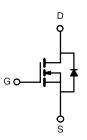


NTP5860NLG-VB Datasheet N-Channel 60 V (D-S) MOSFET


PRODUCT SUMMARY				
V _{DS} (V)	60			
$R_{DS(on)}$ (Ω) at $V_{GS} = 10 \text{ V}$	0.0016			
$R_{DS(on)}$ (Ω) at $V_{GS} = 4.5 \text{ V}$	0.0020			
I _D (A)	270			
Configuration	Single			

FEATURES

- Trench power MOSFET
- Package with low thermal resistance
- \bullet 100 % $R_{\rm g}$ and UIS tested

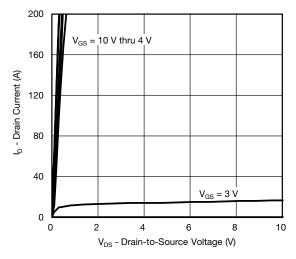
N-Channel MOSFET

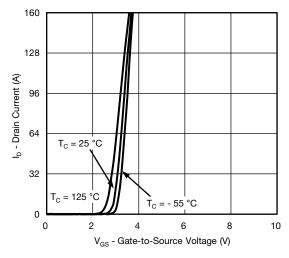
ABSOLUTE MAXIMUM RATINGS (T _C = 25 °C, unless otherwise noted)						
PARAMETER		SYMBOL	LIMIT	UNIT		
Drain-Source Voltage		V_{DS}	60	V		
Gate-Source Voltage		V_{GS}	± 20	V		
Continuous Drain Current	T _C = 25 °C	- I _D	270			
Continuous Drain Current	T _C = 125 °C		120 ^a			
Continuous Source Current (Diode Conduction)	I _S	120 ^a	Α			
Pulsed Drain Current ^b	I _{DM}	600				
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	75			
Single Pulse Avalanche Energy	L=0.1111H	E _{AS}	281	mJ		
Maximum Power Dissipation ^b	T _C = 25 °C	P _D	375	W		
	T _C = 125 °C		125	VV		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +175	°C		

THERMAL RESISTANCE RATINGS						
PARAMETER		SYMBOL	LIMIT	UNIT		
Junction-to-Ambient	PCB Mount c	R_{thJA}	40	°C/W		
Junction-to-Case (Drain)		R_{thJC}	0.4	G/ VV		

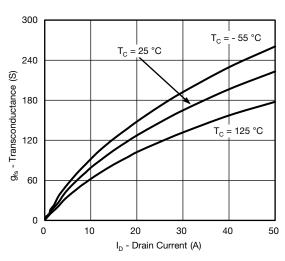
Notes

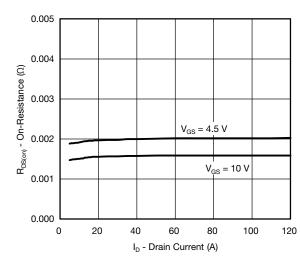
- a. Package limited.
- b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.
- c. When mounted on 1" square PCB (FR4 material).


PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT	
Static	1			l				
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		60	-	_	V	
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$		1.5	2.0	2.5	V	
Gate-Source Leakage	I _{GSS}	V _{DS} =	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$		-	± 100	nA	
		$V_{GS} = 0 V$	V _{DS} = 60 V	-	-	1	μА	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	V _{DS} = 60 V, T _J = 125 °C	-	-	50	- μΑ	
		$V_{GS} = 0 V$	V _{DS} = 60 V, T _J = 175 °C	-	-	1.5	mA	
On-State Drain Current ^a	I _{D(on)}	V _{GS} = 10 V	$V_{DS} \ge 5 V$	120	-	-	Α	
		V _{GS} = 10 V	I _D = 30 A	-	0.0016	-	Ω	
Drain-Source On-State Resistance a	D	V _{GS} = 10 V	I _D = 30 A, T _J = 125 °C	-	0.0031	-		
Diani-Source On-State nesistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A, T _J = 175 °C	-	0.0037	-		
		$V_{GS} = 4.5 \text{ V}$	I _D = 20 A	-	0.0020	-]	
Forward Transconductance b	9fs	V _{DS} = 15 V, I _D = 30 A		-	164	-	S	
Dynamic ^b								
Input Capacitance	C _{iss}		V _{DS} = 25 V, f = 1 MHz	-	12 060	15 100	pF	
Output Capacitance	C _{oss}	$V_{GS} = 0 V$		-	5750	7200		
Reverse Transfer Capacitance	C _{rss}			-	860	1100		
Total Gate Charge ^c	Q_g			-	128	200		
Gate-Source Charge ^c	Q_{gs}	V _{GS} = 10 V	$V_{DS} = 30 \text{ V}, I_{D} = 80 \text{ A}$	-	33	-	nC	
Gate-Drain Charge ^c	Q_{gd}			-	11	-		
Gate Resistance	R_g	f = 1 MHz		0.8	1.68	2.6	Ω	
Turn-On Delay Time ^c	t _{d(on)}	$V_{DD}=30~V,~R_L=0.375~\Omega$ $I_D\cong 80~A,~V_{GEN}=10~V,~R_g=1~\Omega$		-	20	25		
Rise Time ^c	t _r			-	15	40	- ns	
Turn-Off Delay Time ^c	t _{d(off)}			-	65	100		
Fall Time ^c	t _f			-	12	20		
Source-Drain Diode Ratings and Chara	acteristics ^b							
Pulsed Current ^a	I _{SM}			-	-	300	Α	
Forward Voltage	V_{SD}	I _F = 80 A, V _{GS} = 0 V		-	0.88	1.5	V	

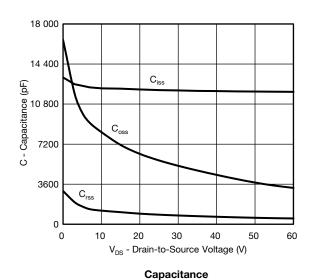

Notes

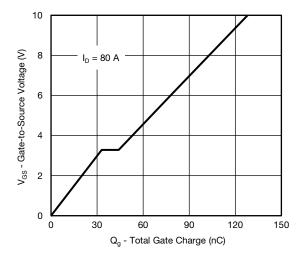
- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.
- c. Independent of operating temperature.


TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)



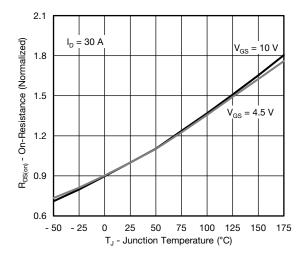
Output Characteristics

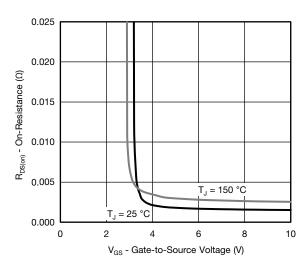


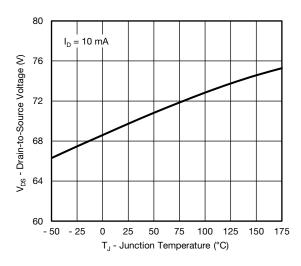


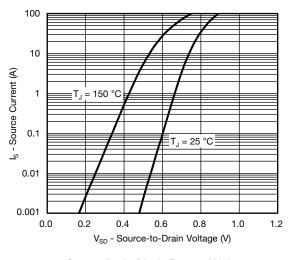
Transconductance

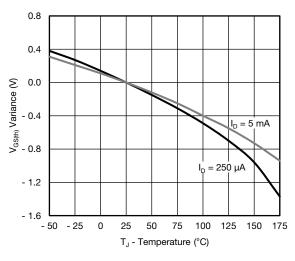
On-Resistance vs. Drain Current

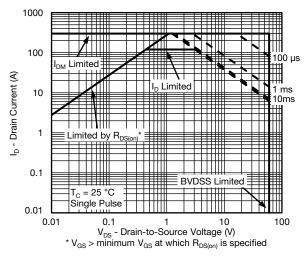



Gate Charge

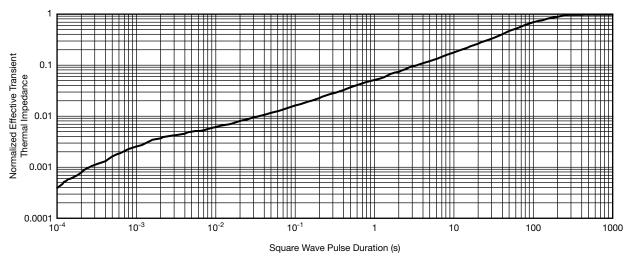

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

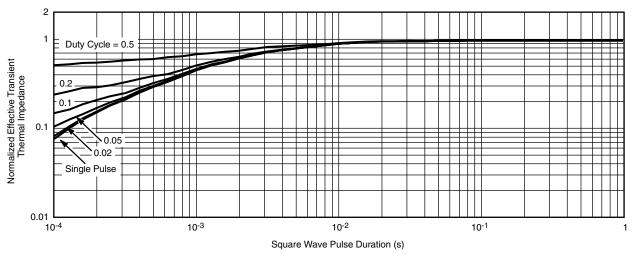

On-Resistance vs. Junction Temperature


On-Resistance vs. Gate-to-Source Voltage


Drain Source Breakdown vs. Junction Temperature

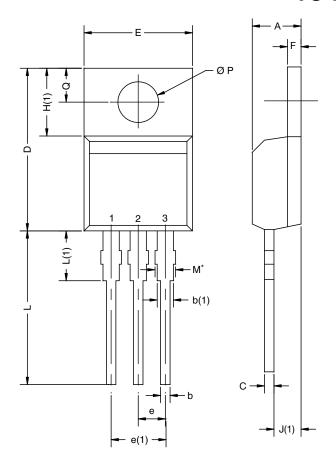
Source Drain Diode Forward Voltage

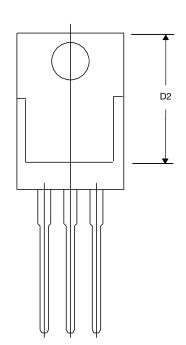

Threshold Voltage


Safe Operating Area

THERMAL RATINGS (T_A = 25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient


Normalized Thermal Transient Impedance, Junction-to-Case


Note

- The characteristics shown in the two graphs
 - Normalized Transient Thermal Impedance Junction-to-Ambient (25 °C)
 - Normalized Transient Thermal Impedance Junction-to-Case (25 °C) are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.

TO-220AB

		INC	HES	MILLIN	METERS			
DIM.		MIN.	MAX.	MIN.	MAX.			
Α		0.160	0.190	4.064	4.826			
	b	0.020	0.039	0.508	0.990			
	b1	0.020	0.035	0.508	0.889			
	b2	0.045	0.055	1.143	1.397			
C*	Thin lead	0.013	0.018	0.330	0.457			
C	Thick lead	0.023	0.028	0.584	0.711			
c1	Thin lead	0.013	0.017	0.330	0.431			
CI	Thick lead	0.023	0.027	0.584	0.685			
	c2	0.045	0.055	1.143	1.397			
	D	0.340	0.380	8.636	9.652			
	D1 0.220		0.240	5.588	6.096			
	D2	0.038	0.042	0.965	1.067			
	D3	0.045	0.055	1.143	1.397			
	D4	0.044	0.052	1.118	1.321			
	E	0.380	0.410	9.652	10.414			
E1		0.245	-	6.223	-			
E2		0.355	0.375	9.017	9.525			
E3		0.072	0.078	1.829	1.981			
e		0.100 BSC		2.54 BSC				
K		0.045	0.055	1.143	1.397			
L		0.575	0.625	14.605	15.875			
L1		0.090	0.110	2.286	2.794			
L2		0.040	0.055	1.016	1.397			
L3		0.050	0.070	1.270	1.778			
L4		0.010 BSC		0.254 BSC				
М		-	0.002	-	0.050			

ECN: T13-0707-Rev. K, 30-Sep-13

DWG: 5843

Notes

- 1. Plane B includes maximum features of heat sink tab and plastic.
- 2. No more than 25 % of L1 can fall above seating plane by max. 8 mils.
- 3. Pin-to-pin coplanarity max. 4 mils.
- 4. *: Thin lead is for SUB, SYB.
 - Thick lead is for SUM, SYM, SQM.
- 5. Use inches as the primary measurement.

This feature is for thick lead.

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be oHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFETs category:

Click to view products by VBsemi Elec manufacturer:

Other Similar products are found below:

MCH3443-TL-E MCH6422-TL-E NTNS3A92PZT5G IRFD120 2SK2464-TL-E 2SK3818-DL-E 2SJ277-DL-E 2SK2267(Q) MIC4420CM-TR IRFS350 IPS70R2K0CEAKMA1 AON6932A 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG SCM040600 NTE2384 2N7000TA DMN2080UCB4-7 US6M2GTR DMN31D5UDJ-7 DMP22D4UFO-7B DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 IRF40H233XTMA1 STU5N65M6 DMN13M9UCA6-7 STU7N60DM2 DMTH10H4M6SPS-13 DMN2990UFB-7B 2N7002W-G MCQ7328-TP IPB45P03P4L11ATMA2 BXP4N65F BXP2N20L BXP2N65D TSM60NB380CP ROG SLF10N65ABV2 IRF9395MTRPBF FCMT080N65S3 NTD5C632NLT4G NTMFS0D55N03CGT1G NTMFS1D15N03CGT1G NTMTS0D4N04CTXG NTMYS2D1N04CLTWG NVD360N65S3T4G NVD5C464NLT4G NVMTS001N06CLTXG NVMTS1D1N04CTXG