RoHS COMPLIANT HALOGEN FREE ## Vishay Semiconductors # Hyperfast Rectifier, 2 x 15 FRED Pt® VS-30CTH02HN3 | PRODUCT SUMMARY | | | | | | |----------------------------------|--------------------|--|--|--|--| | Package | TO-220AB | | | | | | I _{F(AV)} | 2 x 15 A | | | | | | V_R | 200 V | | | | | | V _F at I _F | 0.78 V | | | | | | t _{rr} typ. | See Recovery table | | | | | | T _J max. | 175 °C | | | | | | Diode variation | Common cathode | | | | | #### **FEATURES** - · Hyperfast recovery time - Low forward voltage drop - 175 °C operating junction temperature - · Low leakage current - Fully isolated package (V_{INS} = 2500 V_{RMS}) - Designed and qualified according to JEDEC®-JESD 47 - AEC-Q101 qualified - Meets JESD 201 class 2 whisker test - Material categorization: for definitions of compliance please see <u>www.vishav.com/doc?99912</u> #### **DESCRIPTION / APPLICATIONS** 200 V series are the state of the art hyperfast recovery rectifiers specifically designed with optimized performance of forward voltage drop and hyperfast recovery time. The planar structure and the platinum doped life time control, guarantee the best overall performance, ruggedness and reliability characteristics. These devices are intended for use in the output rectification stage of SMPS, UPS, DC/DC converters as well as freewheeling diode in low voltage inverters and chopper motor drives. Their extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers. | ABSOLUTE MAXIMUM RATINGS | | | | | | | | | |---|------------|-----------------------------------|-------------------------|-------------|-------|--|--|--| | PARAMETER | | SYMBOL | TEST CONDITIONS | VALUES | UNITS | | | | | Peak repetitive reverse voltage | | V_{RRM} | | 200 | V | | | | | Average veetified forward comment | per diode | I _{E(A\/)} | T _C = 159 °C | 15 | A | | | | | Average rectified forward current | per device | | | 30 | | | | | | Non-repetitive peak surge current | | I _{FSM} | T _J = 25 °C | 200 | | | | | | Operating junction and storage temperatures | | T _J , T _{Stg} | | -55 to +175 | °C | | | | | ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified) | | | | | | | | | |--|-------------------------------------|--|------------------------------|------|------|----|--|--| | PARAMETER | SYMBOL | TEST CONDITIONS | TEST CONDITIONS MIN. TYP. MA | | | | | | | Breakdown voltage,
blocking voltage | V _{BR} ,
V _R | Ι _R = 100 μΑ | 200 | - | - | | | | | Forward voltage | V _F | I _F = 15 A | - | 0.92 | 1.05 | V | | | | | | I _F = 15 A, T _J = 125 °C | - | 0.78 | 0.85 | | | | | Devene leekene euwent | | $V_R = V_R$ rated | - | - | 10 | | | | | Reverse leakage current I _R | | T _J = 125 °C, V _R = V _R rated | - | 5 | 300 | μΑ | | | | Junction capacitance | C _T | V _R = 200 V | - | 57 | - | pF | | | | Series inductance | L _S | Measured lead to lead 5 mm from package body | - | 8 | - | nH | | | | DYNAMIC RECOVERY CHARACTERISTICS (T _C = 25 °C unless otherwise specified) | | | | | | | | | | |---|------------------|--|--|------|------|-------|-----|--|--| | PARAMETER | SYMBOL | TEST CO | MIN. | TYP. | MAX. | UNITS | | | | | Reverse recovery time | | $I_F = 1 A, dI_F/dt = 50$ | $A/\mu s$, $V_R = 30 V$ | - | - | 35 | | | | | | | $I_F = 1 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}, V_R = 30 \text{ V}$ | | - | - | 30 | | | | | | t _{rr} | T _J = 25 °C | $I_F = 15 \text{ A}$
$dI_F/dt = 200 \text{ A/}\mu\text{s}$
$V_B = 160 \text{ V}$ | - | 26 | - | ns | | | | | | T _J = 125 °C | | - | 40 | - | | | | | Dook recovery ourrent | I _{RRM} | T _J = 25 °C | | - | 2.8 | - | Λ | | | | Peak recovery current | | T _J = 125 °C | | - | 6.0 | - | Α | | | | Reverse recovery charge | 0 | T _J = 25 °C | | = | 37 | - | 200 | | | | | Q _{rr} | T _J = 125 °C | | - | 120 | - | nC | | | | THERMAL - MECHANICAL SPECIFICATIONS | | | | | | | | | |--|-----------|-----------------------------------|---|----------|------|------|------------|--| | PARAMETER | | SYMBOL | TEST CONDITIONS | MIN. | TYP. | MAX. | UNITS | | | Maximum junction and storage temperature range | | T _J , T _{Stg} | | -55 | - | 175 | °C | | | Thermal resistance, junction to case | per diode | R _{thJC} | Mounting surface, flat, smooth, and greased | - | - | 1.1 | °C/W | | | Annyovimata waight | | | | - | 2 | - | g | | | Approximate weight | | | | - | 0.07 | - | oz. | | | Mounting torque | | | | 6 | - | 12 | kgf · cm | | | | | | | 5 | - | 10 | (lbf · cm) | | | Marking device | | | Case style TO-220AB | 30CTH02H | | | | | Fig. 1 - Typical Forward Voltage Drop Characteristics Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current Fig. 6 - Forward Power Loss Characteristics ## www.vishay.com ## Vishay Semiconductors Fig. 7 - Typical Reverse Recovery Time vs. dI_{F}/dt Fig. 8 - Typical Stored Charge vs. dl_F/dt #### Note $\begin{array}{ll} \text{(1)} \ \ \text{Formula used: } T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}; \\ Pd = \text{forward power loss} = I_{F(AV)} \times V_{FM} \text{ at } (I_{F(AV)}/D) \text{ (see fig. 8)}; \\ Pd_{REV} = \text{inverse power loss} = V_{R1} \times I_R \text{ (1 - D); } I_R \text{ at } V_{R1} = \text{rated } V_R \\ \end{array}$ - (1) dl_F/dt rate of change of current through zero crossing - (2) I_{RRM} peak reverse recovery current - (3) $\rm t_{rr}$ reverse recovery time measured from zero crossing point of negative going $\rm I_F$ to point where a line passing through 0.75 $\rm I_{RRM}$ and 0.50 $\rm I_{RRM}$ extrapolated to zero current. - (4) Q_{rr} area under curve defined by t_{rr} and I_{RRM} $$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$ (5) $dI_{(rec)M}/dt$ - peak rate of change of current during t_b portion of t_{rr} Fig. 9 - Reverse Recovery Waveform and Definitions ## **ORDERING INFORMATION TABLE** ## **Device code** Vishay Semiconductors product 2 - Current rating (30 = 30 A) 3 - C = common cathode **4** - T = TO-220 5 - H = hyperfast recovery 6 - Voltage rating (02 = 200 V) 7 - H = AEC-Q101 qualified 8 - Environmental digit: -N3 = halogen-free, RoHS-compliant, and totally lead (Pb)-free | ORDERING INFORMATION (Example) | | | | | | | | |--------------------------------|------------------|------------------------|-------------------------|--|--|--|--| | PREFERRED P/N | QUANTITY PER T/R | MINIMUM ORDER QUANTITY | PACKAGING DESCRIPTION | | | | | | VS-30CTH02HN3 | 50 | 1000 | Antistatic plastic tube | | | | | | LINKS TO RELATED DOCUMENTS | | | | | | |---|-------------|--------------------------|--|--|--| | Dimensions TO-220AB <u>www.vishay.com/doc?95222</u> | | | | | | | Part marking information | TO-220AB-N3 | www.vishay.com/doc?95028 | | | | ## **TO-220AB** #### **DIMENSIONS** in millimeters and inches # Lead tip #### Lead assignments #### <u>Diodes</u> - 1. Anode/open - 2. Cathode - 3. Anode #### Conforms to JEDEC outline TO-220AB | SYMBOL | MILLIN | IETERS | INC | HES | NOTES | |--------|--------|--------|-------|-------|-------| | STMBOL | MIN. | MAX. | MIN. | MAX. | NOTES | | Α | 4.25 | 4.65 | 0.167 | 0.183 | | | A1 | 1.14 | 1.40 | 0.045 | 0.055 | | | A2 | 2.56 | 2.92 | 0.101 | 0.115 | | | b | 0.69 | 1.01 | 0.027 | 0.040 | | | b1 | 0.38 | 0.97 | 0.015 | 0.038 | 4 | | b2 | 1.20 | 1.73 | 0.047 | 0.068 | | | b3 | 1.14 | 1.73 | 0.045 | 0.068 | 4 | | С | 0.36 | 0.61 | 0.014 | 0.024 | | | c1 | 0.36 | 0.56 | 0.014 | 0.022 | 4 | | D | 14.85 | 15.25 | 0.585 | 0.600 | 3 | | D1 | 8.38 | 9.02 | 0.330 | 0.355 | | | D2 | 11.68 | 12.88 | 0.460 | 0.507 | 6 | | SYMBOL | MILLIM | IETERS | INC | HES | NOTES | |---------|------------|--------|-------|-------|-------| | STIMBOL | MIN. | MAX. | MIN. | MAX. | NOTES | | Е | 10.11 | 10.51 | 0.398 | 0.414 | 3, 6 | | E1 | 6.86 | 8.89 | 0.270 | 0.350 | 6 | | E2 | - | 0.76 | - | 0.030 | 7 | | е | 2.41 | 2.67 | 0.095 | 0.105 | | | e1 | 4.88 | 5.28 | 0.192 | 0.208 | | | H1 | 6.09 | 6.48 | 0.240 | 0.255 | 6, 7 | | L | 13.52 | 14.02 | 0.532 | 0.552 | | | L1 | 3.32 | 3.82 | 0.131 | 0.150 | 2 | | ØΡ | 3.54 | 3.73 | 0.139 | 0.147 | | | Q | 2.60 | 3.00 | 0.102 | 0.118 | | | θ | 90° to 93° | | 90° t | o 93° | | | | | | | | | #### Notes - (1) Dimensioning and tolerancing as per ASME Y14.5M-1994 - (2) Lead dimension and finish uncontrolled in L1 - (3) Dimension D, D1 and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body - (4) Dimension b1, b3 and c1 apply to base metal only - (5) Controlling dimensions: inches - (6) Thermal pad contour optional within dimensions E, H1, D2 and E1 - (7) Dimensions E2 x H1 define a zone where stamping and singulation irregularities are allowed - (8) Outline conforms to JEDEC TO-220, except A2 (maximum) and D2 (minimum) where dimensions are derived from the actual package outline ## **Legal Disclaimer Notice** Vishay ## **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. ## **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Rectifiers category: Click to view products by Vishay manufacturer: Other Similar products are found below: 70HFR40 RL252-TP 150KR30A 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F RRE02VS6SGTR 067907F MS306 70HF40 T110HF60 T85HFL60S02 US2JFL-TP A1N5404G-G CRS04(T5L,TEMQ) ACGRA4007-HF ACGRB207-HF CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077 85HFR60 40HFR60 1N1186RA 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K VS-12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358