

DATA SHEET

Product Name Radial Type Cement Fixed Resistors

Part Name PRM Series File No. DIP-SP-029

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

1. Scope

This datasheet is the characteristics of Radial Type Cement Fixed Resistors manufactured by UNI-ROYAL.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

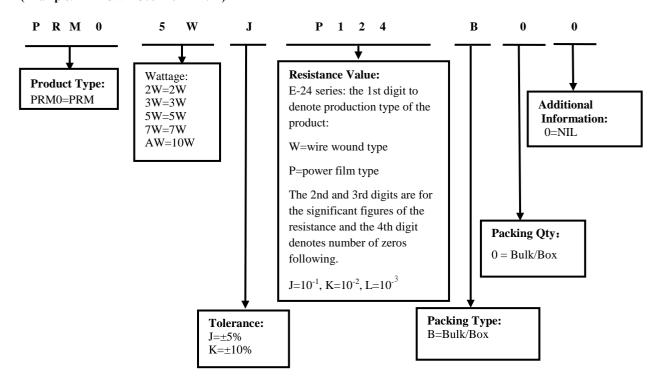
- 2.1 For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3digits, the 4th digit will be "0" Example: PRM0=PRM-type
- $2.2 5^{th} \sim 6^{th}$ digits:
- 2.2.1 For power of 1 watt to 16 watt ,the 5th digit will be a number or a letter code and the 6th digit will be the letters of W.

Example: 5W=5W; AW=10W;

2.2.2 For power rating Between 20 watt to 99 watt, the 5th and the 6th digits will show the whole numbers of the power rating itself.

Example: 20=20W 75=75W

- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm 5\%$ $K=\pm 10\%$
- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For Cement Fixed Resistors the 8th digits will be coded with "W"or "P"to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor product. the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following

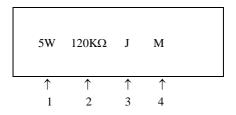

Example: W12J=1.2 Ω W120=12 Ω P273=27K Ω

- 2.5 The 12th, 13th & 14th digits.
- 2.5.1 The 12th digit is to denote the Packaging Type with the following codes: B=Bulk/Box
- 2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for the Cement products with "Bulk/Box" packing requirements.
 - 2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product

Example: 0= standard product

3. Ordering Procedure

(Example: PRM 5W \pm 5% 120K Ω B/B)

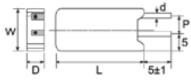


4. Marking

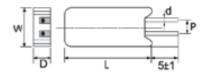
Example:

Code description and regulation:

- 1. Wattage Rating
- 2. Nominal Resistance Value
- 3. Resistance Tolerance. $J: \pm 5\%$

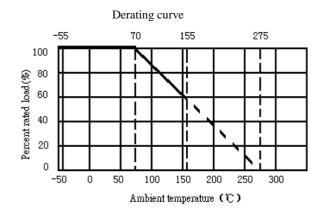

K: ± 10%

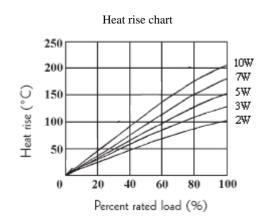
4. Pattern:


M: Power filmW: Wire wound

Color of marking: Black Ink

5. Ratings & Dimension





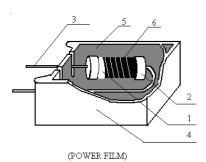
*** PRM 2W, 3W, 5W : Lead centered

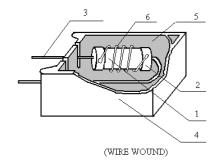
Туре	Dimension(mm)					Max Working	Max Overload	Resistance Range	
	W±1	D±1	L±1	P±1	d±0.05	Voltage	Voltage	Wire Wound	Power Film
PRM 2W	11.5	7.5	20	5	0.70	250V	500V	0.1Ω-27Ω	28Ω-120ΚΩ
PRM 3W	12.5	8.5	25	5	0.70	300V	600V	0.1Ω-39Ω	40Ω-150ΚΩ
PRM 5W	13	9	25	5	0.75	350V	700V	0.1Ω -47 Ω	48Ω-150ΚΩ
PRM 7W	13	9	38	5	0.75	500V	1000V	0.1Ω-680Ω	681Ω-200ΚΩ
PRM10W	13	9	50	5	0.75	700V	1400V	0.1Ω -910 Ω	911Ω-200ΚΩ

6. Derating Curve

6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:


$$RCWV = \sqrt{P \times R}$$


Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)

R= nominal resistance (OHM)

7. Structure

No.	Name	Material Generic Name
1	Body	Al_2O_3
2	Cap	Tin plated iron
3	Lead	Copper wire
4	Ceramic case	Al ₂ O ₃ CaO
5	Filling materials	SiO ₂
6	Resistance element	Power film: Metal Oxide Film
	Resistance element	Wire-wound: Ni-Cr alloys

8. Performance Specification

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)		
Temperature Coefficient	≥20Ω: ±350PPM/°C <20Ω: ±400PPM/°C	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2\text{-}R_1}{R_1\text{-}(t_2\text{-}t_1)} \times 10^6 \text{ (PPM/°C)}$ $R_1\text{: Resistance Value at room temperature } (t_1) ;$ $R_2\text{: Resistance at test temperature } (t_2)$ $t_1\text{: } +25\text{°C or specified room temperature}$ $t_2\text{: Test temperature } (-55\text{°C or } 125\text{°C})$		
Short-time overload	Resistance change rate must be in $\pm (5\% + 0.05\Omega)$,and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV for 5 seconds.		
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90°metallic V-block and shall be tested at AC potential respectively specified in the above list for 60-70 seconds.for cement fixed resistors the testing voltage is 1000V.		
Resistance to soldering heat	Resistance change rate must be in \pm (1%+0.05 Ω) ,and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in 260°C±5°c solder for 10±1 seconds.		

Solderability	95% coverage Min.	4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder: 245°C±3°C Dwell time in solder: 2~3seconds.		
Terminal strength	No evidence of mechanical damage	4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.		
Humidity (Steady state)	Resistance change rate must be in $\pm (5\% + 0.05\Omega)$,and no mechanical damage.	4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40±2 °C and 90~95%RH relative humidity		
Load life in humidity	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 K\Omega \Delta R/R$: $\pm 10\%$	7.9 Resistance change after 1,000 hours (1.5 hours "ON", 0.5 hour "OFF") at RCWV in a humidity test chamber controlled at $40^{\circ}\text{C} \pm 2^{\circ}\text{C}$ and 90 to 95% relative humidity.		
Load life	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 K\Omega \Delta R/R$: $\pm 10\%$	4.25.1 permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $70^{\circ}\text{C} \pm 2^{\circ}\text{C}$ ambient.		
Low Temperature Storage	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 K\Omega \Delta R/R$: $\pm 10\%$	IEC 60068-2-1 (Aa) Lower limit temperature, for 2H.		
High Temperature Exposure	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 K\Omega \Delta R/R$: $\pm 10\%$	MIL-STD-202 108A Upper limit temperature , for 16H.		

9. <u>Note</u>

- 9.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35°C under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 9.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 9.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , etc.

10. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~5	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.26, 2019	Haiyan Chen	Yuhua Xu
3	Modify characteristic	5	Nov.20,2020	Song Nie	Yuhua Xu
4	Modify the temperature coefficient test conditions	4	Nov.07, 2022	Haiyan Chen	Yuhua Xu

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Thick Film Resistors - Through Hole category:

Click to view products by Uniroyal manufacturer:

Other Similar products are found below:

M8340104K3300GCD03 M8340105K3922FGD03 M8340105M5101JGD03 M8340107K2401GCD03 M8340109K1003GCD03 MP8503.00-1% ARC3.11 2M J A M8340105K1003GCD03 M8340105M2201GCD03 M8340107M7501GCD03 M8340108K2051FCD03

M8340108K7501GCD03 M8340108M5100JGD03 M8340109K1000GCD03 MOX-GRD-001 M8340109K1002FCD03

M8340102K4701GAD04 M8340109K2002GGD03 M8340108K2002FGD03 OE1305 MS-221-82R5 MOX-4-127505J SM102034504FE

MOX300002206FE MOX-400233004F SM104066008J MOX-400262008PE MOX-400234007FE MOX-400221006G MOX-750235006ME

SM103032506FE SM202022005FE MOX-400225003F MS176-2.20M-1% MOX-830212453BE MG715-2.40M-1% MS214-20.0K-1%

MF0W4FF4702A50 KNP10W-27±5%-AP MF0W4FF2003A50 MF0W4FF2202A50 MF0W4FF560JA50 MF01SFF8202A10

MF01SFF6800A10 MF01SFF220JA10 MF0W4FF4700A50 MF0W4FF4300A50 KNP1WS10RJH2FuseF2 MF0W4FF3902A50

MF0W4FF1432A50