

DATA SHEET

Product Name High-Power Thick Film Chip Resistors

Part Name HP Series

Uniroyal Electronics Global Co., Ltd.

88 Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry (kunshan) co., ltd.

Uniroyal Electronics Industry Co., Ltd.

Uniroyal Electronics Global Co.,Ltd Shenzhen Branch

Aeon Technology Corporation

Uniroyal Electronics Global Co.,Ltd Xiamen Branch

Kunshan Foss Electronic material Co., Ltd. Royal Electronic Factory (thailand) co., ltd

Brands RoyalOhm UniOhm

1. Scope

- 1.1 This specification for approve relates to the High Power Thick Film Chip Resistors manufactured by UNI-ROYAL.
- 1.2 High power standard size
- 1.3 Suitable for both wave & re-flow soldering
- 1.4 Application: AV adapters, LCD back-light, camera strobe ect.

2. Explanation of Part No. System

Part No. includes 14 codes shown as below:

- 2.1 1st~4th codes: Part name, E.g.: HP02, HP03, HP05, HP06, HP07, HP10, HP11, HP12
- 2.2 5th~6th codes: Power rating.

E.g.: W=Normal Size		"1~	G" = "1∼1	6"						
Wattage	1/32	3/4	1/2	1/3	1/4	1/8	1/10	1/16	1/20	1
 Normal Size	WH	07	W2	W3	W4	W8	WA	WG	WM	1W

If power rating is lower or equal than 1 watt, 5th code would be "W" and 6th code would be a number or letter.

E.g.: WA=1/10W W4=1/4W

2.3 7^{th} code: Tolerance. E.g.: D=±0.5% F=±1% G=±2% J=±5% K= ±10%

2.4 8th~11th codes: Resistance Value.

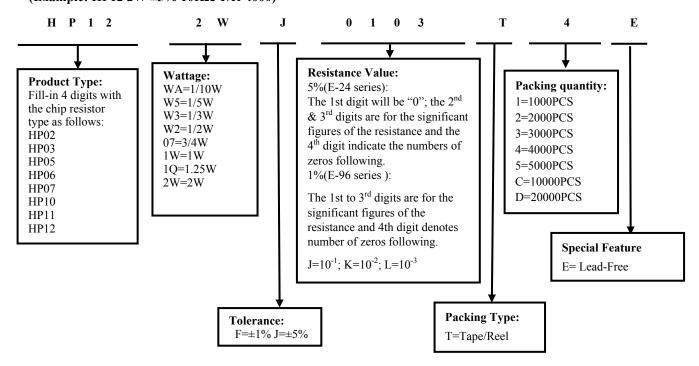
- 2.4.1 If value belongs to standard value of $\geq 5\%$ series, 8^{th} code would be zero, $9^{th} \sim 10^{th}$ codes are significant figures of the resistance and 11^{th} code is the power of ten.
- 2.4.2 If value belongs to standard value of $\leq 2\%$ series, $8^{th} \sim 10^{th}$ codes are significant figures of the resistance, and 11^{th} code is the power of ten.
- 2.4.311th codes listed as following:

 $0=10^{0}$ $1=10^{1}$ $2=10^{2}$ $3=10^{3}$ $4=10^{4}$ $5=10^{5}$ $6=10^{6}$ $J=10^{-1}$ $K=10^{-2}$ $L=10^{-3}$ $M=10^{-4}$

2.5 12th~14th codes.

2.5.1 12th code: Packaging Type. E.g.: C=Bulk T=Tape/Reel

2.5.2 13th code: Standard Packing Quantity.


Chip Product: BD=B/B-20000pcs TC=T/R-10000pcs

2.5.3 14th code: Special features.

E = Environmental Protection, Lead Free, or Standard type.

3. Ordering Procedure

(Example: HP12 2W $\pm 5\%$ 10K Ω T/R-4000)

Feb.12,2019 V.2 www.uniohm.com Page 2/8

4. Marking

(1) For HP02 size. Due to the very HP02 small size of the resistor's body, there is no marking on the body.

Normally, the making of 0Ω HP03, 0Ω HP05, 0Ω HP06, 0Ω HP07, 0Ω HP10, 0Ω HP11, 0Ω HP12, 0Ω SP12, resistors as following

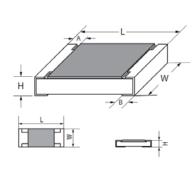
(2) ±2%,±5%Tolerance:The first two digits are significant figures of resistance and the third denotes number of zeros following

(3) $\pm 0.5\%$ $\sim \pm 1\%$ Tolerance: 4 digits, first three digits are significant; forth digit is number of zeros. Letter r is decimal point.

(4) More than HP05 specifications (including) 4 digits, Product below 1Ω , show as following, the first digit Is "R" which as decimal point.

 $0 \rightarrow 0\Omega$

 $333 \rightarrow 33K\Omega$

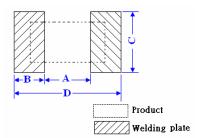


 $2701 \rightarrow 2.7 \text{K}\Omega$

 $R300 \rightarrow 0.3\Omega$

5. <u>Dimension</u>

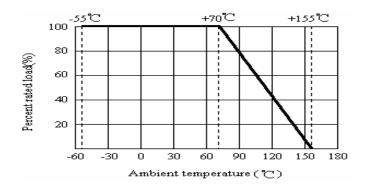
Tuno		Dimension(mm)						
Туре	L	W	Н	A	В			
HP02(0402)	1.00±0.10	0.50 ± 0.05	0.35±0.05	0.20±0.10	0.25±0.10			
HP03(0603)	1.60±0.10	0.80 ± 0.10	0.45±0.10	0.30 ± 0.20	0.30±0.20			
HP05(0805)	2.00±0.15	1.25+0.15/ -0.10	0.55±0.10	0.40 ± 0.20	0.40 ± 0.20			
HP06(1206)	3.10±0.15	1.55+0.15/-0.10	0.55±0.10	0.45 ± 0.20	0.45±0.20			
HP07(1210)	3.10±0.10	2.60 ± 0.20	0.55±0.10	0.50 ± 0.25	0.50 ± 0.20			
HP10(2010)	5.00±0.10	2.50±0.20	0.55±0.10	0.60 ± 0.25	0.50 ± 0.20			
HP11(1812)	4.50±0.20	3.20±0.20	0.55±0.20	0.50 ± 0.20	0.50 ± 0.20			
HP12(2512)	6.35±0.10	3.20±0.20	0.55±0.10	0.60 ± 0.25	0.50 ± 0.20			



6. Resistance Range

Туре	Type Size 70°C Power		of		Max. Overload Voltage	Dielectric withstanding Voltage	Operating Temperature	
11000	0.402	1/10337	1Ω~10M	50V	100V	100V	55°O 155°O	
HP02	0402	1/10W	0Ω		Rmax=10mΩ, Imax=3A		-55℃~155℃	
IID02	0602	1/5W	0.1Ω~10M	75V	150V	300V	-55°C~155°C	
HP03	0603	1/3 W	0Ω		Rmax=8mΩ, Imax=5A	_	-55 C~155 C	
HP05	0805	1/3W	0.01Ω~10M	150V	300V	500V	-55°C~155°C	
пРОЗ	0803	1/3 W	Ω			-55 C~155 C		
HP06	1206	1/2W	$0.01\Omega\sim10M$	200V	400V	500V	-55°C~155°C	
пРОО	1200	1/2 VV	Ω		Rmax=5m Ω , Imax=10A		-33 0~133 0	
HP07	1210	3/4W	0.1Ω~10M	200V	500V	500V	-55℃~155℃	
пгол	1210	3/4 W	Ω		Rmax= $4m\Omega$, Imax= $12A$		-55 C~155 C	
HP10	2010	1W	$0.01\Omega{\sim}10M$	200V	500V	500V	55°C 155°C	
пРТО	2010	1 VV	0Ω		Rmax=5mΩ, Imax=12A	_	-55℃~155℃	
IID11	1012	1.05311	0.1Ω~10M	200V	500V	500V	55°C 155°C	
HP11	1812	1.25W	0Ω		Rmax=5mΩ, Imax=12A		-55°C~155°C	
HP12	2512	2W	0.01Ω~10M	250V	500V	500V	-55℃~155℃	
ПГ12	2312	2W	0Ω		Rmax= $5m\Omega$, Imax= $16A$		-33 C~133 C	

7. Recommend the size of welding plate



Type		Dimens	sion(mm)	
Type	A	В	C	D
HP02	0.5 ± 0.05	0.5 ± 0.05	0.6 ± 0.05	1.5±0.05
HP03	0.8 ± 0.05	0.8 ± 0.05	0.9 ± 0.05	2.4±0.05
HP05	1.0 ± 0.1	1±0.1	1.4 ± 0.1	3±0.1
HP06	2.0±0.1	1.1±0.1	1.8±0.1	4.2±0.1
HP07	2.0±0.1	1.1±0.1	2.9±0.1	4.2±0.1
HP10	3.6±0.1	1.4±0.1	3±0.1	6.4±0.1
HP11	3.0±0.1	1.4±0.1	3.7±0.1	5.8±0.1
HP12	4.9±0.1	1.35±0.1	3.7±0.1	7.6 ± 0.1

8. Derating Curve

Resistors shall have a power rating based on continuous load operation at an ambient temperature from -55°C to 70°C. For temperature in excess of 70°C, the load shall be derated as shown in figure 1

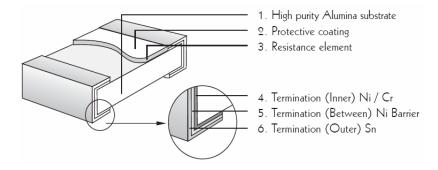
Figure 1

8.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working

Voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

 $RCWV = \sqrt{P \times R}$


Where: RCWV commercial-line frequency and waveform (Volt.)

P = power rating (WATT.) R = nominal resistance (OHM)

In no case shall the rated DC or RMS AC continuous working voltage be greater than the applicable maximum value.

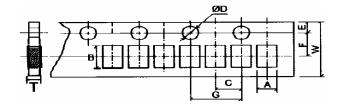
The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is less

8. Structure

9. Performance Specification

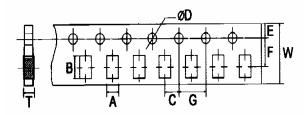
Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)
	HP02: 1Ω≤R≤10Ω: ±400 PPM/°C 10Ω <r≤100ω: 100ω<r≤10m:="" ppm="" td="" °c="" °c<="" ±100="" ±200=""><td></td></r≤100ω:>	
	HP03: $0.1\Omega \le R < 0.2\Omega$: ±200PPM/°C $0.2\Omega \le R \le 10$ M: ±100 PPM/°C	
	HP05: $10m\Omega \le R \le 15m\Omega: \pm 800 ppm/^{\circ}C$ $15m\Omega \le R \le 25m\Omega: \pm 600 ppm/^{\circ}C$ $25m\Omega \le R \le 50m\Omega: \pm 400 ppm/^{\circ}C$ $50m\Omega \le R \le 0.1\Omega: \pm 200 ppm/^{\circ}C$ $0.1\Omega \le R \le 10M: \pm 100 ppm/^{\circ}C$	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2\text{-}R_1}{R_1(t_2\text{-}t_1)} \times 10^6 (\text{PPM/°C})$ $R_1: \text{ Resistance Value at room temperature } (t_1) \; ;$ $R_2: \text{ Resistance at test temperature}$ $(\text{Upper limit temperature or Lower limit temperature})$
Temperature Coefficient	HP06: $10m\Omega \le R < 15m\Omega$: $\pm 700 \text{ ppm/°C}$ $15m\Omega \le R < 30m\Omega$: $\pm 400 \text{ ppm/°C}$ $30m\Omega \le R < 50m\Omega$: $\pm 300 \text{ ppm/°C}$ $50m\Omega \le R < 0.1\Omega$: $\pm 150 \text{ ppm/°C}$ $0.1\Omega \le R \le 10M$: $\pm 100 \text{ ppm/°C}$ HP10: $10m\Omega \le R < 15m\Omega$: $0 \sim +800 \text{ ppm/°C}$ $15m\Omega \le R < 50m\Omega$: $0 \sim +600 \text{ ppm/°C}$	t _{1:} +25°C or specified room temperature t _{2:} Upper limit temperature or Lower limit temperature test temperature
	$50\text{m}\Omega \leq R < 50\text{m}\Omega$: 0 = 1000 ppm/°C HP12: $10\text{m}\Omega \leq R < 20\text{m}\Omega$: 0 ~ +800ppm/°C $20\text{m}\Omega \leq R \leq 50\text{m}\Omega$: 0 ~ +400ppm/°C $50\text{m}\Omega < R \leq 10\text{M}$: ±75ppm/°C	
	HP07、HP11: ±100PPM/℃	

Feb.12,2019 V.2 www.uniohm.com Page 5/8

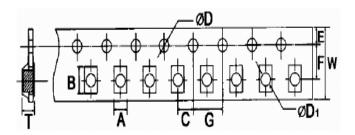


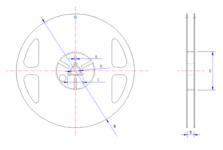
_	±5%	±(2.0%+0.1Ω)	4.12 Democrate resistance shows a Conde condition of Co. 5			
Short-time overload	±5% ±1%	$\pm (2.0\% + 0.122)$ $\pm (1.0\% + 0.1\Omega)$	4.13 Permanent resistance change after the application of 2.5 times RCWV for 5 seconds.			
Dielectric withstanding voltage	No evide	nce of flashover mechanical arcing or insulation breaks done.	4.7 Clamped in the trough of a 90°C metallic v-block and shall be tested at ac potential respectively specified in the type for 60-70 seconds			
Terminal bending	±(1.0%+	0.05Ω) Max	4.33 Twist of test board: $Y/X = 3/90$ mm for 60seconds			
Soldering heat		the change rate must be in 0.05Ω) Max	4.18 Dipping the resistor into a solder bath having a temperature of 260 ℃±5 ℃ and hold it for 10±1 seconds			
Solderability	Coverage	e must be over 95%.	Wave solder: Test temperature of solder: 245°C±3°C dipping time in solder: 2-3 seconds. Reflow: PEAK VALUE TEMPERATURE: 245°C - 250°C 230°C			
Rapid change of temperature	±5%	±(1.0%+0.1Ω)	4.19 30 min at lower limit temperature and 30 min at upper limit temperature , 100 cycles			
temperature	±1%	$\pm (0.5\% + 0.1\Omega)$	temperature 100 cycles			
Humidity	±5%	±(3.0%+0.1Ω)	4.24Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at			
(steady state)	±1%	±(0.5%+0.1Ω)	40±2℃ and 90-95% relative humidity,			
Load life	±5%	±(3.0%+0.1Ω)	7.9 Resistance change after 1,000 hours (1.5 hours "ON",0.5 hour "OFF") at RCWV in a humidity chamber controlled at 40			
in humidity	±1%	±(1.0%+0.1Ω)	$^{\circ}$ C±2 $^{\circ}$ C and 90 to 95% relative humidity.			
Load life	±5%	±(3.0%+0.1Ω)	4.25.1 Permanent resistance change after 1,000 hours operating at RCWV with duty cycle 1.5 hours "ON", 0.5 hour "OFF" at 70			
Load life	±1%	±(1.0%+0.1Ω)	$^{\circ}$ C±2 $^{\circ}$ C ambient.			
Low	±5%	±(3.0%+0.1Ω)	4.23.4 Lower limit temperature , for 2H.			
Temperature Storage	±1%	±(1.0%+0.1Ω)	4.25.4 Lower limit temperature / 101 211.			
High Temperature	±5%	±(3.0%+0.1Ω)				
Exposure	±1%	±(1.0%+0.1Ω)	4.23.2 Upper limit temperature , for 16H.			
Leaching	No visibl	e damage	J-STD-002 Test D Samples completely immersed for 30 sec in solder bath at 260°C			

10. Packing of Surface Mount Resistors
10.1 Dimension of Paper Taping :(Unit: mm)



Туре	A ± 0.1	B ± 0.1	C ±0.05	+0.1 ΦD -0	E ±0.1	F ±0.05	G ±0.1	W ±0.2	T ±0.05
HP02	0.65	1.20	2.00	1.50	1.75	3.5	4.00	8.0	0.42




ТҮРЕ	A ± 0.2	B ± 0.2	C ± 0.05	+ 0.1 \$\phi D\$ - 0	E ± 0.1	F ± 0.05	G ± 0.1	W ± 0.2	T ±0.10
HP03	1.10	1.90	2.00	1.50	1.75	3.5	4.00	8.00	0.67
HP05	1.65	2.40	2.00	1.50	1.75	3.5	4.00	8.00	0.81
HP06	2.00	3.60	2.00	1.50	1.75	3.5	4.00	8.00	0.81
HP07	2.80	3.50	2.00	1.50	1.75	3.5	4.00	8.00	0.75

10.2 Dimension of Embossed Taping: (Unit: mm)

Туре	A ±0.2	B ±0.2	C ±0.05	+ 0.1 \$\phi D \] - 0	+0.25 \$\phi D1 \\ -0	E ±0.1	F ±0.05	G ±0.1	W ±0.2	T ±0.1
HP10	2.9	5.6	2.0	1.5	1.5	1.75	5.5	4.0	12.0	1.0
HP11	3.5	4.8	2.0	1.5	1.5	1.75	5.5	4.0	12.0	1.0
HP12	3.5	6.7	2.0	1.5	1.5	1.75	5.5	4.0	12.0	1.0

10.2 Dimension of Reel: (Unit: mm)

Type	Taping	Size	A±0.5	B±0.5	C±0.5	ΦD±1	ΦL±2	W±1
HP02	Paper	10,000pcs reel	2.0	13.0	21.0	60.0	178.0	10.0
HP03	Paper	5,000pcs reel	2.0	13.0	21.0	60.0	178.0	10.0
HP05	Paper	5,000pcs reel	2.0	13.0	21.0	60.0	178.0	10.0
HP06	Paper	5,000pcs reel	2.0	13.0	21.0	60.0	178.0	10.0
HP07	Paper	5,000pcs reel	2.0	13.0	21.0	60.0	178.0	10.0
HP10	Embossed	4,000pcs reel	2.0	13.0	21.0	60.0	178.0	13.8
HP11	Embossed	4,000pcs reel	2.0	13.0	21.0	60.0	178.0	13.8
HP12	Embossed	4,000pcs reel	2.0	13.0	21.0	60.0	178.0	13.8

11. Note

- 11.1. UNI-ROYAL recommend the storage condition temperature: 15 °C ~ 35 °C , humidity : 25% ~ 75%.
 - (Put condition for individual product). Even under UNI-ROYAL recommended storage condition, solderability of products over 1 year old. (Put condition for each product) may be degraded.
- 11.2. Store / transport cartons in the correct direction, which is indicated on a carton as a symbol.
 - Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 11.3. Product performance and soldered connections may deteriorate if the products are stored in the following places:
 - a. Storage in high Electrostatic.
 - b. Storage in direct sunshine ' rain and snow or condensation.
 - c. Where the products are exposed to sea winds or corrosive gases, including Cl_2 , H_2S_3 NH_3 , SO_2 , NO_2 .

12. Record

Version	Description of amendment	Page	Date	Amended by	Checked by
1	First issue of this specification	1~8	Mar.20, 2018	Chen Haiyan	Chen Nana
2	Modify the Performance Specification	5~6	Feb.12, 2019	Chen Haiyan	Xu Yuhua

Uniroyal Electronics Global Co., Ltd., all rights reserved. Spec. herein would be changed at any time without prior notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Thick Film Resistors - SMD category:

Click to view products by Uniroyal manufacturer:

Other Similar products are found below:

M55342K08B46E4SWL M55342K08B62J0SUL M55342K08B6J20SWB MCR01MZPF1202 MCR01MZPF1800 MCR01MZPF6201

MCR01MZPJ121 MCR01MZPJ751 MCR03EZPFX2004 MCR10EZPF1102 RC1005F2052CS RC1005F471CS RC1005J122CS

RC1005J180CS RC1005J181CS RC1608F333CS RC1608J121CS RC2012F2493CS RC2012J105CS RC2012J470CS RC2012J561CS

RC2012J8R2CS RC3216F272CS RCP0603W100RGED RCWP1100100KFKS3 RCWP110037R4FKED RCWP110043R2FKS3

RCWP72251K47FKWB RMCF0201FT49R9 RMCF0603FT300K RMCF0805FT221K RMCF1210JT20R0 RMCF1210JT68K0

RMCF1210ZT0R00 RMCF2512FT1R00 RMCF2512JT20R0 RMCF2512JT7K50 RMCF2512JT910R NRC04F1000TRF NRC04F1004TRF

NRC04F10R0TRF NRC04F1132TRF NRC04F2001TRF NRC04F2002TRF NRC04F2203TRF NRC04F33R0TRF NRC04F51R1TRF

NRC04J103TRF NRC04J204TRF NRC04J471TRF