

C3D04060E Silicon Carbide Schottky Diode Z-REC® RECTIFIER

 V_{RRM} = 600 V $I_{F}(T_{c}=135^{\circ}C)$ = 6 A Q_{c} = 10 nC

Features

- 600-Volt Schottky Rectifier
- Optimized for PFC Boost Diode Application
- Zero Reverse Recovery Current
- Zero Forward Recovery Voltage
- High-Frequency Operation
- Temperature-Independent Switching Behavior
- Extremely Fast Switching
- Positive Temperature Coefficient on V_F

Benefits

- Replace Bipolar with Unipolar Rectifiers
- Essentially No Switching Losses
- Higher Efficiency
- Reduction of Heat Sink Requirements
- Parallel Devices Without Thermal Runaway

Applications

- Switch Mode Power Supplies (SMPS)
- Boost diodes in PFC or DC/DC stages
- Free Wheeling Diodes in Inverter stages
- AC/DC converters

Package

TO-252-2

Part Number	Package	Marking
C3D04060E	TO-252-2	C3D04060

Maximum Ratings ($T_c = 25$ °C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note
V_{RRM}	Repetitive Peak Reverse Voltage	600	٧		
V_{RSM}	Surge Peak Reverse Voltage	600	V		
V _{DC}	DC Blocking Voltage	600	٧		
$I_{\scriptscriptstyle F}$	Continuous Forward Current	13.5 6 4	А	T _c =25°C T _c =135°C T _c =155°C	Fig. 3
$\boldsymbol{I}_{\text{FRM}}$	Repetitive Peak Forward Surge Current	17 12	А	T_c =25°C, t_p = 10 ms, Half Sine Wave T_c =110°C, t_p = 10 ms, Half Sine Wave	
$\boldsymbol{I}_{\text{FSM}}$	Non-Repetitive Peak Forward Surge Current	25 19	А	T_c =25°C, t_p = 10 ms, Half Sine Wave T_c =110°C, t_p = 10 ms, Half Sine Wave	Fig. 8
$\mathbf{I}_{\mathrm{F,Max}}$	Non-Repetitive Peak Forward Surge Current	220 160	А	T_c =25°C, t_p = 10 μ s, Pulse T_c =110°C, t_p = 10 μ s, Pulse	Fig. 8
P_{tot}	Power Dissipation	52 22.5	W	T _c =25°C T _c =110°C	Fig. 4
dV/dt	Diode dV/dt ruggedness	200	V/ns	V _R =0-600V	
∫i²dt	i²t value	3.1 1.8	A ² s	$T_c = 25$ °C, $t_p = 10$ ms $T_c = 110$ °C, $t_p = 10$ ms	
T_{J} , T_{stg}	Operating Junction and Storage Temperature	-55 to +175	°C		

Electrical Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V _F	Forward Voltage	1.4 1.7	1.7 2.4	V	$I_F = 4 \text{ A } T_J = 25^{\circ}\text{C}$ $I_F = 4 \text{ A } T_J = 175^{\circ}\text{C}$	Fig. 1
I_R	Reverse Current	5 10	25 100	μΑ	$V_R = 600 \text{ V } T_J = 25^{\circ}\text{C}$ $V_R = 600 \text{ V } T_J = 175^{\circ}\text{C}$	Fig. 2
Q _c	Total Capacitive Charge	10		nC	$V_R = 400 \text{ V, } I_F = 4 \text{ A}$ $di/dt = 500 \text{ A/}\mu\text{s}$ $T_J = 25^{\circ}\text{C}$	Fig. 5
С	Total Capacitance	231 18.5 15		pF	$V_R = 0 \text{ V, } T_J = 25^{\circ}\text{C, f} = 1 \text{ MHz}$ $V_R = 200 \text{ V, } T_J = 25^{\circ}\text{C, f} = 1 \text{ MHz}$ $V_R = 400 \text{ V, } T_J = 25^{\circ}\text{C, f} = 1 \text{ MHz}$	Fig. 6
E _c	Capacitance Stored Energy	1.4		μJ	V _R = 400 V	Fig. 7

Note: This is a majority carrier diode, so there is no reverse recovery charge.

Thermal Characteristics

Symbol	Parameter	Тур.	Unit	Note
$R_{\theta JC}$	Thermal Resistance from Junction to Case	2.9	°C/W	Fig. 9

Typical Performance

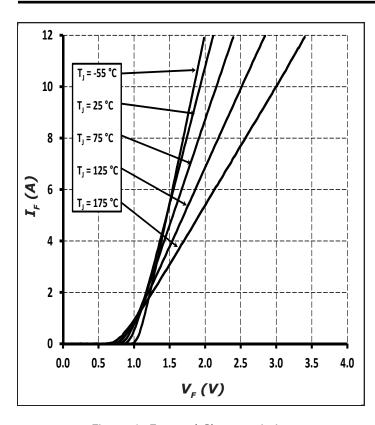


Figure 1. Forward Characteristics

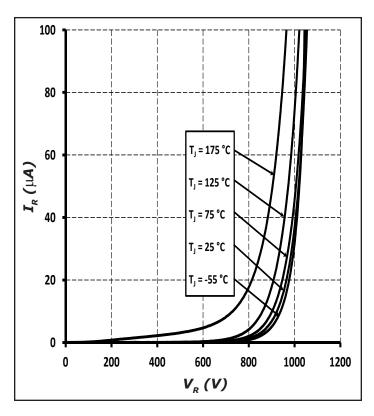
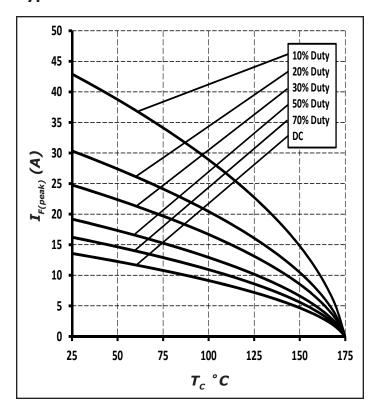



Figure 2. Reverse Characteristics

Typical Performance

60 40 20 10 25 50 75 100 125 150 175 T_c ° C

Figure 3. Current Derating

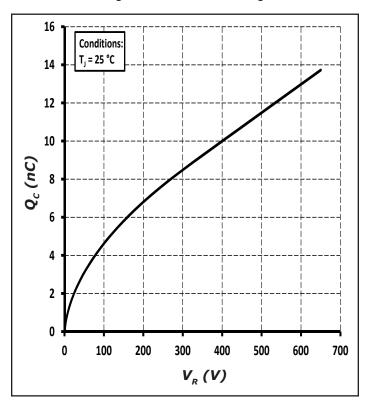


Figure 5. Total Capacitance Charge vs. Reverse Voltage

Figure 4. Power Derating

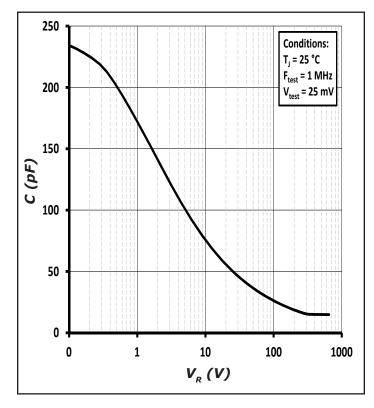


Figure 6. Capacitance vs. Reverse Voltage

Typical Performance

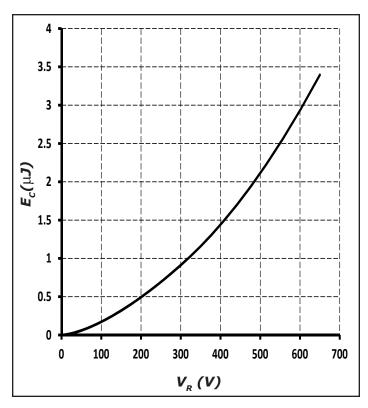


Figure 7. Capacitance Stored Energy

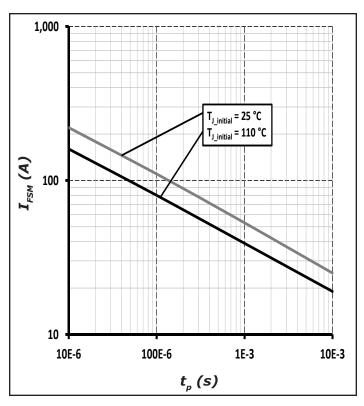


Figure 8. Non-repetitive peak forward surge current versus pulse duration (sinusoidal waveform)

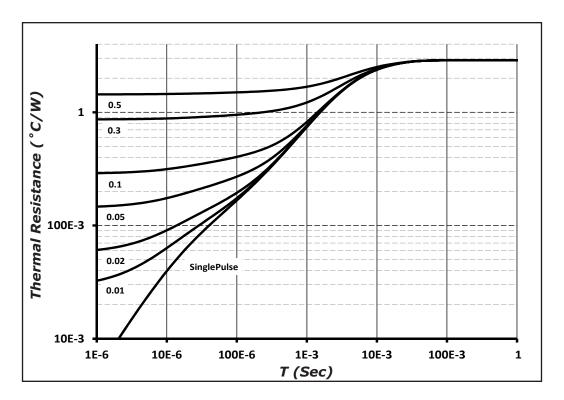
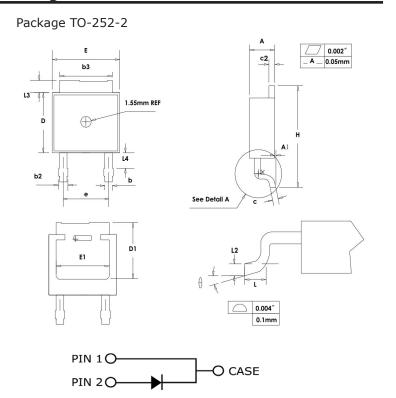
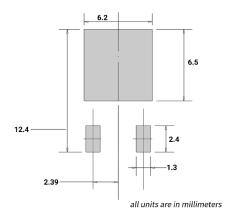



Figure 9. Transient Thermal Impedance



Package Dimensions

CVMPOL	MILLIMETERS			
SYMBOL	MIN	MAX		
Α	2.159	2.413		
A1	0	0.13		
b	0.64	0.89		
b2	0.653	1.143		
b3	5.004	5.6		
С	0.457	0.61		
c2	0.457	0.864		
D	5.867	6.248		
D1	5.21	-		
E	6.35	7.341		
E1	4.32	-		
е	4.58 BSC			
Н	9.65	10.414		
L	1.106	1.78		
L2	0.51 BSC			
L3	0.889	1.27		
L4	0.64	1.01		
θ	0°	8°		

Recommended Solder Pad Layout

TO-252-2

Part Number	Package	Marking		
C3D04060E	TO-252-2	C3D04060		

Note: Recommended soldering profiles can be found in the applications note here: http://www.wolfspeed.com/power_app_notes/soldering

Diode Model

$$\begin{array}{c|c} - & & \\ \hline V_T & R_T \end{array}$$

$$Vf_T = V_T + If * R_T$$

$$V_T = 1.00 + (T_J * -1.1*10^{-3})$$

$$R_T = 0.069 + (T_J * 8.3*10^{-4})$$

Note: T_j = Diode Junction Temperature In Degrees Celsius, valid from 25°C to 175°C

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Wolfpseed representative or from the Product Ecology section of our website at http://www.wolfspeed.com/Power/Tools-and-Support/Product-Ecology.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into
the human body nor in applications in which failure of the product could lead to death, personal injury or property
damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines,
cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control
systems, or air traffic control systems.

Related Links

- Cree SiC Schottky diode portfolio: http://www.wolfspeed.com/Power/Products#SiCSchottkyDiodes
- Schottky diode Spice models: http://www.wolfspeed.com/power/tools-and-support/DIODE-model-request2
- SiC MOSFET and diode reference designs: http://go.pardot.com/l/101562/2015-07-31/349i

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Schottky Diodes & Rectifiers category:

Click to view products by Wolfspeed manufacturer:

Other Similar products are found below:

MA4E2039 D1FH3-5063 MBR10100CT-BP MBR1545CT MMBD301M3T5G RB160M-50TR RB551V-30 BAS16E6433HTMA1 BAT
54-02LRH E6327 NSR05F40QNXT5G NTE555 JANS1N6640 SB07-03C-TB-H SK310-T SK32A-LTP SK33A-TP SK34B-TP SS3003CHTL-E GA01SHT18 CRS10I30A(TE85L,QM MA4E2501L-1290 MBRA140TRPBF MBRB30H30CT-1G SB007-03C-TB-E SK32A-TP
SK33B-TP SK35A-TP SK38B-TP NRVBM120LT1G NTE505 NTSB30U100CT-1G SS15E-TP VS-6CWQ10FNHM3 ACDBA1100LR-HF
ACDBA1200-HF ACDBA140-HF ACDBA2100-HF ACDBA3100-HF CDBQC0530L-HF CDBQC0240LR-HF BAT6202VH6327XTSA1
ACDBA340-HF ACDBA260LR-HF ACDBA1100-HF SK310B-TP MA4E2502L-1246 MA4E2502H-1246 NRVBM120ET1G
NSR01L30MXT5G NTE573