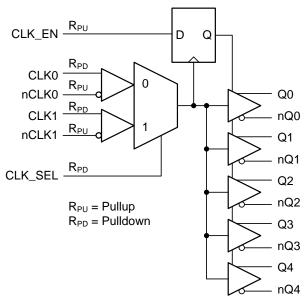
www.ti.com.cn ZHCSBO5 – SEPTEMBER 2013

低偏移, 1 至 5 差分 3.3V 低电压正射极耦合逻辑 (LVPECL) 扇出缓冲器

查询样品: LMK00725

特性

- 5 个 3.3V 差分 LVPECL 输出
 - 附加抖动: 312.5MHz 时为 43fs RMS(典型 值)
 - 噪声基底(≥1MHz 偏移): 312.5MHz 时为-158dBc/Hz(典型值)
 - 输出频率: 650MHz (最大值)
 - 输出偏移: 35ps (最大值)
 - 部件间偏移: 100ps (最大值)
 - 传播延迟: 0.37ns (最大值)
- 两个差分输入对(可由引脚选择)
 - CLKx, nCLK 输入对接受 LVPECL, 低压差分信号 (LVDS), 主机时钟信号电平 (HCSL), 短截线串联端接逻辑 (SSTL), 低压高速收发器逻辑 (LVHSTL) 或单端信号
- 同步时钟启用
- 电源: 3.3V ± 5%
- 封装: 20 引线薄型小尺寸封装 (TSSOP)
- 工业温度范围: -40℃ 至 85℃
- 与 ICS85304-01 引脚兼容,具有更低附加抖动和更 宽温度范围


应用范围

- 无线和有线基础设施
- 网络和数据通信
- 服务器和计算
- 医疗成像
- 便携式测试和测量
- 高端 A/V

说明

LMK00725 是一款低偏移、高性能时钟扇出缓冲器,此缓冲器能够从可接受差分或单端输入的两个输入中的一个分发多达 5 个 3.3V LVPECL 输出。 时钟使能输入在内部同步,以便在时钟使能引脚被置为有效或置为无效时消除输出上的欠幅脉冲或毛刺脉冲。 低附加抖动和相位噪底,以及可靠输出和部件间偏移特性使得LMK00725 成为对高性能和可重复性有严格要求的应用的理想选择。

FUNCTIONAL BLOCK DIAGRAM

(1) $R_{PU} = 51 \text{ k}\Omega \text{ pullup}, R_{PD} = 51 \text{ k}\Omega \text{ pulldown}$

Figure 1.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ZHCSBO5-SEPTEMBER 2013 www.ti.com.cn

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PINOUT DIAGRAM

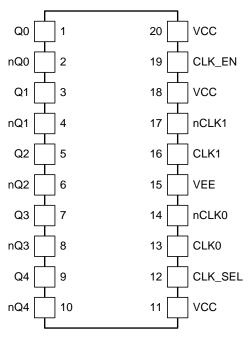


Figure 2.

Table 1. PIN DESCRIPTIONS (1)(2)

NO.	NAME	TYPE ⁽¹⁾	DESCRIPTION							
1, 2	Q0, nQ0	0	LVPECL output pair 0							
3, 4	Q1, nQ1	0	LVPECL output pair 1							
5, 6	Q2, nQ2	0	LVPECL output pair 2							
7, 8	Q3, nQ3	0	LVPECL output pair 3							
9, 10	Q4, nQ4	0	LVPECL output pair 4							
11, 18, 20	VCC	PWR	Power supply pins							
			Clock select input. LVCMOS / TTL compatible.							
12	CLK_SEL	I, R _{PD}	0 = Select CLK0, nCLK0							
			1 = Select CLK1, nCLK1							
13	CLK0	I, R _{PD}	Non-inverting differential clock input 0.							
14	nCLK0	I, R _{PU}	Inverting differential clock input 0.							
15	VEE	PWR	Negative supply pin							
16	CLK1	I, R _{PD}	Non-inverting differential clock input 1.							
17	nCLK1	I, R _{PU}	Inverting differential clock input 1.							
			Synchronous clock enable input. LVCMOS / TTL compatible.							
19	CLK_EN	I, R _{PU}	0 = Qx outputs are forced low, nQx outputs are forced high.							
			1 = Clock outputs are enabled and follow clock input.							

G = Ground, I = Input, O = Output, P = Power, R_{PU} = 51 k Ω pullup, R_{PD} = 51 k Ω pulldown Please refer to Recommendations for Unused Input and Output Pins, if applicable.

ZHCSBO5-SEPTEMBER 2013 www.ti.com.cn

ABSOLUTE MAXIMUM RATINGS(1)(2)

Over operating free-air temperature range (unless otherwise noted)

SYMBOL		PARAMETER	MIN	TYP	MAX	UNIT
VCC	Supply Voltage		-0.3		3.6	V
V _{IN}	Input Voltage Ra	Input Voltage Range			VCC + 0.3	V
T _{STG}	Storage Temper	ature Range	-65		150	°C
T _J	Junction Tempe	ature			150	°C
		Human Body Model (HBM)			2000	
ESD	Electrostatic Discharge	Machine Model (MM)			150	V
	Districting	Charged Device Model (CDM)			750	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability

THERMAL CHARACTERISTICS

Over operating free-air temperature range (unless otherwise noted)

PARAMETER	θ_{JA}	UNIT
Package Thermal Impedance, Junction to Air (0 LFPM)	107.2	°C/W

RECOMMENDED OPERATING CONDITIONS

Over operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VCC	Supply Voltage	VEE = GND	3.135	3.3	3.465	
I _{OUT}	Output Current				30	mA
T_A	Ambient Temperature		-40		85	°C
TJ	Junction Temperature				125	°C

POWER SUPPLY CHARACTERISTICS

Over operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IEE	Power Supply Current through VEE			52	60	mA

LVCMOS / TTL DC CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V _{IH}	Input High Voltage		2		VCC + 0.3	V	
V _{IL}	Input Low Voltage		VEE - 0.3		0.4	V	
		VCC = V _{IN} = 3.465 V					
I _{IH}	Input High Current	CLK_EN			5	μΑ	
		CLK_SEL			150		
		VCC = 3.465V, V _{IN} = 0 V					
I _{IL}	Input Low Current	CLK_EN	-150			μΑ	
		CLK_SEL	-5				
C _{IN}	Input Capacitance			1		pF	
R _{IN}	Input Pullup or Pulldown Resistance			51		kΩ	

⁽²⁾ If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

DIFFERENTIAL INPUT DC CHARACTERISTICS

Over operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{ID}	Differential Input Voltage Swing (V _{IH} -V _{IL}) ⁽¹⁾⁽²⁾		0.15		1.3	V
V _{ICM}	Input Common Mode Voltage ⁽¹⁾⁽²⁾⁽³⁾		0.5		VCC - 0.85	V
		VCC = V _{IN} = 3.465 V				
I _{IH}	Input High Current ⁽⁴⁾	nCLKx			5	μΑ
		CLKx			150	
I _{IL}		VCC = 3.465V, V _{IN} = 0 V				
	Input Low Current ⁽⁴⁾	nCLKx	-150			μΑ
		CLKx	-5			

- (1) V_{IL} should not be less than -0.3V
- (2) See Figure 22
- Input common mode voltage is defined as V_{IH}
- (4) For I_{IH} and I_{IL} measurements on CLKx (or nCLKx), care must be taken to comply with V_{ID} and V_{ICM} specifications using the appropriate bias on nCLKx (or CLKx)

LVPECL OUTPUT CHARACTERISTICS

Over recommended operating free-air temperature range (unless otherwise noted), outputs terminated with 50Ω to VCC - 2V. All AC parameters measured at 500 MHz unless otherwise noted.

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH}	Output High Voltage	DC measurement	VCC - 1.4		VCC - 0.9	V
V _{OL}	Output Low Voltage	DC measurement	VCC - 2.0		VCC - 1.6	V
V _{OD}	Output Voltage Swing (V _{OH} -V _{OL})	DC measurement	0.575		0.85	V
f _{OUT}	Output Frequency ⁽¹⁾				650	MHz
t _{PD}	Propagation Delay (1)(2)	f ≤ 650 MHz	0.17	0.25	0.37	ns
t _{SK(O)}	Output Skew ⁽¹⁾⁽³⁾⁽⁴⁾				35	ps
t _{SK(PP)}	Part-to-Part Skew ⁽¹⁾⁽⁴⁾⁽⁵⁾				100	ps
t _R / t _F	Output Rise/Fall Time (1)	20% to 80%, f=50 MHz		100	200	ps
J _{ADD}	f = 156.25 MHz, Input slew rate ≥ 3 V/ns, 10 KHz to 20 MHz integration band			75		(- DMO
	Additive Jitter ⁽⁶⁾	f = 312.5 MHz, Input slew rate ≥ 3 V/ns, 10 kHz to 20 MHz integration band		43		fs RMS

- (1) Parameter is specified by characterization. Not tested in production.
- (2) Measured from the differential input crossing point to the differential output crossing point.
- (3) Defined as skew between outputs at the same supply voltage and with equal loading conditions. Measured at the output differential crossing points.
- (4) Parameter is defined in accordance with JEDEC Standard 65.
- (5) Calculation for part-to-part skew is the difference between the fastest and slowest t_{PD} across multiple devices, operating at the same supply voltage, same frequency, same temperature, with equal load conditions, and using the same type of inputs on each device. Measured at the output differential crossing points.
- (6) Buffer Additive Jitter: J_{ADD} = SQRT(J_{SYSTEM} J_{SOURCE}), where J_{SYSTEM} is the RMS jitter of the system output (source+buffer) and J_{SOURCE} is the RMS jitter of the input source, and system output noise is not correlated to the input source noise. Additive jitter should be considered only when the input source noise floor is 3 dB or better than the buffer noise floor (NF). This is usually the case for high-quality ultra-low-noise oscillators. Please refer to System-Level Phase Noise and Additive Jitter Measurement for input source and measurement details.

www.ti.com.cn ZHCSB05 – SEPTEMBER 2013

LVPECL OUTPUT CHARACTERISTICS (continued)

Over recommended operating free-air temperature range (unless otherwise noted), outputs terminated with 50Ω to VCC - 2V. All AC parameters measured at 500 MHz unless otherwise noted.

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
		f = 156.25 MHz, Input slew rate ≥ 3 V/ns, 10 kHz to 20 MHz integration band							
		10 kHz offset		-145					
		100 kHz offset		-153		dBc/Hz			
		1 MHz offset		-158					
		10 MHz offset		-159					
	Discon Noise Floor(7)	20 MHz offset		-159		1			
PN _{FLOOR}	Phase Noise Floor ⁽⁷⁾	f = 312.5 MHz, Input slew rate ≥ 3 V/ns, 10 kHz to 20 MHz integration band							
		10 kHz offset		-149					
		100 kHz offset		-154		dBc/Hz			
		1 MHz offset		-156					
		10 MHz offset		-158					
		20 MHz offset		-158					
ODC	Output Duty Cycle ⁽⁸⁾	50% Input Duty Cycle	48	50	52	%			
PSRR	Power Supply Ripple Rejection ⁽⁹⁾	f = 100 MHz, VCC ripple = 100 mVp-p @ 1 MHz		-80		dBc			

⁽⁷⁾ Buffer Phase Noise Floor: PN_{FLOOR} (dBc/Hz) = 10*log₁₀[10^(PN_{TOTAL}/10) – 10^(PN_{SOURCE}/10)], where PN_{TOTAL} is the phase noise floor of the system output (source+buffer) and PN_{SOURCE} is the phase noise floor of the input source. Buffer Phase Noise Floor should be considered only when the input source noise floor is 3 dB or better than the buffer noise floor (PN_{FLOOR}). This is usually the case for high-quality ultra-low-noise oscillators. Please refer to System-Level Phase Noise and Additive Jitter Measurement for input source and measurement details.

(8) Parameter is specified by characterization. Not tested in production.

⁽⁹⁾ Power supply ripple rejection, or PSRR, is defined as the single-sideband phase spur level (in dBc) modulated onto the clock output when a single-tone sinusoidal signal (ripple) is injected onto the VCC supply. Assuming no amplitude modulation effects and small index modulation, the peak-to-peak deterministic jitter (DJ) can be calculated using the measured single-sideband phase spur level (PSRR) as follows: DJ (ps p-p) = [(2 x 10^(PSRR / 20)) / (π x f_{CLK})] x 1E12.

ZHCSB05 – SEPTEMBER 2013 www.ti.com.cn

TEXAS INSTRUMENTS

TYPICAL CHARACTERISTICS

Unless otherwise noted: $T_A = 25C$, VCC = 3.3 V, Input slew rate \geq 3 V/ns, 10 kHz to 20 MHz integration band

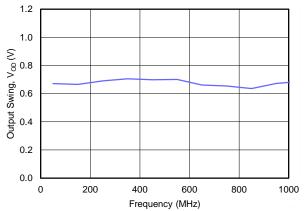


Figure 3. Output Swing, V_{OD} (V) vs Frequency (MHz)

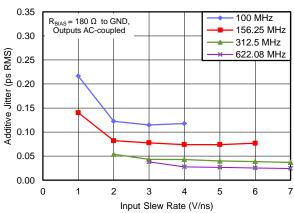


Figure 4. Additive Jitter vs Input Slew Rate

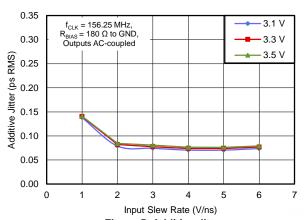


Figure 5. Additive Jitter vs Input Slew Rate, f_{CLK} = 156.25 MHz

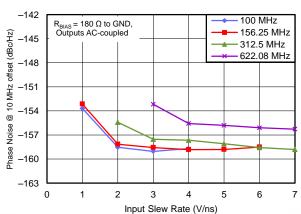


Figure 6. Phase Noise Floor @ 10 MHz offset vs Input Slew Rate

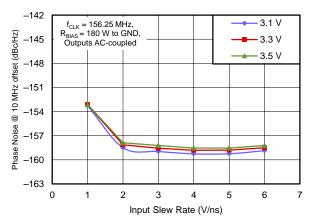


Figure 7. Phase Noise Floor @ 10 MHz offset vs Input Slew Rate, f_{CLK} = 156.25 MHz

FUNCTIONAL DESCRIPTIONS

CONTROL INPUT FUNCTION

Over operating free-air temperature range (unless otherwise noted)

Table 2.

	Inputs	Outputs			
CLK_EN	CLK_EN CLK_SEL		Qx	nQx	
0	0	CLK0, nCLK0	Disabled; LOW	Disabled; HIGH	
0	1	CLK1, nCLK1	Disabled; LOW	Disabled; HIGH	
1	0	CLK0, nCLK0	Enabled	Enabled	
1	1	CLK1, nCLK1	Enabled	Enabled	

CLOCK ENABLE TIMING

After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as shown in Figure 8. In the active mode, the output states are a function of the CLKx, nCLKx inputs as described in CLOCK INPUT FUNCTION.

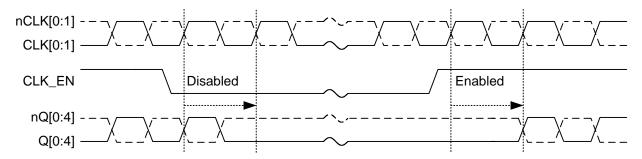


Figure 8. Clock Enable Timing Diagram

CLOCK INPUT FUNCTION

Over operating free-air temperature range (unless otherwise noted)

Table 3.

Inp	outs	Out	puts	Input to Output	Polarity
CLK0 or CLK1	nCLK0 or nCLK1	Qx	nQx	Mode	
0	1	LOW	HIGH	Differential to Differential	Non-inverting
1	0	HIGH	LOW	Differential to Differential	Non-inverting
0	Biased ⁽¹⁾	LOW	HIGH	Single-Ended to Differential	Non-inverting
1	Biased ⁽¹⁾	HIGH	LOW	Single-Ended to Differential	Non-inverting
Biased ⁽¹⁾	0	HIGH	LOW	Single-Ended to Differential	Inverting
Biased ⁽¹⁾	1	LOW	HIGH	Single-Ended to Differential	Inverting

⁽¹⁾ Refer to Input DC Configuration During Device Test

TEST LOAD CONFIGURATION

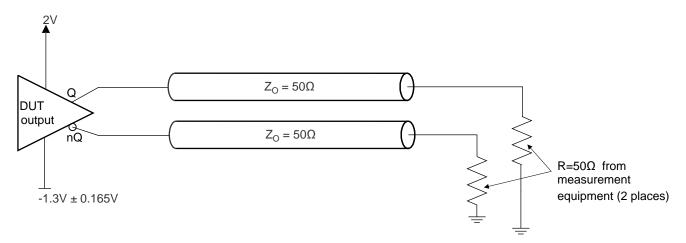


Figure 9. Output DC Configuration; Test Load Circuit

www.ti.com.cn

INPUT CLOCK INTERFACE CIRCUITS

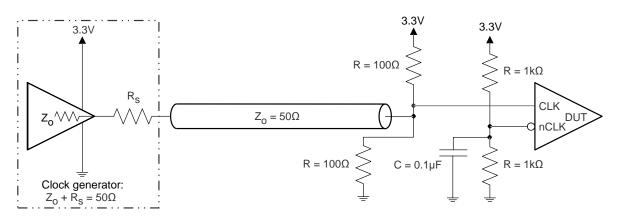


Figure 10. Single-Ended/LVCMOS Input DC Configuration During Device Test

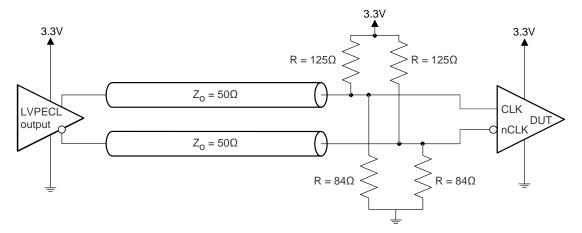


Figure 11. LVPECL Input Configuration During Device Test

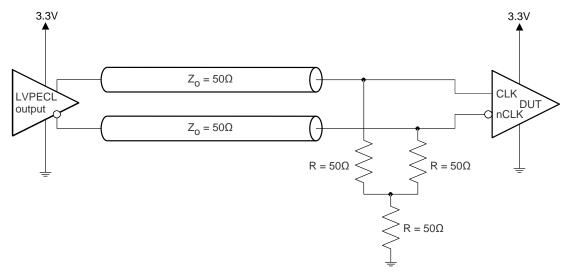


Figure 12. LVPECL Input Configuration During Device Test

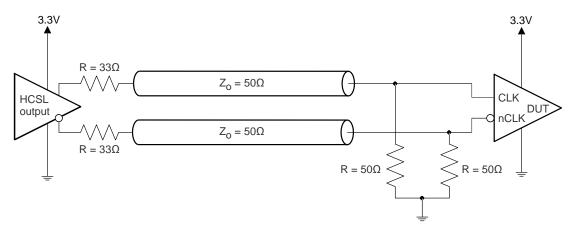


Figure 13. HCSL Input Configuration During Device Test

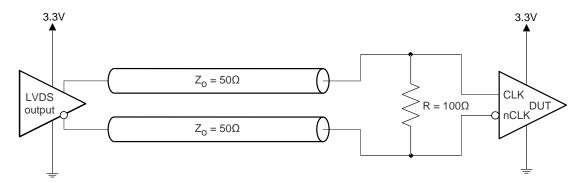


Figure 14. LVDS Input Configuration During Device Test

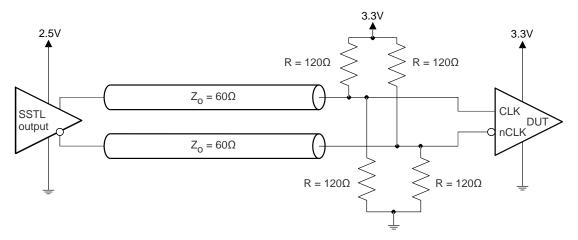


Figure 15. SSTL Input Configuration During Device Test

OUTPUT CLOCK INTERFACE CIRCUITS

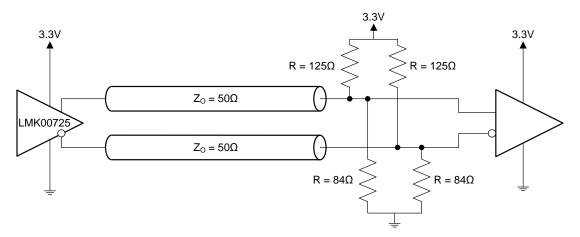


Figure 16. LVPECL Output DC Configuration: Typical Application Load

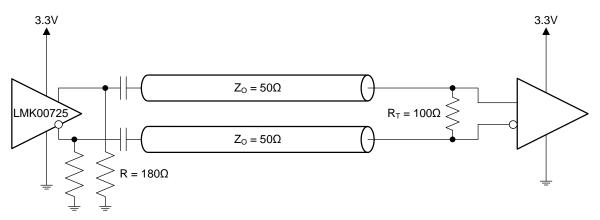



Figure 17. LVPECL Output DC Configuration: Typical Application Load

(1) R-bias can range from 120 Ω to 240 Ω , but 180 Ω is equivalent to loading outputs with 50 Ω to VCC - 2 V.

Figure 18. LVPECL Output AC Configuration: Typical Application Load

APPLICATION INFORMATION

Application Block Diagram Examples

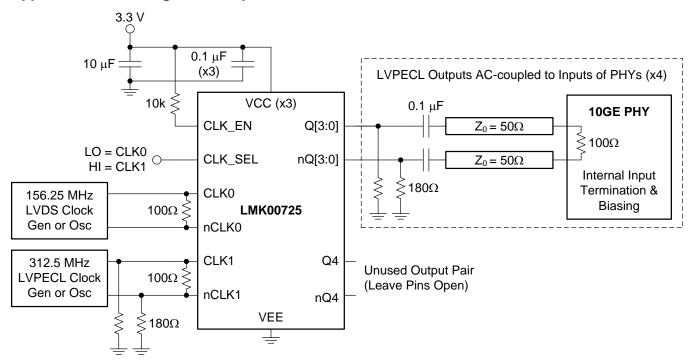


Figure 19. 10-Gigabit Ethernet PHY Clock Fanout with LVPECL Output AC Configuration

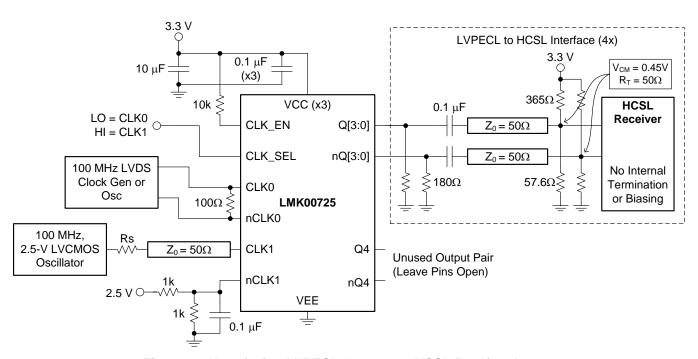


Figure 20. Interfacing LVPECL Outputs to HCSL Receiver Inputs

Input Detail

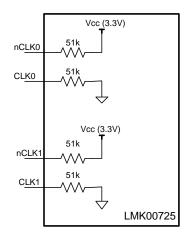
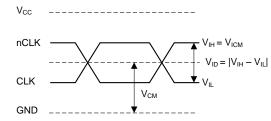



Figure 21. Clock Input Components

Parameter Measurement Information

NOTE: $V_{CM} = V_{ICM} - V_{ID}/2 = (V_{IH} + V_{IL})/2$

Figure 22. Differential Input Level

Figure 23. Output Voltage, and Rise and Fall Times

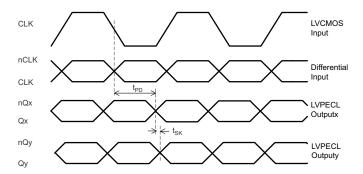


Figure 24. Differential and Single-Ended Output Skew and Propagation Delay

TEXAS INSTRUMENTS

ZHCSB05 – SEPTEMBER 2013 www.ti.com.cn

Recommendations for Unused Input and Output Pins

- CLK_SEL and CLK_EN: These inputs have internal pull-up (R_{PU}) or pull-down (R_{PD}) according to Figure 1
 and can be left floating if unused. The floating state for CLK_SEL is channel 0 selected, and the default for
 CLK-EN is normal output.
- CLK/nCLK inputs: See Figure 21 for the internal connections. When using single ended input, take note of
 the internal pull-up and pull-down to make sure the unused input is properly biased. For single ended input,
 the Figure 10 arrangement is recommended.
- Outputs: Unused outputs can be left floating or terminated. If left floating, it is recommended to not attach any traces to the output pins.

Input Slew Rate Considerations

LMK00725 employs high-speed and low-latency circuit topology, allowing the device to achieve ultra-low additive jitter/phase noise and high-frequency operation. To take advantage of these benefits in the system application, it is optimal for the input signal to have a high slew rate of 3 V/ns or greater. Driving the input with a slower slew rate can degrade the additive jitter and noise floor performance. For this reason, a differential signal input is recommended over single-ended because it typically provides higher slew rate and common-mode-rejection. Refer to the "Additive RMS Jitter vs. Input Slew Rate" plots in the TYPICAL CHARACTERISTICS section. Also, using an input signal with very slow input slew rate, such as less than 0.05 V/ns, has the tendency to cause output switching noise to feed-back to the input stage and cause the output to chatter. This is especially true when driving either input in single-ended fashion with a very slow slew rate, such as a sine-wave input signal.

System-Level Phase Noise and Additive Jitter Measurement

For high-performance devices, limitations of the equipment influence phase-noise measurements. The noise floor of the equipment is often higher than the noise floor of the device. The real noise floor of the device is probably lower. It is important to understand that system-level phase noise measured at the DUT output is influenced by the input source and the measurement equipment.

For Figure 25 and Figure 26 system-level phase noise plots, a Rohde & Schwarz SMA100A low-noise signal generator was cascaded with an Agilent 70429A K95 single-ended to differential converter block with ultra-low phase noise and fast edge slew rate (>3 V/ns) to provide a very low-noise clock input source to the LMK00725. An Agilent E5052 source signal analyzer with ultra-low measurement noise floor was used to measure the phase noise of the input source (SMA100A + 70429A K95) and system output (input source + LMK00725). The input source phase noise is shown by the light yellow trace, and the system output phase noise is shown by the dark yellow trace.

The additive phase noise or noise floor of the buffer (PN_{FLOOR}) can be computed as follows:

 PN_{FLOOR} (dBc/Hz) = $10*log_{10}[10^{(PN_{SYSTEM}/10)} - 10^{(PN_{SOURCE}/10)}]$

where

- PN_{SYSTEM} is the phase noise of the system output (source+buffer)
- PN_{SOURCE} is the phase noise of the input source

(1)

The additive jitter of the buffer (J_{ADD}) can be computed as follows:

$$J_{ADD} = SQRT(J_{SYSTEM}^2 - J_{SOURCE}^2),$$

where

- $\bullet \quad J_{\text{SYSTEM}} \text{ is the RMS jitter of the system output (source+buffer), integrated from 10 kHz to 20 MHz}\\$
- J_{SOURCE} is the RMS jitter of the input source, integrated from 10 kHz to 20 MHz

(2)

www.ti.com.cn ZHCSBO5 – SEPTEMBER 2013

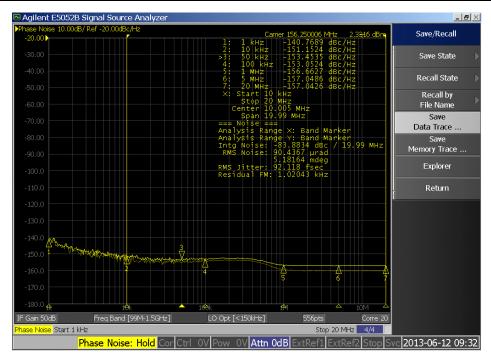


Figure 25. 156.25 MHz Input Phase Noise (66 fs rms, Light Yellow) and Output Phase Noise (92.1 fs rms, Dark Yellow). Additive Jitter = 65 fs rms (10 kHz to 20 MHz) @ 4 V/ns Input Slew Rate

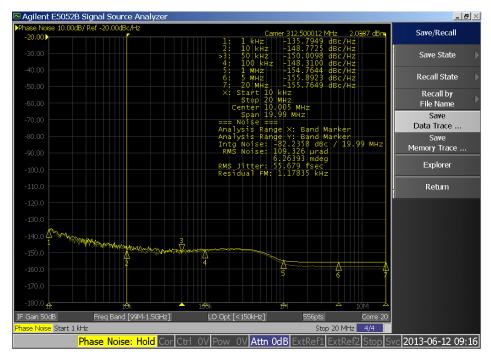


Figure 26. 312.5 MHz Input Phase Noise (43 fs rms, Light Yellow) and Output Phase Noise (55.7 fs rms, Dark Yellow). Additive Jitter = 36 fs rms (10 kHz to 20 MHz) @ 6 V/ns Input Slew Rate

ZHCSB05 – SEPTEMBER 2013 www.ti.com.cn

Power Considerations

The power dissipation of the LMK00725 consists of the quiescent power and load related power. Here is the expression for the total power which uses the values derived for "Quiescent Power" and "Load Power" further below:

$$P_{Total} = P_O \text{ (worst case)} + P_L = 208 \text{ mW} + 30.2 \text{ mW x (# of terminated outputs)}$$
 (3)

For all 5 outputs terminated:

$$P_{\text{Total}} = 208 \text{ mW} + 27 \text{ mW} \times 5 = 343 \text{ mW}$$
 (4)

Quiescent Power:

$$P_{O} = VCC \times I_{EE} = 3.3V \times 60 \text{ mA} = 198 \text{ mW}$$
 (5)

Considering a 5% tolerance on Vcc:

$$P_{O}$$
 (worst case) = 198 mW x 1.05 = 208 mW (6)

Load Power:

Assuming 50% output duty cycle and 50 Ω load from each output (Q and nQ) to Vcc - 2 V (or 1.3 V) and output voltage levels of 1.1 V and 1.8 V below Vcc for V_{OH} and V_{OL} respectively:

$$P_{L}$$
 / output_pair = P_{L} high + P_{L} low = $\{1.1 \text{ V} \times [\text{Vcc} - 1.1 \text{ V} - (\text{Vcc} - 2 \text{ V})] / 50\Omega)\} + $\{1.8 \text{ V} \times [\text{Vcc} - 1.8 \text{ V} - (\text{Vcc} - 2 \text{ V})] / 50\Omega)\} = 20 \text{ mW} + 7 \text{ mW} = 27 \text{ mW}$ (7)$

NOTE

For dimensioning the power supply, consider the total power consumption. The total power consumption is the sum of device power consumption and the power consumption of the load.

Thermal Management

Power consumption of the LMK00725 can be high enough to require attention to thermal management. For reliability and performance reasons, limit the die temperature to a maximum of 125°C. That is, as an estimate, T_A (ambient temperature) plus device power consumption times θ_{JA} should not exceed 125°C.

Assuming the conditions in the Power Considerations section and operating at an ambient temperature of 70°C with all outputs loaded, here is an estimate of the LMK00725 junction temperature:

$$T_{IJ} = T_A + P_{Total} \times \theta_{IA} = 70^{\circ}\text{C} + 343 \text{ mW} \times 107.2^{\circ}\text{C/W} = 70^{\circ}\text{C} + 37^{\circ}\text{C} = 107^{\circ}\text{C}$$
 (8)

Here are some recommendations for improving heat flow away from the die:

- Use multi-layer boards
- Specify a higher copper thickness for the board
- Increase the number of vias from the top level ground plane under and around the device to internal layers and to the bottom layer with as much copper area flow on each level as possible
- Apply air flow
- Leave unused outputs floating

STRUMENTS

ZHCSBO5-SEPTEMBER 2013

Power-Supply Filtering

High-performance clock buffers are sensitive to noise on the power supply, which can dramatically increase the additive jitter of the buffer. Thus, it is essential to reduce noise from the system power supply, especially when jitter or phase noise is critical to applications.

Use of filter capacitors eliminates the low-frequency noise from power supply, where the bypass capacitors provide the very low-impedance path for high-frequency noise and guard the power-supply system against induced fluctuations. The bypass capacitors also provide instantaneous current surges as required by the device, and should have low ESR. To use the bypass capacitors properly, place them very close to the power supply pins and lay out traces with short loops to minimize inductance. TI recommends adding as many high-frequency bypass capacitors (such as 0.1-µF, for example) as there are supply pins in the package. It is recommended, but not required, to insert a ferrite bead between the board power supply and the chip power supply to isolate the high-frequency switching noises generated by the clock driver, thereby preventing them from leaking into the board supply. Choosing an appropriate ferrite bead with very low DC resistance is important, because it is imperative to provide adequate isolation between the board supply and the chip supply. It is also imperative to maintain a voltage at the supply pins that is greater than the minimum voltage required for proper operation.

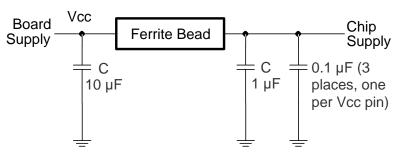


Figure 27. Power-Supply Decoupling

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LMK00725PW	ACTIVE	TSSOP	PW	20	73	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	LMK00725	Samples
LMK00725PWR	ACTIVE	TSSOP	PW	20	2500	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	LMK00725	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

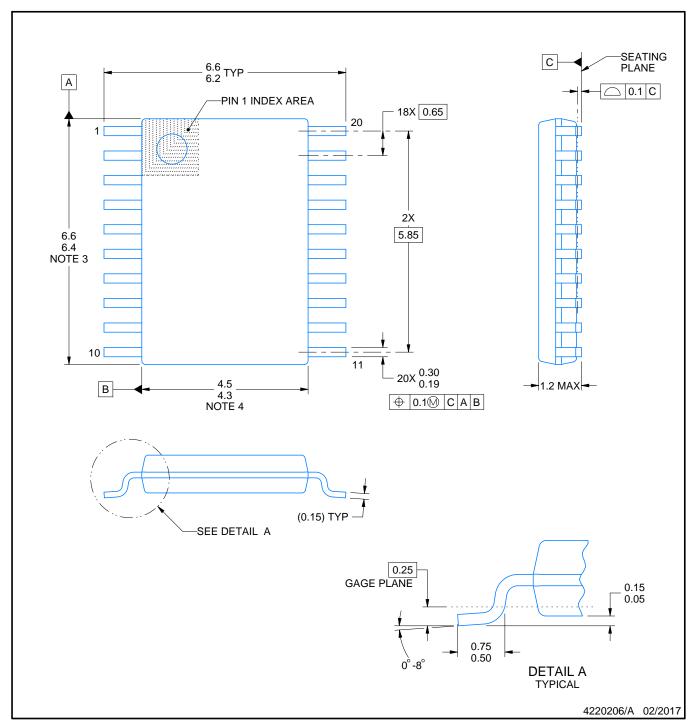
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

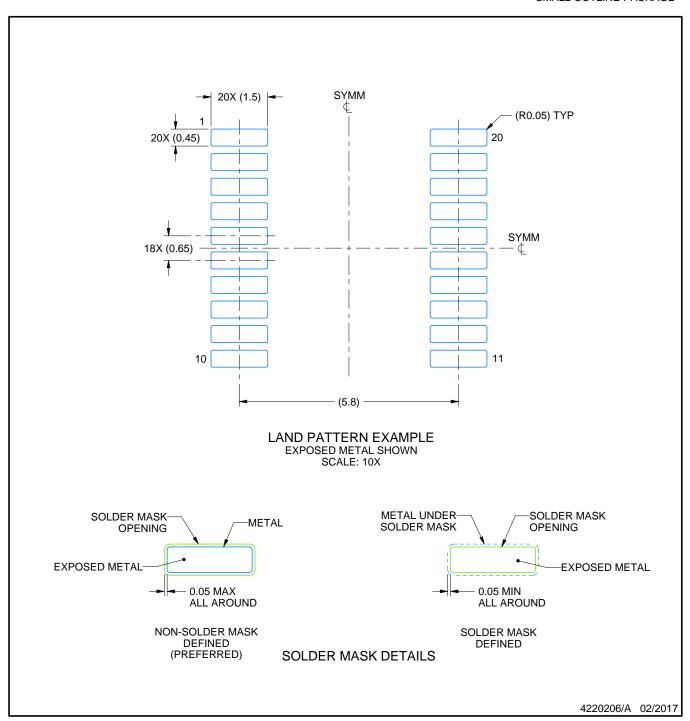
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



10-Dec-2020

SMALL OUTLINE PACKAGE

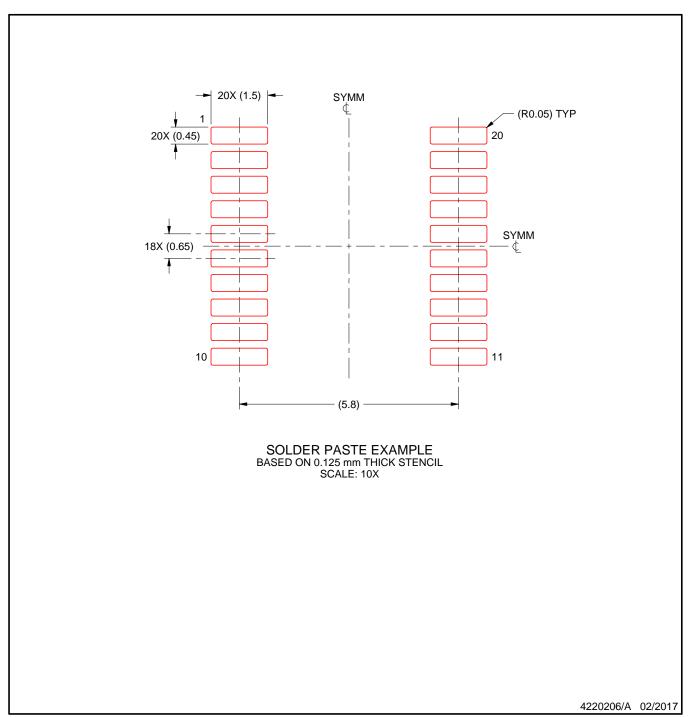
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021,德州仪器 (TI) 公司

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by Texas Instruments manufacturer:

Other Similar products are found below:

NB7VQ58MMNG IDT49FCT805ASO MC10E111FNG PI49FCT32807QE 5PB1203NTGK8 PI49FCT20802QE PI6C4931502-04LIE
NB7L14MN1G PI6C4931502-04LIEX PI6C4931504-04LIEX PI6C10806BLEX 9QXL2001BNHGI RC19204AGNL#BB0
NB3W800LMNTXG CDCDB2000NPPR SI53301-B-GMR SI53301-B-GM LMK00306SQX/NOPB LMK1D1204RGTT
MC100EP11DTR2G MC100EP210SFAR2G Si53301-B-GMR NB3RL02FCT2G SY75578LMG PI49FCT32803QE PI49FCT32805QEX
PL133-27GC-R PI49FCT3805DQE PI49FCT32805QE 853S111BKILF 5V2310PGGI8 MC10EP11DTG MC10EL11DG
MC100LVEP210FARG MC100LVEP11DTG MC100LVEL13DWG MC10EP89DTG MC100LVEP210FAG MC100LVEL11DTG
NB3N551MNR4G NB6L14SMNTXG NB6N11SMNG NB6N14SMNR2G NB7L14MMNG 9DBV0631BKLF NB3N2304NZDTG
NB3N2304NZDTR2G NB6L14MMNG NB6L14MMNR2G NB6L611MNG