XC6225 series is Not Recommended for New Designs.

XC6225 Series

ETR0342-006

30mA High Speed LDO Regulator

■ GENERAL DESCRIPTION

The XC6225 series is a high accuracy, low noise, and low dropout CMOS LDO regulator. The series includes a reference voltage source, an error amplifier, a driver transistor, a current limiter, and a phase compensation circuit. The CE function enables the entire circuit to be turned off by a low level input signal to the CE pin. In this stand-by state, the XC6225B series can discharge the electric charge stored at the output capacitor through the internal auto-discharge switch, and as a result the VouT pin quickly returns to the Vss level. The output stabilization capacitor (CL) is also compatible with low ESR ceramic capacitors. Output voltage is selectable in 0.05V increments within a range of 0.8V~5.0V. The current limit fold-back circuit works as a short circuit protection as well as the output current limiter. The series achieves a fast response with only $25 \,\mu$ A of low power consumption. The current limit is set to 50mA (TYP.) so that the device is optimized to protect the circuit from over-current. It is ideally suited for applications requiring 30 mA or less.

A small USP-4 package makes high density mounting possible.

APPLICATIONS

- Smart phones / Mobile phones
- Portable games
- Digital still cameras / Camcorders
- Digital audio equipment
- Mobile devices / terminals

FEATURES

: 30mA <50mA (TYP.) Limit>
: 70mV@ IOUT=30mA, VOUT=3.2V
: 2.5V ~ 6.0V
: 0.8V~5.0V (0.05V increments)
: <u>+</u> 2% (Vout≥1.5V)
<u>+</u> 0.03V (Vouт≦1.45V)
: 25 μ A (TYP.)
: Less than 0.1 μ A
: 70dB @ 1kHz
: -40°C~+85°C
: 1.0 μ F ceramic capacitor
e (XC6225B)
: USP-4, SOT-25
SSOT-24
: EU RoHS Compliant, Pb Free

■ TYPICAL APPLICATION CIRCUIT

■ PIN CONFIGURATION

USP-4	SOT-25	SSOT-24
(BOTTOM VIEW)	(TOP VIEW)	(TOP VIEW)

*The heat sink pad of the USP-4 is reference to be soldered to enhance the strength. Please refer to the reference mount pattern and metal mask pattern. This pad should be electrically opened or connected to the Vss (No.2) pin.

■ PIN ASSIGNMENT

PIN NUMBER			PIN NAME	FUNCTIONS
USP-4	SOT-25	SSOT-24		FUNCTIONS
4	1	4	VIN	Power Input
1	5	3	Vout	Output
2	2	2	Vss	Ground
3	3	1	CE	ON/OFF Control
-	4	-	NC	No Connection

■ PIN FUNCTION ASSIGNMENT

PIN NAME	SIGNAL	STATUS
	L	Operation OFF
CE	Н	Operation ON
	OPEN	Undefined state

*CE pin should not be left open. Each should have a certain voltage.

■ PRODUCT CLASSIFICATION

Ordering Information

$\underline{\text{XC6225}(1)(2)(3)(4)(5)(6)(-7)}^{(*1)}$

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
1	Type of Degulator	Α	CE High Active, Without C _L discharge function
U	Type of Regulator	В	CE High Active, With CL discharge function
23	Output Voltage	08~50	e.g. $3.0V \rightarrow (1=3, (2)=0$
	Output Voltage	2	Output voltage is { x.x0V } (the 2 nd decimal place is "0") 2% ($V_{OUT(T)} \ge 1.5V$), Within $\pm 0.03V$ ($V_{OUT(T)} \le 1.40V$)
(4)	Accuracy	A	Output voltage is { x.x5V } (the 2 nd decimal place is "5") $\pm 2\%$ (V _{OUT} $\geq 1.55V$), Within $\pm 0.03V$ (V _{OUT} $\leq 1.45V$)
	Dookagoo	GR-G	USP-4 (3,000/Reel)
56-7	Packages (Order Unit)	MR-G	SOT-25 (3,000/Reel)
		NR-G	SSOT-24 (3,000/Reel)

 $\ensuremath{^{(*1)}}$ The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

XC6225 series is Not Recommended for New Designs.

BLOCK DIAGRAMS

XC6225 Series TypeA

*Diodes inside the circuit are an ESD protection diode and a parasitic diode.

■ABSOLUTE MAXIMUM RATINGS				
PARAM	IETER	SYMBOL	RATINGS	UNITS
Input \	/oltage	VIN	Vss-0.3~Vss +6.5	V
Output	Current	Іоит	400 (*1)	mA
Output Voltage		V _{OUT}	V _{SS} -0.3~V _{IN} +0.3	V
CE Input	t Voltage	VCE	Vss-0.3~Vss +6.5	V
	USP-4		120	
Power Dissipation	SOT-25	Pd	250	mW
	SSOT-24		150	
Operating Ambient Temperature		Topr	-40~+85	S
Storage Temperature		Tstg	-55~+125	C°

 $^{(^{\star 1})} I_{\text{OUT}} \ \leqq \ \text{Pd} \ / \ (V_{\text{IN}} \text{-} V_{\text{OUT}})$

■ ELECTRICAL CHARACTERISTICS

●XC6225 Series						Ta=	25°C
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage	Vout(e) ^(*2)	V _{OUT(T)} ≧1.50V V _{CE} =V _{IN} , I _{OUT} =10mA	V _{OUT(T)} ×0.980		V _{OUT(T)} ×1.020	v	1
Output voltage	VOUT(E)	V _{OUT(T)} ≦1.45V V _{CE} =V _{IN} , I _{OUT} =10mA	V _{OUT(T)} -0.030	(*3)	Vout(t) +0.030		U
Output Current	Іоитмах	$V_{CE}=V_{IN} \\ V_{IN}=V_{OUT(T)}+1.0V \\ 1.5V \le V_{OUT(T)} \le 5.0V \\ V_{CE}=V_{IN} \\ V_{IN}=2.5V \\ 0.8V \le V_{OUT(T)} \le 1.45V \\ \end{array}$	- 30	50	-	mA	1
Load Regulation	ΔVουτ	V _{CE} =V _{IN} 0.1mA≦I _{OUT} ≦30mA	-	5	12	mV	1
Dropout Voltage (*4)	Vdif	I _{OUT} =30mA, V _{CE} =V _{IN}		[E-2]		mV	1
Supply Current	lss	VIN=VOUT(T)+1.0V, IOUT=0mA	-	25	50	μA	2
Stand-by Current	Istb	VIN=6.0V, VCE=VSS	-	0.01	0.1	μA	2
Line Regulation	ΔVουτ/	$ \begin{array}{l} V_{\text{OUT}(T)} + 0.5 V \leqq V_{\text{IN}} \leqq 6.0 V \\ V_{\text{OUT}(T)} \geqq 2.0 V, \\ V_{\text{CE}} = V_{\text{IN}}, \ I_{\text{OUT}} = 10 \text{mA} \end{array} $		- 0.01	0.20	%/V	
	(ΔVin•Vout)	2.5V≦V _{IN} ≦6.0V V _{OUT(T)} ≦1.95V V _{CE} =V _{IN} , I _{OUT} =10mA	-	0.01	0.20	707 V	1
Input Voltage	Vin		2.5	-	6.0	V	1
Output Voltage Temperature Characteristics	ΔV _{OUT} / (ΔTopr・V _{OUT})	V _{CE} =V _{IN} , I _{OUT} =30mA -40°C≦Topr≦85°C	-	±100	-	ppm/°C	1

XC6225 series is Not Recommended for New Designs.

Ta=25°C

ELECTRICAL CHARACTERISTICS (Continued)

●XC6225 Series (Continued)

OXC6225 Series (Con	,						1a=25°C
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
		V _{IN} =5.75V _{DC} +0.5Vp-pAC 5.0V≧V _{OUT(T)} ≧4.8V V _{CE} =V _{IN} , I _{OUT} =30mA, f=1kHz	_	60	_		
Ripple Rejection	DODD	$V_{IN}=\{V_{OUT(T)}+1.0\}V_{DC}+0.5Vp-pAC$ 4.75V $\geq V_{OUT(T)} \geq 4.05V$ $V_{CE}=V_{IN}, I_{OUT}=30mA, f=1kHz$				dB	3
Ratio		$ \begin{array}{l} V_{\text{IN}} = \{V_{\text{OUT}(T)} + 1.0\} \text{VDC} + 0.5 \text{Vp-pAC} \\ 4.0 \text{V} \geq V_{\text{OUT}(T)} \geq 1.75 \text{V} \\ V_{\text{CE}} = V_{\text{IN}}, \ I_{\text{OUT}} = 30 \text{mA}, \ \text{f} = 1 \text{kHz} \\ \hline V_{\text{IN}} = 2.75 \text{V}_{\text{DC}} + 0.5 \text{Vp-pAC} \\ 1.7 \text{V} \geq V_{\text{OUT}(T)} \geq 0.8 \text{V} \\ V_{\text{CE}} = V_{\text{IN}}, \ I_{\text{OUT}} = 30 \text{mA}, \ \text{f} = 1 \text{kHz} \end{array} $		70	-	UB	3
Limit Current1 ^(*8)	ILIM1	V _{IN} =6.0V, V _{CE} =V _{IN} 5.0V≧V _{OUT(T)} ≧0.8V	30	50	70		
Limit Current2 ^{(*8) (*9)} I _{LIM 2}	ILIM 2	$V_{IN}=V_{OUT(T)}+1.0V, V_{CE}=V_{IN}$ 5.0V \geq V_{OUT(T)} \geq 1.55V V_{IN}=2.5V	30	50	70		
		$\frac{1.50V \ge V_{OUT(T)} \ge 0.8V}{V_{IN} = V_{OUT(T)} + 0.1V}$				mA	1
Limit Current3(*8) (*9)	Іім з	$V_{IN} = V_{OUT(1)} + 0.1V$ $5.0V \ge V_{OUT(T)} \ge 2.4V$ $V_{IN} = 2.5V$ $2.35V \ge V_{OUT(T)} \ge 1.55V$		50	70		
Short Current	ISHORT	V _{CE} =V _{IN} V _{OUT} is short-circuited at the V _{SS} level	-	15	-	mA	1
CE High Level Voltage	V _{CEH}		1.2	-	6.0	V	4
CE Low Level Voltage	V _{CEL}		-	-	0.3	V	4
CE High Level Current	Ісен	V _{CE} =V _{IN}	-0.1	-	0.1	μA	4
CE Low Level Current	I _{CEL}	V _{CE} =V _{SS}	-0.1	-	0.1	μA	4
C _L Auto-Discharge Resistance ^(*7)	Rdchg	VIN=6.0V, VOUT=4.0V, VCE= VSS	-	780	-	Ω	1

NOTE:

* 1: Unless otherwise stated regarding input voltage conditions, $1.5V \le V_{OUT(T)} \le 5.0V$ is $V_{IN} = V_{OUT(T)} + 1.0V$, and $0.8V \le V_{OUT(T)} \le 1.45V$ is $V_{IN} = 2.5V$.

* 2: VOUT (E) = Effective output voltage (Refer to the voltage chart)

(I.e. the output voltage when stabilized "Vout (T) +1.0V" is provided at the VIN pin while maintaining a certain lout value.)

* 3: VOUT (T) = Nominal output voltage

* 4: Vdif ={VIN1^(*6)-VOUT1^(*5)}

* 5: Vout1=A voltage equal to 98% of the output voltage when an amply stabilized {Vout(t) +1.0V} is input.

* 6: VIN1= The input voltage when VOUT1 appears at the VOUT pin while input voltage is gradually decreased.

* 7: For the XC6225 series type B only. The XC6225 series type A discharges by using the two resistors R1 and R2 shown in the block diagram.

* 8: Limit current is defined as the output current when $V_{\text{OUT}(E)}\,x\,0.95$ is impressed at the $V_{\text{OUT}}\,\text{pin}.$

* 9: The device may not satisfy the specification values when it is used with the input voltages lower than the conditions of ILIM3.

■OUTPUT VOLTAGE CHART

●Voltage Table1

Ta=25°C

Voltage I	able I			1a-25 C
SYMBOL	E-1			E-2
NOMINAL			DROPOU	T VOLTAGE
OUTPUT	OUTPUT		lout	=30mA
VOLTAGE	VOLI	AGE(V)	(mV)
(V)	Vo	OUT(E)	, v	√dif
Vout(t)	MIN.	MAX.	TYP.	MAX.
0.80	0.7700	0.8300	225	1700
0.85	0.8200	0.8800	325	1650
0.90	0.8700	0.9300	0.05	1600
0.95	0.9200	0.9800	235	1550
1.00	0.9700	1.0300	400	1500
1.05	1.0200	1.0800	160	1450
1.10	1.0700	1.1300	445	1400
1.15	1.1200	1.1800	115	1350
1.20	1.1700	1.2300		1300
1.25	1.2200	1.2800	1	1250
1.30	1.2700	1.3300		1200
1.35	1.3200	1.3800	85	1150
1.40	1.3700	1.4300	1	1100
1.45	1.4200	1.4800	1	1050
1.50	1.4700	1.5300		1000
1.55	1.5190	1.5810	1	950
1.60	1.5680	1.6320	-	900
1.65	1.6170	1.6830	50	850
1.70	1.6660	1.7340	1	800
1.75	1.7150	1.7850	1	750
1.80	1.7640	1.8360		700
1.85	1.8130	1.8870		650
1.90	1.8620	1.9380		600
1.95	1.9110	1.9890	1	550
2.00	1.9600	2.0400	1	500
2.05	2.0090	2.0910	1	450
2.10	2.0580	2.1420	-	400
2.15	2.1070	2.1930	40	350
2.20	2.1560	2.2440	1	300
2.25	2.2050	2.2950	1	250
2.30	2.2540	2.3460	1	200
2.35	2.3030	2.3970	1	150
2.40	2.3520	2.4480	1	
2.45	2.4010	2.4990	1	
2.50	2.4500	2.5500		1
2.55	2.4990	2.6010	1	
2.60	2.5480	2.6520	1	
2.65	2.5970	2.7030	1	
2.70	2.6460	2.7540		120
2.75	2.6950	2.8050	70	
2.80	2.7440	2.8560		
2.85	2.7930	2.9070	1	
2.90	2.8420	2.9580	1	
2.95	2.8910	3.0090	1	
2.00	2.0010	0.0000		1

■OUTPUT VOLTAGE CHART (Continued)

●Voltage Table2

Ta=25°C

· ·				Ta=25°C
SYMBOL	E-1		E-	2
NOMINAL		PUT	DROPOUT	VOLTAGE
OUTPUT			lout=3	0mA
VOLTAGE	VOLIA	AGE(V)	(m	IV)
(V)	Vol	JT(E)	Vo	lif
Vout(t)	MIN.	MAX.	TYP.	MAX.
3.00	2.9400	3.0600		
3.05	2.9890	3.1110		
3.10	3.0380	3.1620	70	120
3.15	3.0870	3.2130		
3.20	3.1360	3.2640		
3.25	3.1850	3.3150		
3.30	3.2340	3.3660		
3.35	3.2830	3.4170		
3.40	3.3320	3.4680		
3.45	3.3810	3.5190		
3.50	3.4300	3.5700		
3.55	3.4790	3.6210		
3.60	3.5280	3.6720		
3.65	3.5770	3.7230		
3.70	3.6260	3.7740		
3.75	3.6750	3.8250		
3.80	3.7240	3.8760		
3.85	3.7730	3.9270		
3.90	3.8220	3.9780		
3.95	3.8710	4.0290		
4.00	3.9200	4.0800		
4.05	3.9690	4.1310		
4.10	4.0180	4.1820	05	170
4.15	4.0670	4.2330	95	170
4.20	4.1160	4.2840		
4.25	4.1650	4.3350		
4.30	4.2140	4.3860		
4.35	4.2630	4.4370		
4.40	4.3120	4.4880		
4.45	4.3610	4.5390		
4.50	4.4100	4.5900		
4.55	4.4590	4.6410		
4.60	4.5080	4.6920		
4.65	4.5570	4.7430		
4.70	4.6060	4.7940		
4.75	4.6550	4.8450		
4.80	4.7040	4.8960		
4.85	4.7530	4.9470		
4.90	4.8020	4.9980		
4.95	4.8510	5.0490		
5.00	4.9000	5.1000		

9/15

■ OPERATIONAL EXPLANATION

The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier. The P-channel MOSFET connected to the Vout pin, is then driven by the subsequent control signal. The output voltage at the Vout pin is controlled and stabilized by a system of negative feedback. The current limit circuit and short-circuit protection circuit operate in relation to the level of output current. Further, the IC's entire circuitry is turned off by the input signal to the CE pin.

BLOCK DIAGRAM

<Input and Output Capacitors>

The XC6225 needs an output capacitor C_L for phase compensation. Values required for the phase compensation are shown in the chart below. If a loss of the capacitance happens, the stable phase compensation may not be obtained. Please ensure to use a capacitor which does not depend on bias or temperature too much. For a stable power input, please connect an input capacitor C_{IN} of $1.0 \,\mu$ F between the V_{IN} pin and the V_{SS} pin.

OUTPUT VOLTAGE	OUTPUT CAPACITOR
0.8V~1.15V	More than C∟=4.7 <i>µ</i> F
1.2V~1.35V	More than C _L =2.2 <i>μ</i> F
1.4V~4.0V	More than C∟=1.0 <i>µ</i> F
4.05V~5.0V	More than C∟=2.2 <i>µ</i> F

<CL Auto-Discharge Function>

XC6225 series Type B can discharge the electric charge in the output capacitor (CL), when a low signal to the CE pin, which enables the whole IC circuit to be turned off, is inputted via the N-channel transistor and C_L discharge resistance(R_{DCHG}) located between the VouT pin and the Vss pin (refer to BLOCK DIAGRAM). The C_L auto-discharge resistance value is set at 780 Ω (VouT=4.0V @ VIN=6.0V at TYP.). The discharge time of the output capacitor (CL) is set by the C_L auto-discharge resistance (R_{DCHG}) value [R_{DCHG}] and the output capacitor (CL). By setting the time constant of the C_L auto-discharge resistance(R_{DCHG}) value [R_{DCHG}] and the output capacitor value (CL) as τ (τ =C x R_{DCHG}), the output voltage after discharge via is calculated by the following formula.

 $V = V_{OUT(E)} \times e^{-t/\tau}$ or $t = tn(V/V_{OUT(E)}/V)$

 $\label{eq:constraint} \begin{array}{l} Where \\ V: Output voltage after discharge \\ V_{OUT\,(E)}: Output voltage \\ t: Discharge time, \\ \textbf{\car{c} CL}$ auto-discharge resistance R_{DCHG} × Output capacitor (C_L) value C } \end{array}$

OPERATIONAL EXPLANATION (Continued)

<Current Limiter, Short-Circuit Protection>

The XC6225 series' fold-back circuit operates as an output current limiter and a short protection circuit for the output pin. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. When the output pin is short-circuited to the Vss pin, the current falls and reaches about 15mA.

<CE Pin>

The IC's internal circuitry can be shutdown via the signal from the CE pin with the XC6225 series. In the shutdown state, output at the VouT pin will be pulled down to the Vss level via R1 & R2. However, with the XC6225 series type B, the C_L auto-discharge (R_{DCHG}) N-channel transistor switch is connected in parallel to R1 and R2 while the power supply is applied to the V_{IN} pin.

The output voltage is in an undefined state when the CE pin is left open. If this IC is used with the correct voltage for the CE pin, the logic is fixed and the IC will operate normally. However, the supply current may increase as a result of shoot-through current in the IC's internal circuitry when a medium voltage is input.

■NOTES ON USE

1. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.

2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please strengthen V_{IN} and V_{SS} wiring in particular

3. Please wire the input capacitor (C_{IN}) and the output capacitor (C_L) as close to the IC as possible.

4. Capacitances of these capacitors (C_{IN} , C_L) are decreased by the influences of bias voltage and ambient temperature. Care shall be

taken for capacitor selection to ensure stability of phase compensation from the point of ESR influence.

5. When it is used in a quite small input / output dropout voltage, output may go into unstable operation. Please test it thoroughly before using it in production.

6. Torex places an importance on improving our products and their reliability.

We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.

■ TEST CIRCUITS

1)Circuit①

2)Circuit2

3)Circuit③

4)Circuit④

TOBEX 11/15

■ PACKAGING INFORMATION

●USP-4 (unit: mm)

●SOT-25 (unit: mm)

USP-4 Package

●SSOT-24 (unit: mm)

●USP-4 Reference Pattern Layout

●USP-4 Reference Metal Mask Design

12/15

■MARKING RULE

●SOT-25, USP-4

1 represents product number

MARK	PRODUCT SERIES
F	XC6225*****-G

② represents type of regulator

	MA			
100mV increments		50mV increments		
OUTPUT	OUTPUT	OUTPUT	OUTPUT	PRODUCT SERIES
VOLTAGE	VOLTAGE	VOLTAGE	VOLTAGE	
=0.8~3.5V	=3.6~5.0V	=0.85~3.55V	=3.65~4.95V	
V	A	E	L	XC6225A****-G
Х	В	F M		XC6225B*****-G

3 represents output voltage

MARK	OUTPUT VOLTAGE(V)			MARK	OUTPUT VOLTAGE(V)				
0	-	3.6	-	3.65	F	2.1	-	2.15	-
1	-	3.7	-	3.75	Н	2.2	-	2.25	-
2	0.8	3.8	0.85	3.85	К	2.3	-	2.35	-
3	0.9	3.9	0.95	3.95	L	2.4	-	2.45	-
4	1.0	4.0	1.05	4.05	М	2.5	-	2.55	-
5	1.1	4.1	1.15	4.15	Ν	2.6	-	2.65	-
6	1.2	4.2	1.25	4.25	Р	2.7	-	2.75	-
7	1.3	4.3	1.35	4.35	R	2.8	-	2.85	-
8	1.4	4.4	1.45	4.45	S	2.9	-	2.95	-
9	1.5	4.5	1.55	4.55	Т	3.0	-	3.05	-
A	1.6	4.6	1.65	4.65	U	3.1	-	3.15	-
В	1.7	4.7	1.75	4.75	V	3.2	-	3.25	-
С	1.8	4.8	1.85	4.85	Х	3.3	-	3.35	-
D	1.9	4.9	1.95	4.95	Y	3.4	-	3.45	-
E	2.0	5.0	2.05	-	Z	3.5	-	3.55	-

45 represents production lot number

01 to 09, 0A to 0Z, 11 to 9Z, A1 to A9, AA to Z9, ZA to ZZ in order.

(G, I, J, O, Q, W excluded. No character inversion used.)

■MARKING RULE (Continued)

●SSOT-24

Hord Soil

(1) represents type of regulator and output voltage range

OUTPUT VOLTAGE =0.8~1.2V	OUTPUT VOLTAGE =1.25~1.7V	OUTPUT VOLTAGE =1.75~2.2V	OUTPUT VOLTAGE =2.25~2.7V	OUTPUT VOLTAGE =2.75~3.2V	PRODUCT SERIES	
L	0	М	Т	V	XC6225A****-G	
Ν	К	S	U	х	XC6225B****-G	
	MARK					
OUTPUT VOLTAGE =3.25~3.7V	OUTPUT VOLTAGE =3.75~4.05V	OUTPUT VOLTAGE =4.1~4.4V	OUTPUT VOLTAGE =4.45~4.75V	OUTPUT VOLTAGE =4.8~5.0V	PRODUCT SERIES	
Y	1	3	9	В	XC6225A*****-G	
Z	2	4	А	С	XC6225B*****-G	

② represents output voltage

OUTPUT VOLTAGE (V)
0.8
0.85
0.9
0.95
1.0
1.05
1.1
1.15
1.2

MARK	OUTPUT VOLTAGE (V)						
0	1.25	1.75	2.25	2.75	3.25		
1	1.3	1.8	2.3	2.8	3.3		
2	1.35	1.85	2.35	2.85	3.35		
3	1.4	1.9	2.4	2.9	3.4		
4	1.45	1.95	2.45	2.95	3.45		
5	1.5	2.0	2.5	3.0	3.5		
6	1.55	2.05	2.55	3.05	3.55		
7	1.6	2.1	2.6	3.1	3.6		
8	1.65	2.15	2.65	3.15	3.65		
9	1.7	2.2	2.7	3.2	3.7		

MARK	OUTPUT VOLTAGE (V)						
0	3.75	4.1	4.45	4.8			
1	3.8	4.15	4.5	4.85			
2	3.85	4.2	4.55	4.9			
3	3.9	4.25	4.6	4.95			
4	3.95	4.3	4.65	5.0			
5	4.0	4.35	4.7	-			
6	4.05	4.4	4.75	-			

③④ represents production lot number
01 to 09, 0A to 0Z, 11 to 9Z, A1 to A9, AA to Z9, ZA to ZZ in order.
(G, I, J, O, Q, W excluded. No character inversion used.)

- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.

(e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)

- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by Torex Semiconductor manufacturer:

Other Similar products are found below :

AP7363-SP-13 L79M05TL-E PT7M8202B12TA5EX TCR3DF185,LM(CT TCR3DF24,LM(CT TCR3DF285,LM(CT TCR3DF31,LM(CT TCR3DF31,LM(CT TCR3DF45,LM(CT MP2013GQ-33-Z 059985X NCP4687DH15T1G 701326R TCR2EN28,LF(S NCV8170AXV250T2G TCR3DF27,LM(CT TCR3DF19,LM(CT TCR3DF125,LM(CT TCR2EN18,LF(S AP2112R5A-3.3TRG1 AP7315-25W5-7 IFX30081LDVGRNXUMA1 NCV47411PAAJR2G AP2113KTR-G1 AP2111H-1.2TRG1 ZLD01117QK50TC AZ1117IH-1.8TRG1 AZ1117ID-ADJTRG1 TCR3DG12,LF MIC5514-3.3YMT-T5 MIC5512-1.2YMT-T5 MIC5317-2.8YM5-T5 SCD7912BTG NCP154MX180270TAG SCD33269T-5.0G NCV8170BMX330TCG NCV8170AMX120TCG NCP706ABMX300TAG NCP153MX330180TCG NCP114BMX075TCG MC33269T-3.5G CAT6243-ADJCMT5T TCR3DG33,LF AP2127N-1.0TRG1 TCR4DG35,LF TAR5S15U(TE85L,F) TAR5S18U(TE85L,F) TCR3UG19A,LF TCR4DG105,LF NCV8170AMX360TCG MIC94310-NYMT-T5