

-台舟申子-

TPTLV70030DDCR

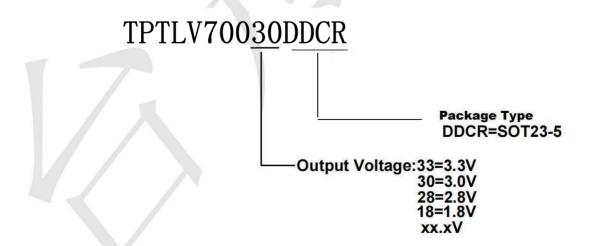
20uA IQ,300mA Low- Dropout Linear Regulator

www.sot23.com.tw

Features

- Input Voltage Range: 1.2V to 5.5V
- 20 μA Ground Current (IQ) at no Load
- PSRR = 75dB at 1kHz
- ±1.5% Output Accuracy
- Low (0.1μA) Shutdown Current
- Dropout Voltage: 0.17V at 300mA when V_{OUT} ≥ 3V
- Support Fixed Output Voltage 0.8V, 1.0V, 1.05V, 1.1V, 1.2V, 1.25V, 1.3V, 1.5V, 1.8V, 1.85V, 2V, 2.5V, 2.8V, 2.85V, 3V, 3.1V, 3.3V, 3.45V
- Current Limit Protection
- Over Temperature Protection
- Output Active Discharge Function
- SOT23-5 Packages

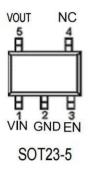
Applications

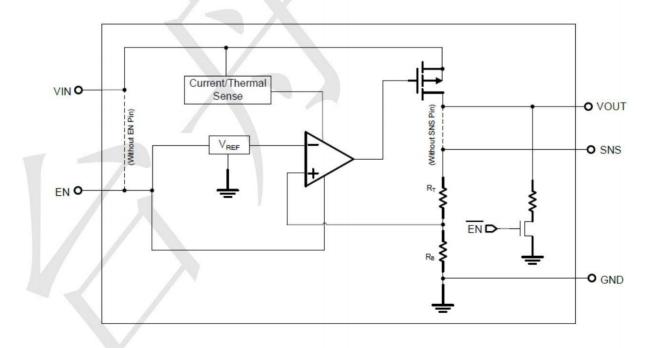

- CDM/GSM mobile phone
- PDAs /MP3
- Audio/Video equipment

General Description

This production is a low-dropout (LDO) voltage regulator with enable function that operates from a 1.2V to 5.5V supply. It provides up to 300mA of output current in miniaturized packaging.

The feature of $20\mu A$ low quiescent current and $0.5\mu A$ shutdown current are ideal for the battery application with long service life. The other features include current limit function, over temperature protection and output discharge function.


Ordering Information


www.sot23.com.tw

Pin Configuration

Pin No	Pin Name	Pin Function
1	VIN	Input of Supply Voltage.
2	GND	Ground
3	EN	Enable Control Input.
4	NC	No Internal Connection.
5	VOUT	Output of the Regulator

BLOCK DIAGRAM

TPTLV70030DDCR

20uA IQ,300mA Low- Dropout Linear Regulator

www.sot23.com.tw

ABSOLUTE MAXIMUM RATINGS

VIN Pin to GND Pin Voltage		0.3V to 6.5V
VOUT Pin and EN Pin to GND Pin Voltage		0.3V to 6V
VOUT Pin to VIN Pin Voltage		6V to 0.3V
Storage Temperature Range		60°C~150°C
Lead Temperature (Soldering, 10 sec)		260°C
Junction Temperature		150°C
Operating Ambient Temperature Range T _A		40°C~85°C
Thermal Resistance Junction to Case, Rθ _{JC}		
	SOT23-5	115°C/W
Thermal Resistance Junction to Ambient, RθJA	SOT23-5	250°C/W

Electrical Characteristics (T =25°C unless otherwise noted)

(V_{OUT} + 1 < V_{IN} < 5.5V, T_A = 25°C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Fixed Output Voltage Range	Vout		0.8	-	3.45	V
DC Output Accuracy		I _{LOAD} = 1mA	_2	0 -	2	%
	VDROP	$0.8V \le V_{OUT} < 1.05V$	/ -	0.7	0.97	
		$1.05 V \leq V_{OUT} < 1.2 V$	/	0.5	0.92	V
		$1.2V \leq V_{OUT} < 1.5V$		0.4	0.57	
		$1.5V \leq V_{OUT} < 1.8V$		0.3	0.47	
Dropout Voltage (I _{LOAD} = 300mA) (Note 5)		$1.8V \le V_{OUT} < 2.1V$		0.24	0.33	
(ILOAD - SOUTIA) (Note 5)		$2.1V \leq V_{OUT} < 2.5V$		0.21	0.3	
		$2.5V \leq V_{OUT} < 2.8V$		0.18	0.25	
		$2.8V \le V_{OUT} < 3V$	2 	0.16	0.23	
		$3V \le V_{OUT}$		0.15	0.2	
Dropout Voltage (I _{LOAD} = 200mA) (Note 6)	V _{DROP}	1.8V ≤ V _{OUT} < 2.1V		0.16	0.2	V
V _{CC} Consumption Current	IQ	I_{LOAD} = 0mA, $V_{OUT} \le 5.5V$ $V_{IN} \ge V_{OUT} + V_{DROP}$		20		μА

TPTLV70030DDCR

20uA IQ,300mA Low- Dropout Linear Regulator

www.sot23.com.tw

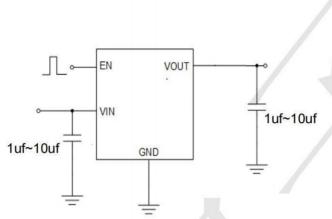
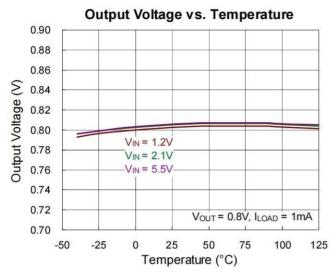
Paramet	er	Symbol	Test Conditions		Min	Тур	Max	Unit
Shutdown GND Current (Note 7)			V _{EN} = 0V			0.1	0.5	μА
Shutdown Leakage Current (Note 7)			V _{EN} = 0V, V _{OUT} = 0V		/	0.1	0.5	μА
EN Input Current		IEN	V _{EN} = 5.5V				0.1	μА
Line Regulation				$1.2V \leq V_{IN} < 1.5V$	<	0.3	0.6	%
		ΔLINE	ΔLINE ILOAD = 1mA	$1.5V \leq V_{IN} < 1.8V$		0.15	0.3	
				$1.8V \le V_{IN} \le 5.5V$	/	0.13	0.35	
Load Regulation		ΔLOAD	1mA < I _{LOAD} < 300mA			0.5	1	%
Power Supply Rejection Ratio		PSRR	$V_{IN} = 3V$, $I_{LOAD} = 50$ mA, $C_{OUT} = 1$ µF, $V_{OUT} = 2.5V$, $f = 1$ kHz			75	-	dB
Output Voltage Noise			C _{OUT} = 1μF,	V _{OUT} = 0.8V	11	38		
			I _{LOAD} = 150mA, BW = 10Hz to 100kHz, V _{OUT} = 1.2			46	70	μVRMS
						48		
			$V_{IN} = V_{OUT} + 1V$	V _{OUT} = 3.3V	-	51		
Output Current Limit		I _{LIM}	V _{OUT} = 90% of V _{OUT(NOM)}		350	600	122	mA
Enable Threshold	H-Level	V _{ENH}	V _{IN} = 5V V _{IN} = 5V		0.5	0.7	0.9	V
Voltage	L-Level	VENL			0.4	0.65	0.85	
Thermal Shutdown Temperature		T _{SD}	I _{LOAD} = 30mA, V _{IN} ≥ 1.5V			150		°C
Thermal Shutdown Hysteresis		ΔT_{SD}				20		°C
Discharge Resistance			EN = 0V, V _{OUT} = 0.1V			80		Ω

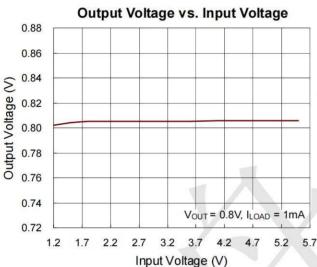
TPTLV70030DDCR

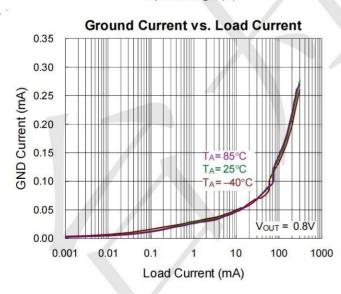
20uA IQ,300mA Low- Dropout Linear Regulator

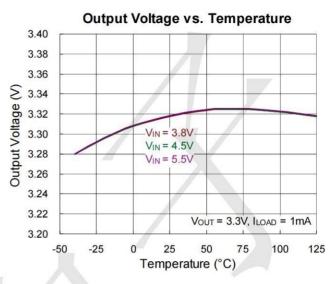
www.sot23.com.tw

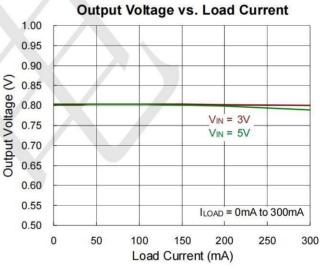
TYPICAL APPLICATION

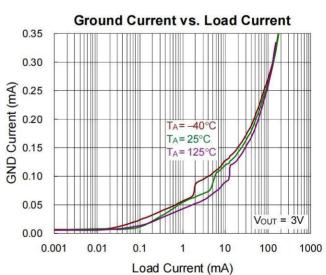



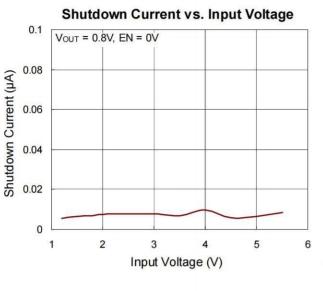

Figure 2: Application circuit of Fixed Vout LDO with enable function

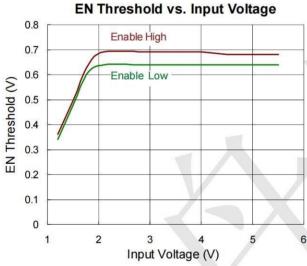


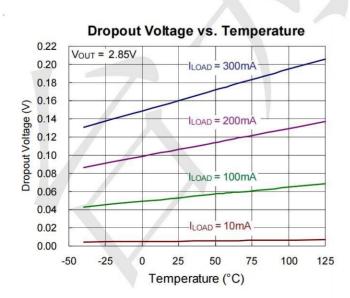

www.sot23.com.tw

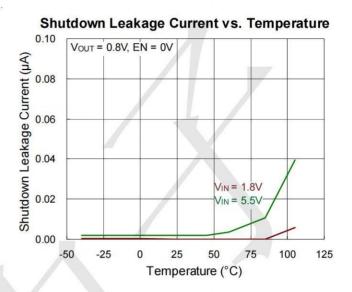

Typical Operating Characteristics

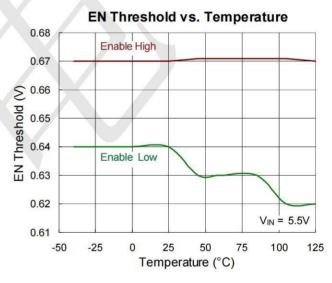




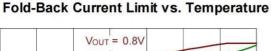


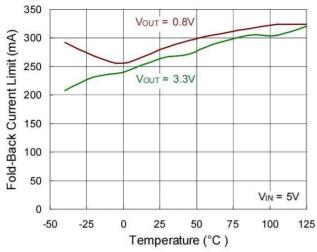


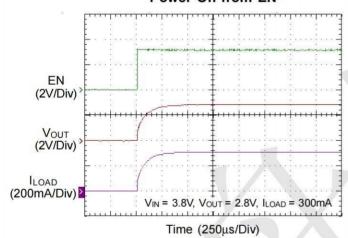


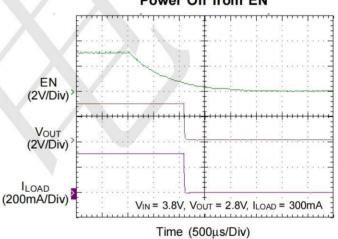

www.sot23.com.tw



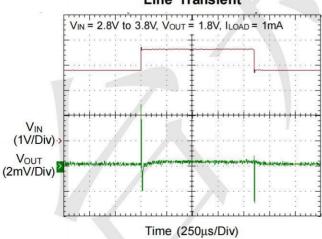




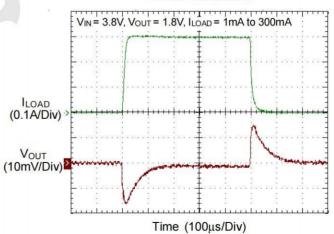

www.sot23.com.tw


SNS Input Current vs. Temperature 0.9 0.8 SNS Input Current (µA) 0.7 0.6 0.5 0.4 0.3 0.2 0.1 VIN = 5V, VOUT = 0.8V, EN = H 0.0 -25 50 -50 75 100 125

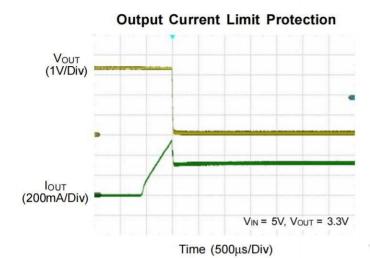
Power On from EN

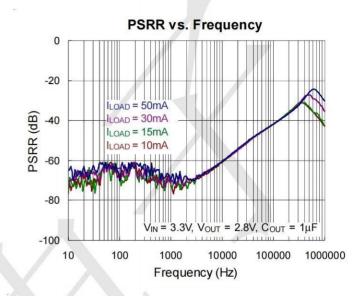


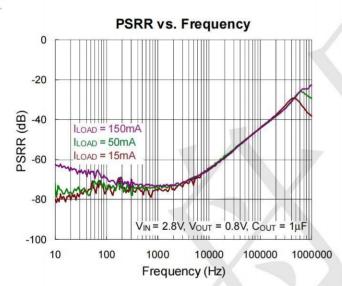
Power Off from EN

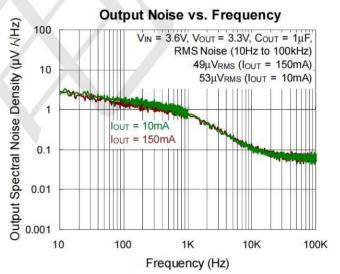

Temperature (°C)

Line Transient

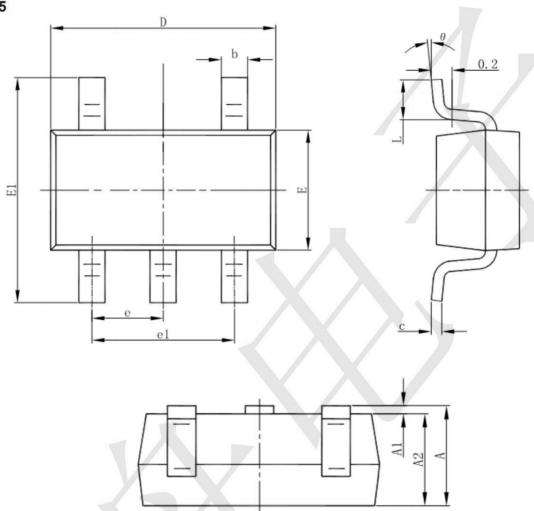



Load Transient





www.sot23.com.tw



www.sot23.com.tw

Package informantion SOT23-5

Cumbal	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by TECH PUBLIC manufacturer:

Other Similar products are found below:

AP7363-SP-13 NCV8664CST33T3G L79M05TL-E AP7362-HA-7 PT7M8202B12TA5EX TCR3DF185,LM(CT TLF4949EJ
NCP4687DH15T1G NCV8703MX30TCG LP2951CN NCV4269CPD50R2G AP7315-25W5-7 NCV47411PAAJR2G AP2111H-1.2TRG1
ZLDO1117QK50TC AZ1117ID-ADJTRG1 NCV4263-2CPD50R2G NCP114BMX075TCG MC33269T-3.5G TLE4471GXT AP7315-33SA7 NCV4266-2CST33T3G NCP715SQ15T2G NCV8623MN-50R2G NCV563SQ18T1G NCV8664CDT33RKG NCV4299CD250R2G
NCV8702MX25TCG TLE7270-2E NCV562SQ25T1G AP2213D-3.3TRG1 AP2202K-2.6TRE1 NCV8170BMX300TCG
NCV8152MX300180TCG NCP700CMT45TBG AP7315-33W5-7 NCP154MX180300TAG AP2210K-3.0TRE1 AP2113AMTR-G1
NJW4104U2-33A-TE1 MP2013AGG-5-P NCV8775CDT50RKG NJM2878F3-45-TE1 S-19214B00A-V5T2U7 S-19214B50A-V5T2U7 S19213B50A-V5T2U7 S-19214BC0A-E8T1U7*1 S-19213B00A-V5T2U7 S-19213B33A-V5T2U7 S-19213BC0A-V5T2U7