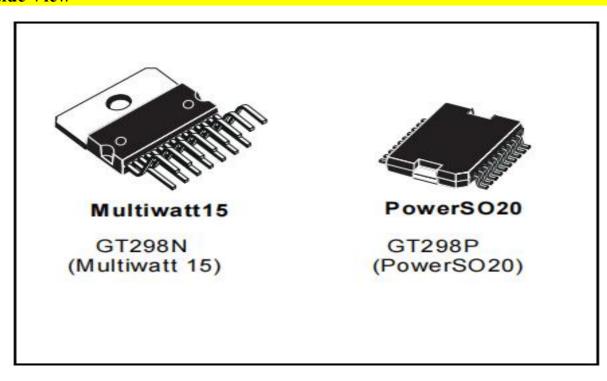


General Description

XBLW GT298 is a high voltage, high current dual full-bridge driver designed to accept standard TTL logic levels and drive inductive loads such as relays, solenoids, DC and stepping motors.

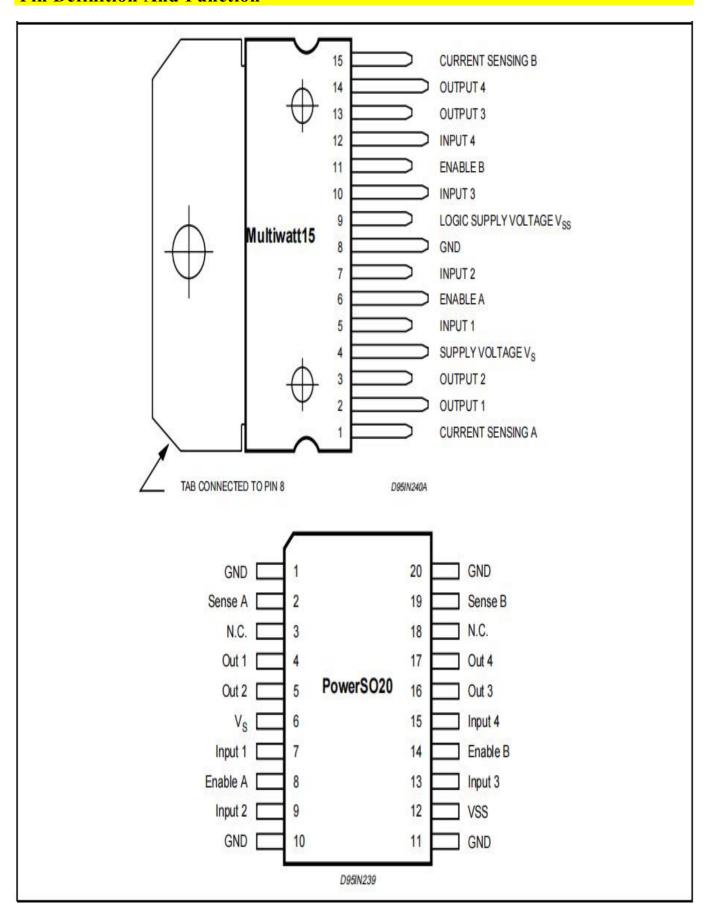

Features

- OPRINAGCSTULIYSOITAGE UP TO 46 V
- TOTAL DC CURRENT UP TO 4 A
- LOW SATURATION VOLTAGE
- LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V
- THE LOGIC POWER SUPPLY AND DRIVE POWER SUPPLY ARE INDEPENDENT OF EACH OTHER

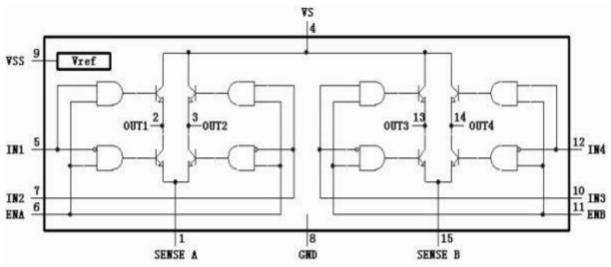
Ordering Information

Product Model	Package Type	Marking	Packing	Packing Qty
GT298P	PowerSO-20	GT298P	Tape	600PCS/Reel
GT298N	Multiwatt-15	GT298N	Tube	250PCS/BOX

Outside View


XBLWversion1.0 www.xinboleic.com Technical support: 4009682003 1/7

Pin Definition And Function



MW.15	PowerSO	Name	Function	
1;15	2;19	Sense A; Sense B	Between this pin and ground is connected the sense resistor to control the current of the load.	
2;3	4;5	Out 1; Out 2	Outputs of the Bridge A; the current that flows through the load connected between these two pins is monitored atpin 1.	
4	6	Vs	Supply Voltage for the Power Output Stages. A non-inductive 100nF capacitor must be connected between this pin and ground.	
5;7	7;9	Input 1; Input 2	TTL Compatible Inputs of the Bridge A.	
6;11	8;14	EnableA;Enable B	TTL Compatible Enable Input: the L state disables the bridge A (enable A) and/or the bridge B (enable B).	
8	1,10,11,20	GND	Ground.	
9	12	VSS	Supply Voltage for the Logic Blocks. A100nF capacitor must be connected between this pin and ground.	
10; 12	13;15	Input 3; Input 4	TTL Compatible Inputs of the Bridge B.	
13; 14	16;17	Out 3; Out 4	Outputs of the Bridge B. The current that flows through the load connected between these two pins is monitored atpin 15.	
	3;18	N.C.	N.C. Not Connected	

Block Diagram

BLOCK DIAGRAM OF XBLW GT298

XBLWversion1.0 www.xinboleic.com Technical support: 4009682003 3 / 7

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Power Supply	50	V
Vss	Logic Supply Voltage	7	V
V _I ,V _{en}	Input and Enable Voltage	–0.3 to 7	V
lo	Peak Output Current (each Channel) – Non Repetitive (t = 100µs) –Repetitive (80% on –20% off; ton = 10ms) –DC Operation	3 2.5 2	A A A
V _{sens}	Sensing Voltage	–1 to 2.3	V
Ptot	Total Power Dissipation (T _{case} = 75。 C)	25	W
Тор	Junction Operating Temperature	–25 to 130	。 C
T _{stg} , T _j	Storage and Junction Temperature	-40 to 150	。 C

Electrical Characteristics (V_S = 42V; V_{SS} = 5V, T_j = 25° C; unless otherwise specified)

Symbol	Parameter	Test Conditi	ons	Min.	Тур.	Max.	Unit
Vs	Supply Voltage (pin 4)	Operative Condition		V _{IH} +2.5		46	V
Vss	Logic Supply Voltage (pin 9)			4.5	5	7	V
ls	Quiescent Supply Current (pin 4)	$V_{en} = H; I_L = 0$	V _i = L V _i = H		13 50	22 70	mA mA
		V _{en} = L X	Vi =			4	mA
Iss	Quiescent Current from Vss (pin 9)	V _{en} = H; I _L = 0	Vi = L Vi = H		24 7	36 12	mA mA
		V _{en} = L X	Vi =			6	mA
V_{iL}	Input Low Voltage (pins 5, 7, 10, 12)			-0.3		1.5	V
V_{iH}	Input High Voltage (pins 5, 7, 10, 12)			2.3		VSS	V
liL	Low Voltage Input Current (pins 5, 7, 10, 12)	Vi = L				-10	μΑ
liн	High Voltage Input Current (pins 5, 7, 10, 12)	Vi = H ≤ Vss –0.6V			30	100	μΑ
V _{en} = L	Enable Low Voltage (pins 6, 11)			-0.3		1.5	V
V _{en} = H	Enable High Voltage (pins 6, 11)			2.3		Vss	V
I _{en} = L	Low Voltage Enable Current (pins 6, 11)	V _{en} = L				-10	μΑ
I _{en} = H	High Voltage Enable Current (pins 6, 11)	$V_{en} = H \le V_{SS} - 0.6V$			30	100	μΑ
VCEsat (H)	Source Saturation Voltage	I∟ = 1A I∟ = 2A		0.95	1.35 2	1.7 2.7	V V
VCEsat (L)	Sink Saturation Voltage	IL = 1A (5) IL = 2A (5)		0.85	1.2 1.7	1.6 2.3	V V
V _{CEsat}	Total Drop	I _L = 1A (5) I _L = 2A (5)		1.80		3.2 4.9	V
V _{sens}	Sensing Voltage (pins 1, 15)	. ,		-1 (1)		2	V

XBLWversion1.0 www.xinboleic.com Technical support: 4009682003 4/7

Application

1 、 POWER OUTPUT STAGE

The XBLW GT298 integrates two power output stages (A; B). The power output stage is a bridge onfiguration and its outputs can drive an inductive load in common or differenzial mode, depending on the state of the inputs.

The current that flows through the load comes out from the bridge at the sense output: an external resistor (RSA; RSB.) allows to detect the intensity of this current.

2 、 INPUT STAGE

All the inputs are TTL compatible

3 、 POWER

A non inductive capacitor, usually of 100 nF, must be foreseen between both Vs and Vss, to ground, as near as possible to GND pin. The en terminal shall be in L state before the output protection is turned off and on.

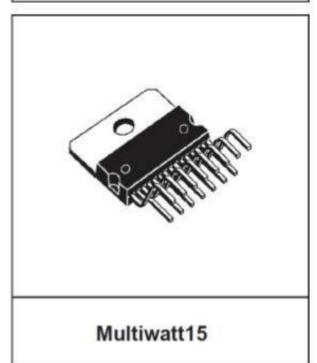
4 \ OUTPUT PROTECTION

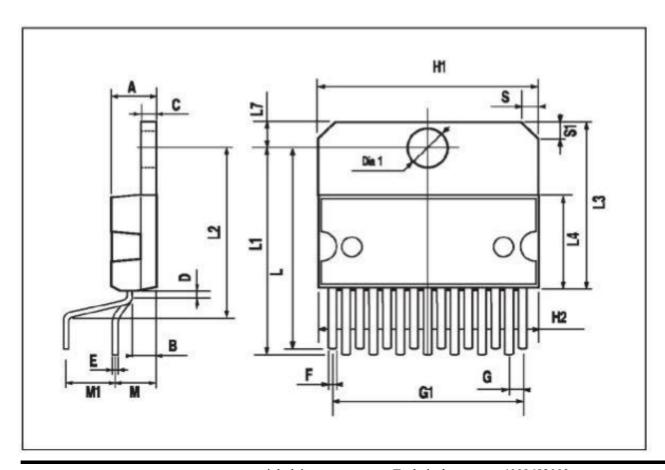
The fast diode shall be selected as the output protection when driving inductive load. When I = 2 A, $VF \le 1.2V$, $TRR \le 200 ns$.

5 × PARALLEL CONNECTION

When the driving current is greater than 2A, two groups can be connected in parallel for current expansion.

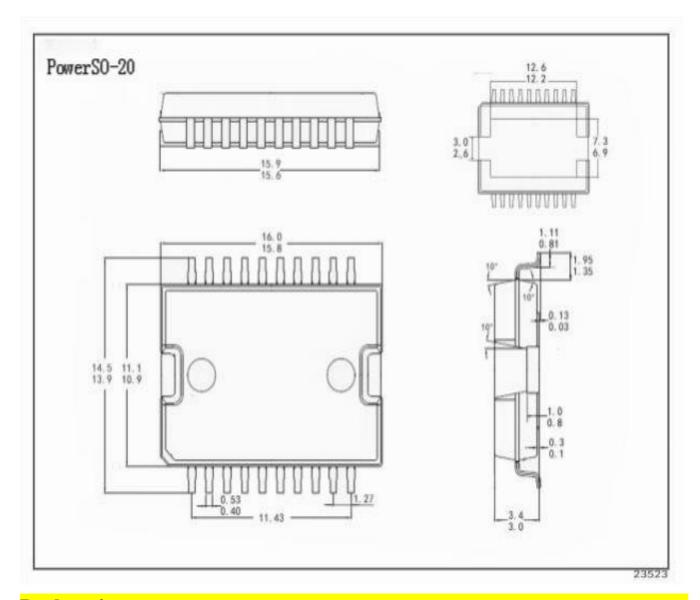
XBLWversion1.0 www.xinboleic.com Technical support: 4009682003 5/7




Package

Multiwatt15/ZIP-15

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			5			0.197	
В			2.65			0.104	
С			1.6			0.063	
D		1			0.039		
E	0.49		0.55	0.019		0.022	
F	0.66		0.75	0.026		0.030	
G	1.02	1.27	1.52	0.040	0.050	0.060	
G1	17.53	17.78	18.03	0.690	0.700	0.710	
H1	19.6			0.772			
H2			20.2			0.795	
L	21.9	22.2	22.5	0.862	0.874	0.886	
L1	21.7	22.1	22.5	0.854	0.870	0.886	
L2	17.65		18.1	0.695		0.713	
L3	17.25	17.5	17.75	0.679	0.689	0.699	
L4	10.3	10.7	10.9	0.406	0.421	0.429	
L7	2.65		2.9	0.104		0.114	
М	4.25	4.55	4.85	0.167	0.179	0.191	
M1	4.63	5.08	5.53	0.182	0.200	0.218	
S	1.9		2.6	0.075		0.102	
S1	1.9		2.6	0.075		0.102	
Dia1	3,65		3.85	0.144		0.152	



PowerSO-20/HSOP-20

Declaration

- * Shenzhen Xinbole Electronics Co., Ltd. reserves the right to modify the product manual without prior notice! Customers are advised to confirm if the information received is the latest version and verify the completeness of related information before placing an order.
- ♦ Under certain conditions, any semiconductor product may fail or malfunction. It is the buyer's responsibility to comply with safety standards and take appropriate safety measures when designing systems and manufacturing complete machines using products from Shenzhen Xinbole Electronics Co., Ltd. to avoid potential risks of failure that may cause personal injury or property damage.
- This document is for reference only, and the actual use should be based on the application test results.
- Product performance improvement is endless. Shenzhen Xinbole Electronics Co., Ltd. will sincerely provide customers with integrated circuit products with better performance and higher quality.

XBLWversion1.0 www.xinboleic.com Technical support: 4009682003 7/7

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for XBLW manufacturer:

Other Similar products are found below:

15N10(XBLW) 24C01BN(XBLW) 24C02BN(XBLW) 24C02N(XBLW) 24C02S(XBLW) 24C04BN(XBLW) 24C04N(XBLW) 24C04N(XBLW) 24C08BN(XBLW) 24C08BN(XBLW) 24C16BN(XBLW) 24C16N(XBLW) 24C32BN(XBLW) 24C32N(XBLW) 24C64BN(XBLW) 24C64BN(XBLW) 24C64N(XBLW) 30N06(XBLW) 74HC595D(XBLW) 8205A(XBLW) ACS712ELCTR-05B-T(XBLW) ACS712ELCTR-20A-T(XBLW) ACS712ELCTR-30A-T(XBLW) AMS1117-1.8(XBLW) AMS1117-3.3(XBLW) AMS1117-5.0(XBLW) AO3400(XBLW) AO3401(XBLW) AO3404(XBLW) AO3407(XBLW) AO3415A(XBLW) AO3416A(XBLW) AO3422(XBLW) AO4435(XBLW) AO4485(XBLW) AO4805(XBLW) AO6800(XBLW) AOD403(XBLW) AOD409(XBLW) AOD413A(XBLW) AOD4184(XBLW) AOD4185(XBLW) AOD480(XBLW) AOD603(XBLW) AON7544(XBLW) AONR21357(XBLW) APM4953(XBLW) CD4001BE(XBLW) CD4001BE(XBLW) CD40106BE(XBLW) CD4012BE(XBLW) CD4001BE(XBLW)