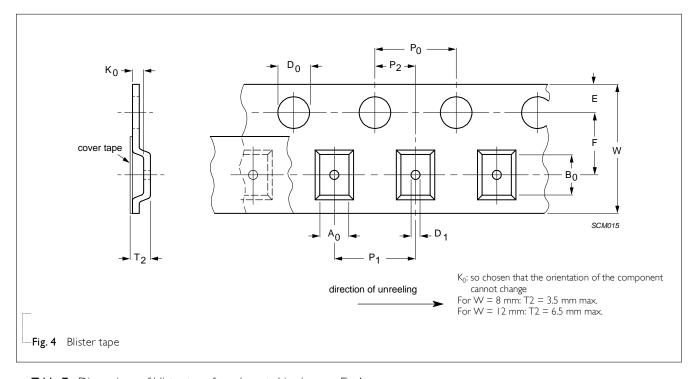


Table 7 Dimensions of blister tape for relevant chip size; see Fig.4

	SYMBOL Unit: mm												it: mm			
SIZE CODE	A_0		B ₀		K ₀		W	E	F	$ØD_0$	ØD _I	P ₀ (2)	P _I	P ₂	T2	
	Min.	Max.	Min.	Max.	Min.	Max.					Min.				Min.	Max.
0805	1.29	1.65	2.09	2.60	1.25	1.62	8.I ±0.20	1.75 ±0.1	3.5 ±0.05	1.5 +0.1/-0.0	+0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.30	1.67
1206	1.65	2.12	3.30	3.75	1,22	2.15	8.I ±0.20	1.75 ±0.1	3.5 ±0.05	1.5 +0.1/-0.0	+0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.27	2.20
1210	2.55	3.02	3.31	3.88	0.97	2.92	8.I ±0.20	1.75 ±0.1	3.5 ±0.05	1.5 +0.1/-0.0	+0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.02	2.97
1808	2.05	2.55	4.80	5.45	1.30	2.45	12.1 ±0.20	1.75 ±0.1	5.5 ±0.05	1.5 +0.1/-0.0	1.5 +0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.35	2.50
1812	3.35	3.75	4.70	5.33	0.70	2.40	12.1 ±0.20	1.75 ±0.1	5.5 ±0.05	1.5 +0.1/-0.0	1.5 +0.1/-0.0	4.0 ±0.10	8.0 ±0.10	2.0 ±0.05	0.75	2.45

NOTE

- 1. Typical capacitor displacement in pocket
- 2. P_0 pitch tolerance over any 10 pitches is ± 0.2 mm

REEL SPECIFICATION

YAGEO

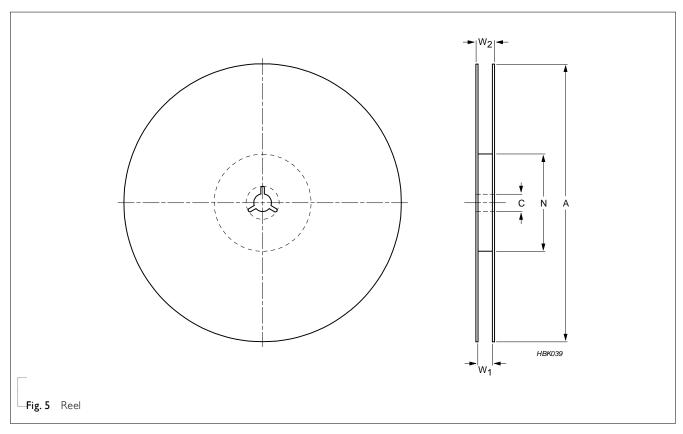


 Table 8
 Reel dimensions; see Fig.5

TARE VALIDATI I	SYMBOL						
TAPE WIDTH	A	N	С	Wı	W _{2max} .		
8 (Ø178 mm/7")	178 ±1.0	60 ±1.0	13 +0.50/-0.20	9.4 ±1.5	14.4		
8 (Ø330 mm/13")	330 ±1.0	100 ±1.0	13 +0.50/-0.20	9.0 ±0.2	14.4		
12 (Ø178 mm/7")	178 ±1.0	60 ±1.0	13 +0.50/-0.20	13.4 ±1.5	18.4		

PROPERTIES OF REEL

Material: polystyrene

Surface resistance: $<10^{10}$ X/sq.

Surface-Mount Ceramic Multilayer Capacitors Automotive grade

 $\times 7R$

6.3 V to 100 V

ELECTRICAL CHARACTERISTICS

X7R DIELECTRIC CAPACITORS; NI/SIN TERMINATIONS

Unless otherwise specified, all test and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

- Temperature: 15 °C to 35 °C - Relative humidity: 25% to 75% - Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

DESCRIPTION Table 9	VALUE
Capacitance tolerance X7R	±5% ⁽¹⁾ , ±10%, ±20%
Maximum capacitance change as a function of temperature (temperature characteristic/coefficient):	
X7R	±15%
Operating temperature range: X7R	-55 °C to +125 °C

NOTE

1. Capacitance tolerance ±5% doesn't available for X7R full product range, please contact local sales force before order

RATED VOLTAGE AND CAPACITANCE

Table 10

Table 10					
SIZE	RATED VOLTAGE	CAPACITANCE	D.F.	PC @ 3F °C	RC @ 125 °C
CODE	(V)	(μF)	D.F.	RC @ 25 °C (Ω· F)	$(\Omega \cdot F)$
	6.3	1.0	5.0%	500	50
	10	1.0	5.0%	500	50
0603	16	1.0	5.0%	100	5
	25	1.0	5.0%	100	5
	10	1.0	5.0%	500	50
	16	1.0	5.0%	500	50
	25	1.0	5.0%	500	50
	50	1.0	5.0%	500	10
	10	2.2	5.0%	100	10
0805	16	2.2	5.0%	500	50
	25	2.2	5.0%	500	50
	35	2.2	5.0%	500	50
	10	4.7	10.0%	100	10
	16	4.7	10.0%	100	10
	6.3	10.0	10.0%	100	10
	10	1.0	3.5%	500	10
	25	1.0	3.5%	500	10
	50	1.0	5.0%	500	10
	100	1.0	5.0%	500	10
	16	2.2	5.0%	500	50
1206	25	2.2	5.0%	500	50
	50	2.2	5.0%	500	10
	100	2.2	5.0%	500	10
	6.3	4.7	10.0%	50	5
	10	4.7	10.0%	50	5
	16	4.7	10.0%	50	5
	25	1.0	2.5%	500	50
	50	1.0	2.5%	500	50
	100	1.0	5.0%	500	50
1210	50	2.2	5.0%	500	50
	100	2.2	5.0%	500	50
	25	4.7	10.0%	500	10
	50	4.7	10.0%	500	10
1812	50	1.0	2.5%	500	50
	100	1.0	2.5%	500	50
· ·				-	-

Surface-Mount Ceramic Multilayer Capacitors | Automotive grade | ×7R | 6.3 V to 100 V

SOLDERING RECOMMENDATION

SOLDERING METHOD	SIZE 0402	0603	0805	1206	≥ 1210
METHOD	0402	0603	0603	1206	2 1210
Reflow	≥ 0.1 µF	≥ 1.0 µF	≥ 2.2 µF	≥ 4.7 µF	Reflow only
Reflow/Wave	< 0.1 uF	< 1.0 µF	< 2.2 µF	< 4.7 µF	

SOLDERING CONDITIONS

The lead free MLCCs are able to stand the reflow soldering conditions as below:

- Temperature: above 220 °C
- Endurance: 95 to 120 seconds
- Cycles: 3 times

The test of "soldering heat resistance" is carried out in accordance with the schedule of "MIL-STD-202G-method 210F", "The robust construction of chip capacitors allows them to be completely immersed in a solder bath of 260 °C for 10 seconds". Therefore, it is possible to mount MLCCs on one side of a PCB and other discrete components on the reverse (mixed PCBs). Surface Mount Capacitors are tested for solderability at 245 °C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds.

TESTS AND REQUIREMENTS

Table 12 Test procedures and requirements

TEST	TEST METH	IOD	PROCEDURE	REQUIREMENTS
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage
Capacitance	IEC 60384- 21/22	4.5.1	At 20 °C, 24 hours after annealing f = 1 KHz, measuring at voltage 1 V _{rms} at 20 °C	Within specified tolerance
Dissipation Factor (D.F.)	IEC 60384- 21/22	4.5.2	At 20 °C, 24 hours after annealing f = 1 KHz, measuring at voltage 1 V_{rms} at 20 °C	In accordance with specification on table 10
Insulation Resistance	IEC 60384- 21/22	4.5.3	At U _r (DC) for I minute	In accordance with specification on table 10

TEST

Surface-Mount Ceramic Multilayer Capacitors | Automotive grade

PROCEDURE

TEST METHOD

×7R 6.3 V to 100 V

REQUIREMENTS

Temperature coefficient	4.6		Capacitance shall be measured by the steps shown in the following table.	Δ C/C: ±15%
			The capacitance change should be measured after 5 min at each specified temperature stage.	
			Step Temperature(°C)	
			a 25±2	
			b Lower temperature±3°C	
			c 25±2	
			d Upper Temperature±2°C	
			e 25±2	
			Class II	
			Capacitance Change shall be calculated from the formula as below	
			$\Delta C = \frac{C2 - C1}{C1} \times 100\%$	
			C1: Capacitance at step c	
			C2: Capacitance at step b or d	
High —	AEC-Q200	3	Unpowered; 1000hours@T=150°C	No visual damage
Temperature Exposure			Measurement at 24±2 hours after test conclusion.	ΔC/C:
				±10%
				D.F.:
				within initial specified value
				IR:
				within initial specified value
Temperature Cycling	AEC-Q200	4	Preconditioning;	No visual damage
			150 +0/-10 °C for 1 hour, then keep for 24 ±1 hours at room temperature	ΔC/C
			2 / 2 / 10 di	±10%
			1000 cycles with following detail:	
			30 minutes at lower category temperature	D.F. meet initial specified value
			30 minutes at upper category temperature	IR meet initial specified value
			Recovery time 24 ±2 hours	
	AEC-Q200	5	Only applies to SMD ceramics.	
Destructive Physical Analysis	ALC-Q200	9	/	

YAGEO

Surface-Mount Ceramic Multilayer Capacitors Automotive grade

 $\times 7R$

6.3 V to 100 V

AEC-Q200

T=24 hrs/per cycle; 10 continuous cycles unpowered. Measurement at 24 ±2 hours after test condition.

No visual damage

 Δ C/C $\pm 15\%$

D.F.

Within initial specified value

Meet initial specified value

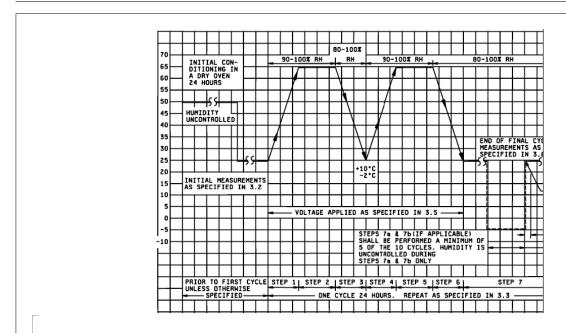


Fig. 6 Moisture resistant

Biased Humidity AEC-Q200

- I. Preconditioning, class 2 only: 150 +0/-10 °C /I hour, then keep for 24 ±1 hour at room temp
- 2. Initial measure: Parameter: IR

7

Measuring voltage: I.5V \pm 0.1 VDC Note: Series with 100 K Ω & 6.8 K Ω

3. Test condition:

85 °C, 85% R.H. connected with 100 K Ω resistor, applied $1.5V/U_r$ for 1,000 hours.

- 4. Recovery: 24 ±2 hours
- 5. Final measure: IR

No visual damage after recovery

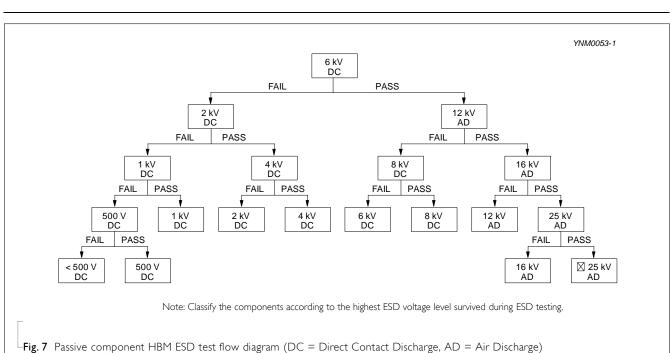
Initial requirement:

- Connected to 100 K Ω : $C \le 25 \text{ nF: I.R} \ge 4,000 \text{ M}\Omega \text{ or}$ $C > 25 \text{ nF: (I.R-100 K}\Omega) \times C$ ≥ 100s.

Final measurement:

The insulation resistance shall be greater than 10% of initial spec.

Surface-Mount Ceramic Multilayer Capacitors | Automotive grade | ×7R | 6.3 V to 100 V


Operational Life	AEC-Q200	8	I. Preconditioning: 150 +0/-10 °C /I hour, then keep for 24 ±I hour at room temp	No visual damage
				ΔC/C
			2. Initial measure:	±15%
			Spec: refer to initial spec C, D, IR	D.F.
			3. Endurance test:	Less than 200% of initial spec.
			Temperature: X7R: 125 °C	IR
			Specified stress voltage applied for 1,000 hours: Applied 150% $\rm U_{\rm r}$	The insulation resistance shall
			4. Recovery time: 24 ±2 hours	be greater than 10% of initial
			5. Final measure: C, D, IR	spec
			Note: If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirement shall be met.	
External Visual	AEC-Q200	9	Any applicable method using × 10 magnification	In accordance with specification
Physical Dimension	AEC-Q200	10	Verify physical dimensions to the applicable device specification.	In accordance with specification
Mechanical Shock	AEC-Q200	13	Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks) Peak value: 1,500 g's	ΔC/C
				±10%
			Duration: 0.5 ms	D.F.
			Velocity change: 15.4 ft/s	Within initial specified value
			Waveform: Half-sin	IR
				Within initial specified value
Vibration	AEC-Q200	14	5 g's for 20 minutes, 12 cycles each of 3 orientations. Note: Use 8" x 5" PCB. 0.31" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2" from any secure point. Test from 10-2000 Hz.	ΔC/C
				±10%
				D.F: meet initial specified value IR meet initial specified value

YAGEO

Surface-Mount Ceramic Multilayer Capacitors | Automotive grade

6.3 V to 100 V

Resistance to Soldering Heat	AEC-Q200	15	Precondition: $150 \pm 0/-10$ °C for I hour, then keep for 24 ± 1 hours at room temperature Preheating: for size ≤ 1206 : 120 °C to 150 °C for I minute Preheating: for size ≥ 1206 : 100 °C to 120 °C for I minute and 170 °C to 200 °C for I minute Solder bath temperature: 260 ± 5 °C Dipping time: 10 ± 0.5 seconds Recovery time: 24 ± 2 hours	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned
				$\Delta C/C$ $\pm 10\%$ D.F. within initial specified value IR within initial specified value
Thermal Shock	AEC-Q200	16	 Preconditioning: 150 +0/-10 °C /I hour, then keep for 24 ±I hour at room temp Initial measure: 	No visual damage $\Delta C/C$ 15% D.F: meet initial specified value IR meet initial specified value
ESD	AEC-Q200	17	Per AEC-Q200-002	A component passes a voltage level if all components stressed at that voltage level pass.

YAGEO

Surface-Mount Ceramic Multilayer Capacitors Automotive grade

 $\times 7R$

6.3 V to 100 V

Solderability

AEC-Q200

18

Preheated to a temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds.

Test conditions for lead containing solder alloy

Temperature: 235 ±5 °C Dipping time: 2 ±0.2 seconds Depth of immersion: 10 mm Alloy Composition: 60/40 Sn/Pb Number of immersions: I

Test conditions for lead-free containing solder alloy

Temperature: 245 ±5 °C Dipping time: 3 ±0.3 seconds Depth of immersion: 10 mm Alloy Composition: SAC305 Number of immersions: I

The solder should cover over 95% of the critical area of each termination.

Electrical Characterization

AEC-Q200

19

21

Parametrically test per lot and sample size requirements, summary to show Min, Max, Mean and Standard deviation at room as well as Min and Max operating temperatures.

 Δ C/C

±15%

X7R: -55 $^{\circ}$ C to +125 $^{\circ}$ C Normal temperature: 20 °C

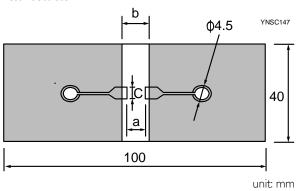
Board Flex

AEC-Q200

Part mounted on a 100 mm X 40 mm FR4 PCB board, which is 1.6 \pm 0.2 mm thick and has a layer-thickness 35 μ m \pm 10

Part should be mounted using the following soldering reflow profile.

Conditions:


Bending 2 mm at a rate of 1 mm/s, radius jig 340 mm

No visible damage

 Δ C/C

±10%

Test Substrate:

	Dimension(mm)		
Туре	а	b	С
0201	0.3	0.9	0.3
0402	0.4	1.5	0.5
0603	1.0	3.0	1.2
0805	1.2	4.0	1.65
1206	2.2	5.0	1.65
1210	2.2	5.0	2.0
1808	3.5	7.0	3.7

Surface-Mount Ceramic Multilayer Capacitors | Automotive grade | x7R | 6.3 V to 100 V

Terminal Strength	AEC-Q200	22	With the component mounted on a PCB obtained with the device to be tested, apply a 17.7N (1.8Kg) force to the side of a device being tested. This force shall be applied for 60+1 seconds. Also the force shall be applied gradually as not to apply a shock to the component being tested. * Apply 2N force for 0402 size.	Magnification of 20X or greater may be employed for inspection of the mechanical integrity of the device body, terminals and body/terminal junction. Before, during and after the test, the device shall comply with all electrical requirements stated in this specification.
Beam Load Test	AEC-Q200	23	Place the part in the beam load fixture. Apply a force until the part breaks or the minimum acceptable force level required in the user specification(s) is attained.	\leq 0805 Thickness > 0.5mm: 20N Thickness \leq 0.5mm: 8N \geq 1206 Thickness \geq 1.25 mm: 54N Thickness \leq 1.25 mm: 15N
Voltage Proof			 Specified stress voltage applied for 1~5 seconds Ur ≤ 100 V: series applied 2.5 Ur Charge/Discharge current is less than 50 mA 	No breakdown or flashover

Product specification 18

19

Surface-Mount Ceramic Multilayer Capacitors | Automotive grade

 $\times 7$ R

6.3 V to 100 V

REVISION HISTORY

REVISION DATE **CHANGE NOTIFICATION DESCRIPTION** Version 0 Feb. 25, 2021

- New

[&]quot;YAGEO reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

Surface-Mount Ceramic Multilayer Capacitors | Automotive grade

x7R

6.3 V to 100 V

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

YAGEO statements regarding the suitability of products for certain types of applications are based on YAGEO's knowledge of typical operating conditions for such types of applications in a generic nature. Such statements are neither binding statements of YAGEO nor intended to constitute any warranty concerning the suitability for a specific customer application or use. They are intended for use only by customers with requisite knowledge and experience for determining whether YAGEO products are the correct products for their application or use. In addition, unpredicatable and isolated cases of product failure may still occur, therefore, customer application or use of YAGEO products which requires higher degree of reliability or safety, shall employ additional protective safeguard measures to ensure that product failure would not result in personal injury or property damage.

YAGEO products are not designed for application or use in medical, life-saving, or life-sustaining devices or for any other application or use in which the failure of YAGEO products could result in personal injury or death. Customers using or selling YAGEO products not expressly indicated for above-mentioned purposes shall do so at their own risk and agree to fully indemnify YAGEO and hold YAGEO harmless.

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by Yageo manufacturer:

Other Similar products are found below:

M39014/02-1218V M39014/02-1225V M39014/22-0631 D55342E07B523DR-T/R NCA1206X7R103K50TRPF NCA1206X7R104K16TRPF
NIN-FC2R7JTRF NMC0402NPO220J50TRPF NMC0402X5R224K6.3TRPF NMC0402X7R103J25TRPF NMC0402X7R392K50TRPF
NMC0603NPO20J50TRPF NMC0603NPO330G50TRPF NMC0603NPO331F50TRPF NMC0603X5R475M6.3TRPF
NMC0805NPO220J100TRPF NMC0805NPO270J50TRPF NMC0805NPO681F50TRPF NMC0805NPO820J50TRPF
NMC0805X7R224K16TRPLPF NMC1206X7R102K50TRPF NMC1206X7R106K10TRPLPF NMC1206X7R475K10TRPLPF NMCH0805X7R472K250TRPF C1608C0G2A221J C1608X7R1E334K C2012C0G2A472J 2220J2K00562KXT CCR06CG153FSV
CDR31BX103AKWR CDR33BX683AKUS CGA3E1X7R1C684K CL05B183KO5NNNC CL10C0R8BB8ANNC M39014/01-1535V
M55342H06B20G0R-T/R C1005X5R0G225M C2012X7R2E223K C3216C0G2J272J D55342E07B35E7R-T/R CDR34BX563BKWS
NMC0402NPO220F50TRPF NMC0402X7R562J25TRPF NMC0603NPO102J25TRPF NMC1206X7R332K50TRPF NMCP1206X7R104K250TRPLPF 726632-1 CGA6M3X7R1H225K CGA5L2X7R2A105K CGA3E2X8R1H223K