K-no.: 24507 Customer: Standard type Description Closed loop (compensation) Current Sensor with magnetic field probe Printed circuit board mounting Casing and materials UL-listed

SPECIFICATION

Item no.: T60404-N4646-X651

25 A Current Sensor modul for 5V-supply voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

10.12.2010 Date:

Page 2 Customers Part no.: 1 of

Characteristics

- Excellent accuracy
- Very low offset current
- Very low temperature dependency and offset current drift
- Very low hysteresis of offset current
- short response time
- Wide frequency bandwidth
- Compact design
- Reduced offset ripple

Applications

Mainly used for stationary operation in industrial applications:

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Switched Mode Power Supplies (SMPS)
- Power Supplies for welding applications
- Uninterruptible Power Supplies (UPS)

Electrical data - Ratings

I _{PN}	Primary nominal r.m.s. current	25	Α
V_{out}	Output voltage @ I _P	$2.5 \pm (0.625^*I_P/I_{PN})$	V
V_{out}	Output voltage @ I _P =0, T _A =25°C	2.5 ± 0.015	V
V_{Ref}	Reference voltage	2.5 ± 0.005	V
K_N	Turns ratio	13 : 2000	

Accuracy - Dynamic performance data

		min.	typ.	max.	Unit
I _{P,max}	Max. measuring range	±85			
X	Accuracy @ I _{PN} , T _A = 25°C			0.7	%
ϵ_{L}	Linearity			0.1	%
V_{out} -2,5 V	Offset voltage @ I _P =0, T _A = 25°C			±15	mV
$\Delta V_{out}/2,5V/\Delta T$	Temperature drift of V _{out} @ I _P =0, T _A = -4085°C		13	26	ppm/K
tr	Response time @ 90% von I _{PN}		300		ns
Δt (I _{P,max})	Delay time at di/dt = 100 A/μs		200		ns
f	Frequency bandwidth	DC100			kHz

General data

		min.	typ.	max.	Unit
T_A	Ambient operating temperature	-40		+85	°C
T_S	Ambient storage temperature	-40		+85	°C
m	Mass		12		g
V_{C}	Supply voltage	4.75	5	5.25	V
I _{C0}	Current consumption		15		mA

Constructed and manufactored and tested in accordance with EN 61800-5-1 (Pin 1 - 6 to Pin 7 - 9) Reinforced insulation, Insulation material group 1, Pollution degree 2

S _{clear}	Clearance (compor	nent without solder pad)	7		mm
S _{creep}	Creepage (compon	ent without solder pad)	7		mm
V_{sys}	System voltage	overvoltage category 3	RMS	300	V
V_{work}	Working voltage	(tabel 7 acc. to EN61800-5-1)			
		overvoltage category 2	RMS	650	V
U_{PD}	Rated discharge v	oltage	peak value	1320	V

Date	Name	Issue	Amendment
10.12.10	Ga.	82	Mechanical outline: Pin length, tolerance changed from 3,5 +/-0,5mm auf 3,5 -0,3 / +0,5mm. ÄA-959
08.04.08	Le	82	"Preliminary" delete.

SPECIFICATION

Item no.: T60404-N4646-X651

K-no.: 24507

25 A Current Sensor modul for 5V-supply voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

Date: 10.12.2010

Page 2 2 of

Customer: Standard type

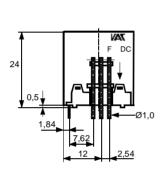
Mechanical outline (mm):

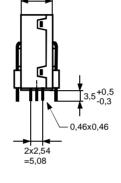
General tolerances DIN ISO 2768-c

Customers Part no.:

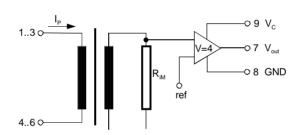
Toleranz der Stiftabstände

±0,2 mm (Tolerances grid distance)


Connections:


1...6: Ø 1 mm

7...9: 0,46*0,46 mm



DC = Date Code F = Factory

Schematic diagram

Possibilities of wiring $(@ T_A = 85^{\circ}C)$

primary windings N _P	primary RMS I _P [A]	current maximal Î _{P,max} [A]	output voltage effective V _{out} (I _{PN}) [V]	turns ratio	primary resistance R _P [mW]	wiring
1	25	±85	2.5±0.625	1:2000	0.33	3 1
2	12	±42	2.5±0.600	2:2000	1.5	3 1 6>
3	8	±28	2.5±0.600	3:2000	3	> ³ / ₄ · ¹ / ₆ >

Additional information is obtainable on request.

Temperature of the primary conductor should not exceed 110°C.

This specification is no declaration of warranty acc. BGB §443 dar.

Hrsg.: KB-E	Bearb: Le	KB-PM: KRe		freig.: HS
editor	designer	check		released

Additional Information Item No.: T60404-N4646-X651 K-No.: 24507 Date: 10.12.2010 25 A Current Sensor Modul for 5V-supply voltage For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit Customer: Customers Part No .: Page 1 **Electrical Data** Unit min. typ. max. Maximum supply voltage (without function) V_{Ctot} Supply Current with primary current $15\text{mA} + I_p * K_N + V_{out} / R_L$ I_{C} $I_{out,SC}$ Short circuit output current ±20 Resistance / primary winding @ T_A=25°C R_P 1 Secondary coil resistance @ TA=85°C Rs 67 Output resistance of Vout R_{i} , (V_{out}) External recommended resistance of Vout 1 R_L C_L External recommended capacitance of Vout 500 $\Delta X_{Ti}/\Delta T$ Temperature drift of X @ T_A = -40 ... +85 °C 40 $\Delta V_0 = \Delta (V_{out} - 2.5V)$ Sum of any offset drift including: 10 V_{0t} Long term drift of V₀ 1 Temperature drift von $V_0 @ T_A = -40 ... + 85^{\circ}C$ 4 V_{0T} Hysteresis of V_{out} @ I_P=0 (after an overload of 10 x I_{PN}) 2 mV V_{0H} $\Delta V_0/\Delta V_C$ Supply voltage rejection ratio Offsetripple (with 1 MHz- filter first order) 60 Voss Offsetripple (with 100 kHz- filter firdt order) 5 Voss 8 Offsetripple (with 20 kHz- filter first order) 1 2 Voss

Maximum possible coupling capacity (primary - secondary)

Inspection (Measurement after temperature balance of the samples at room temperature)

Mechanical stress according to M3209/3 Settings: 10 - 2000 Hz, 1 min/Decade, 2 hours

$V_{out}(I_P=I_{PN})$	(V)	M3011/6:	Output voltage vs. internal reference (I _P =25A, 40-80Hz)	625±0.7%	mV
V _{out} -2.5V (I _P =	=0) (V)	M3226:	Offset voltage	± 0.015	V
V_d	(V)	M3014:	Test voltage, rms, 1 s pin 1 – 6 vs. pin 7 – 9	1,5	kV
V _e	(AQL	1/S4)	Partial discharge voltage acc.M3024 (RMS) with V _{vor} (RMS)	1400 1750	V V

Type Testing (Pin 1 - 6 to Pin 7 - 9)

 C_k

Designed according standard EN 50178 with insulation material group 1

0	J	5 1			
V_W	HV transient	rest according to M3064 (1,2 µs / 50	μs-wave form)	8	kV
V_d	Testing voltage	ge to M3014	(5 s)	3	kV
Ve	Partial discha	rge voltage acc.M3024 (RMS)		1400	V
	with V (RM	S)		1750	V

Applicable documents

Current direction: A positive output current appears at point Is, by primary current in direction of the arrow. Housing and bobbin material UL-listed: Flammability class 94V-0.

Enclosures according to IEC529: IP50.

Datum	Name	Index	Änderung						
10.12.10	Ga.	82	Date changed	e changed.					
08.04.08	Le	82	"preliminary"	delete.					
Hrsg.: KB-	-E	Bea	LC		KB-PM: KRe			freig.: HS released	

5

10

30q

of

mΑ

mΑ

 $\mathsf{m}\Omega$

Ω

Ω

kΩ

nΕ

mV

m۷

m۷

mV/V

m۷

m۷

m۷

рF

ppm/K

2

Additional Information

Item No.: T60404-N4646-X651

Date:

K-No.: 24507

25 A Current Sensor Modul for 5V-supply voltage

For the electronic measurement of currents:

DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit

10.12.2010

Customer:

Customers Part No.: Page 2 of 2

Explanation of several of the terms used in the tablets (in alphabetical order)

Response time (describe the dynamic performance for the specified measurement range), measured as delay time t_r: at $I_P = 0.9$ I_{PN} between a rectangular current and the output voltage V_{OUt} (I_p)

Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) $\Delta t (I_{Pmax})$: measured between I_{Pmax} and the output voltage V_{out}(I_{Pmax}) with a primary current rise of di_P/dt ≥ 100 A/μs.

 U_{PD} Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage V_e U_{PD} $= \sqrt{2} * V_e / 1,5$

 V_{vor} Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1,875 * UPD required for partial discharge test in IEC 61800-5-1

 V_{vor} $= 1.875 *U_{PD} / \sqrt{2}$

 V_{svs} System voltage RMS value of rated voltage according to IEC 61800-5-1

Working voltage voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation V_{work}

V₀: Offset voltage between V_{out} and the rated reference voltage of $V_{ref} = 2.5V$.

 $V_0 = V_{out}(0) - 2,5V$

Zero variation of V_o after overloading with a DC of tenfold the rated value V_{0H}:

Long term drift of V_o after 100 temperature cycles in the range -40 bis 85 °C. Vot:

X: Permissible measurement error in the final inspection at RT, defined by

$$X = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{out}(0)}{0.625V} - 1 \right| \%$$

 $X_{ges}(I_{PN})$: Permissible measurement error including any drifts over the temperature range by the current measurement I_{PN}

$$X_{ges} = 100 \cdot \left| \frac{V_{out}(I_{PN}) - 2,5V}{0,625V} - 1 \right| \% \text{ or } X_{ges} = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{ref}}{0,625V} - 1 \right| \%$$

 $e_{\rm L} = 100 \cdot \left| \frac{I_{\rm P}}{I_{\rm DN}} - \frac{V_{out}(I_{\rm P}) - V_{out}(0)}{V_{out}(I_{\rm PN}) - V_{out}(0)} \right| \%$ Linearity fault defined by ϵ_{L} :

This "Additional information" is no declaration of warranty according BGB \$443.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Board Mount Current Sensors category:

Click to view products by Vacuumschmelze manufacturer:

Other Similar products are found below:

CSDD1FR CSLA2ELI CSNP661-007 SCL15 10006 L18P003S05 T60404-B4658-X030 LA02P021S03 LA01M041S05 LA03P054S05

CSNE151-003 L08P150D15IPV L18P050D15-OP CT220FMC-IS5 CT220PMC-IS5 CT220BMC-HS5 SIC830AED-T1-GE3 CT-05 CT-07
100 CT-07-50 MR-1 MR-1-P5 T60404-N4646-X662 T60404-N4646-X664 DRV421RTJT CSNR161005 T60404-N4646-X651 MR-3 MR
2 MR-4 CT-06-100 CT-06-50 T60404-N4646-X412 CT-06-75 CSDA1BA-S CSDC1DA CSDD1EC CSLA1CF CSLA1DE CSLA1DG

CSLA1DK CSLA1EL CSLA1GE CSLA1GF CSLA2CDI CSLA2CFI CSLA2CFI CSLA2DE CSLA2DG CSLA2DH CSLA2DJ