

WS72142

300nA Nano-Power Rail-to-Rail Input Output Operational Amplifiers

Descriptions

The WS72142 is a dual low-voltage operational amplifier with rail-to-rail input/output swing. Ultra low power makes this amplifier ideal for battery-powered and portable applications. The WS72142 has a gain-bandwidth product of 13kHz (TYP) and is unity gain stable. These specifications make this operational amplifier appropriate for low frequency applications, such as battery current monitoring and sensor conditioning.

WS72142 is available with MSL 3 Level in SOP-8L package and MSOP-8L package. Standard products are Pb-Free and halogen-Free.

Applications

- Handsets and Mobile Accessories
- Current Sensing
- Wireless Remote Sensors, Active RFID Readers
- Environment/Gas/Oxygen Sensors
- Threshold Detectors/Discriminators
- Low Power Filters
- Battery or Solar Powered Devices
- Sensor Network Powered by Energy Scavenging

Features

Wide Supply Voltage : 1.6~5.5VQuiescent Current per : 300nA Typical

Amplifier

GBWP : 13kHz

- Rail-to-Rail Input/Output Swing
- Unity Gain Stable
- -40°C to 125°C Operation Temperature Range
- Available in Green SOP-8L and MSOP-8L Packages

Http://www.willsemi.com

SOP-8L/MSOP-8L
Pin configuration (Top view)

Marking

2142 = Device code
GS = Special code
GM = Special code
Y = Year code
W = Week code

Order Information

Device	Package	Shipping
WS72142S-8/TR	SOP-8L	4000/Reel &Tape
WS72142M-8/TR	MSOP-8L	4000/Reel &Tape

Pin Descriptions

Pin Number	Symbol	Descriptions
1	OUTA	Output
2	-INA	Inverting input
3	+INA	Non-inverting input
4	V-	Negative supply
5	+INB	Non-inverting input
6	-INB	Inverting input
7	OUTB	Output
8	V+	Positive supply

Absolute Maximum Ratings(1)

Parameter	Symbol	Value	Unit
Supply Voltage, ([V+] - [V-])	Vs ⁽²⁾	6	V
Input Common Mode Voltage Range	V_{ICR}	(V ⁻)-0.3 to (V ⁺)+0.3	V
Output Short-Circuit Duration	t _{SO} ⁽³⁾	Unlimited	/
Operating Fee-Air Temperature Range	T_A	-40 to 125	Ω̂
Storage Temperature Range	T _{STG}	-65 to 150	Ω̂
Junction Temperature Range	TJ	150	°C
Lead Temperature Range	T∟	260	°C

Note:

- Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the
 device. These are only stress ratings, and functional operation of the device at these or any other
 conditions beyond those indicated under recommended operating conditions are not implied. Exposure
 to absolute-maximum-rated conditions for extended periods may affect device reliability.
- 2. All voltage values, except differential voltage are with respect to network terminal.
- 3. A heat sink may be required to keep the junction temperature below the absolute maximum, depends on the power supply voltage and how many amplifiers are shorted. Thermal resistance varies the amount of PC board metal connected to the package. The specified values are for short traces connected to leads.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum level	Unit
HBM	MIL-STD-883H Method 3015.8 Human Body Model ESD ±800		±8000	V
HBIVI	Truman Body Moder ESD	JEDEC-EIA/JESD22-A114A	±8000	v
CDM	Charged Device Model ESD	JEDEC-EIA/JESD22-C101E	±2000	V
MM	Machine Model ESD	JEDEC-EIA/JESD22-A115	±400	V

Will Semiconductor Ltd. 2 Jul, 2020 - Rev.1.0

Electronics Characteristics

The *denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 27^{\circ}C$. $V_S = 5V$, $V_{CM} = V_{OUT} = V_S/2$, $R_{load} = 100 k\Omega$, $C_{load} = 60 pF$.

Symbol	F	Parameter	Conditions		Min.	Тур.	Max.	Unit
Vos	Input Offset	t Voltage	V _{CM} = V _S /2 and V _{CM} =GND	*	-3.5	±0.1	3.5	mV
α _{VOS}	Input Offset	t Voltage Drift				1.6		μV/°C
I _{IB}	Input Bias (Current				<10		pА
los	Input Offset	t Current				<10		pА
Vn	Input Voltaç	ge Noise	f=0.1Hz to10Hz			8		μV _{P-P}
en	Input Voltag	ge Noise Density	f=1kHz			80		nV/√Hz
R _{IN}	Input Resis	tance				>1		ΤΩ
CMRR	Common M	lode Rejection Ratio	V _{CM} =0.1V to 4.9V	*	55	75		dB
V _{CM}	Common M Range	lode Input Voltage		*	(V ⁻)-0.3		(V ⁺)+0.3	V
PSRR	Power Sup	ply Rejection Ratio		*	65	91		dB
			V_{OUT} =2.5 V_{N} R _{load} =100 $k\Omega$			118		dB
A _{VOL}	Open Loop Large Signal Gain		V_{OUT} =0.1V to 4.9V, R_{load} =100kΩ	*	85	118		dB
V _{OL} ,V _{OH}	Output Swing from Supply Rail		R_{load} =100k Ω			5		mV
Rout	Closed-Loop Output Impedance		G=1,f=1kHz,I _{OUT} =0			4.3		Ω
I _{SC}	Output Sho	rt-Circuit Current	Sink or Source Current		12	15		mA
V _{DD}	Supply Volt	age			1.6		5.5	V
IQ	Quiescent (Current per Amplifier		*		300	450	nA
PM	Phase Mar	gin	R _{load} =100kΩ, C _{load} =60pF			80		degrees
GM	Gain Margi	n	R _{load} =100kΩ, C _{load} =60pF			18		dB
GBWP	Gain-Band	width Product	f=1kHz			13		kHz
ts	Settling	1.5 to 3.5V, Unity Gain	0.1% 0.4		0.4			
	Time	2.45 to 2.55V, Unity Gain	0.1%			0.04		ms
SR	Slew Rate		A_V =1, V_{OUT} =1.5V to 3.5V, R_{load} =100k Ω , C_{load} =60pF			7		mV/μs
FPBW	Full Power	Bandwidth ^{Note1}	2V _{P-P}			300		Hz

Note:

1. Full power bandwidth is calculated from the slew rate FPBW = $SR/(\pi \cdot V_{P-P})$.

Will Semiconductor Ltd. 3 Jul, 2020 - Rev.1.0

Typical Characteristics

$T_A {=} 25^{\circ}\text{C}, \, V_S {=} 5\text{V}, \, V_{\text{CM}} {=} V_S {/} 2, \, \text{unless otherwise noted}$

Small-Siganl Step Response, 100mV Step

Large-Siganl Step Response, 2V Step

Open-Loop Gain and Phase

Phase Margin vs. Cload (Stable for Any Cload)

Input Voltage Noise Spectral Density

CMRR vs. Frequency

Typical Characteristics (continued)

T_A=25°C, V_S=5V, V_{CM}=V_S/2, unless otherwise noted

Over-Shoot Voltage Gain=-1,C_{LOAD} = 40nF, V_S=±2.5V

Over-Shoot Voltage
Gain=+1,C_{LOAD} = 40nF, V_S=±2.5V

Power-Supply Rejection Ratio

Over-Shoot % vs. C_{load}
Gain=-1,C_{LOAD} = 40nF, V_S=±2.5V

Over-Shoot % vs. C_{load}

Gain =+1, C_{LOAD} = 40nF, V_S=±2.5V

VIN = -0.2V to 5.7V, No Phase Reversal

Typical Characteristics (continued)

T_A=25°C, V_S=5V, V_{CM}=V_S/2, unless otherwise noted

Quiescent Supply Current vs. Temperature

Short-Circuit Current vs. Supply Voltage

PSRR vs. Temperature

Quiescent Supply Current vs. Supply Voltage

Closed-Loop Output Impedance vs. Frequency

CMRR vs. Temperature

Typical Characteristics (continued)

T_A=25°C, V_S=5V, V_{CM}=V_S/2, unless otherwise noted

Input Offset Voltage vs. Common Mode Input Voltage

0.1Hz to 10Hz Time Domain Output Voltage Noise

Application Circuit

(1) WS72142 in Low Side Battery Current Sensor

Application Circuit for Low Side Battery Current Sensor

$$V_{OUT} = I_{CC} \times R_3 \times (\frac{R_1}{R_2} + 1)$$

(2) WS72142 in High Side Battery Current Sensor

Application Circuit for High Side Battery Current Sensor

$$I_S = \frac{+V_S - V_{OUT}}{R_1 \times R_3 \div R_2}$$

Will Semiconductor Ltd. 8 Jul, 2020 - Rev.1.0

PACKAGE OUTLINE DIMENSIONS

SOP-8L

TOP VIEW

SIDE VIEW

SIDE VIEW

Symbol	Dime	nsions In Millimeters	(mm)		
Symbol	Min.	Тур.	Max.		
А	1.35	1.55	1.75		
A1	0.05	0.15	0.25		
A2	1.25	1.40	1.65		
b	0.33	-	0.51		
С	0.15	1	0.26		
D	4.70	4.90	5.10		
E	3.70	3.90	4.10		
E1	5.80	6.00	6.20		
е	1.27BSC				
L	0.40	-	1.27		
θ	0°	- 8°			

TAPE AND REEL INFORMATION

SOP-8L

Reel Dimensions

Tape Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

RD	Reel Dimension	7inch	✓ 13inch		
W	Overall width of the carrier tape	☐ 8mm	▼ 12mm		
P1	Pitch between successive cavity centers	2mm	4mm	▼ 8mm	
Pin1	Pin1 Quadrant	☑ Q1	□ Q2	□ Q3	□ Q4

PACKAGE OUTLINE DIMENSIONS

SIDE VIEW

Symbol	Dimensions In Millimeters (mm)					
	Min.	Min. Typ.				
А	-	-	1.10			
A1	0.02	-	0.15			
A2	0.75	0.80	0.95			
b	0.25	-	0.38			
С	0.09	-	0.23			
D	2.90	3.00	3.10			
Е	4.75	4.90	5.05			
E1	2.90	3.00	3.10			
е	0.65 BSC					
L	0.40	- 0.80				
θ	0°	0° - 6°				

Will Semiconductor Ltd. 11 Jul, 2020 - Rev.1.0

TAPE AND REEL INFORMATION

MSOP-8L

Reel Dimensions

Tape Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

RD	Reel Dimension	7inch	✓ 13inch		
W	Overall width of the carrier tape	☐ 8mm	▼ 12mm		
P1	Pitch between successive cavity centers	2mm	4mm	☑ 8mm	
Pin1	Pin1 Quadrant	▼ Q1	□ Q2	□ Q3	□ Q4

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by Will Semiconductor manufacturer:

Other Similar products are found below:

 OPA2991IDSGR
 OPA607IDCKT
 007614D
 633773R
 635798C
 635801A
 702115D
 709228FB
 741528D
 NCV33072ADR2G

 SC2902DTBR2G
 SC2903DR2G
 SC2903VDR2G
 LM258AYDT
 LM358SNG
 430227FB
 430228DB
 460932C
 AZV831KTR-G1
 409256CB

 430232AB
 LM2904DR2GH
 LM358YDT
 LT1678IS8
 042225DB
 058184EB
 070530X
 SC224DR2G
 SC239DR2G
 SC2902DG

 SCYA5230DR2G
 714228XB
 714846BB
 873836HB
 MIC918YC5-TR
 TS912BIYDT
 NCS2004MUTAG
 NCV33202DMR2G

 M38510/13101BPA
 NTE925
 SC2904DR2G
 SC358DR2G
 LM358EDR2G
 AZV358MTR-G1
 AP4310AUMTR-AG1
 HA1630D02MMEL-E

 NJM358CG-TE2
 HA1630S01LPEL-E
 LM324AWPT
 HA1630Q06TELL-E