

General Description

The LM317is an adjustable 3-terminal positive voltage regulator capable of supplying 100mA over a 1.2V to 37V output range. It is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current limiting, thermal shutdown and safe area compensation, making it essentially blow-out proof. Also, the LM317is available packaged in a standard TO92、SOP8、SOT89-3 transistor package which is easy to use.

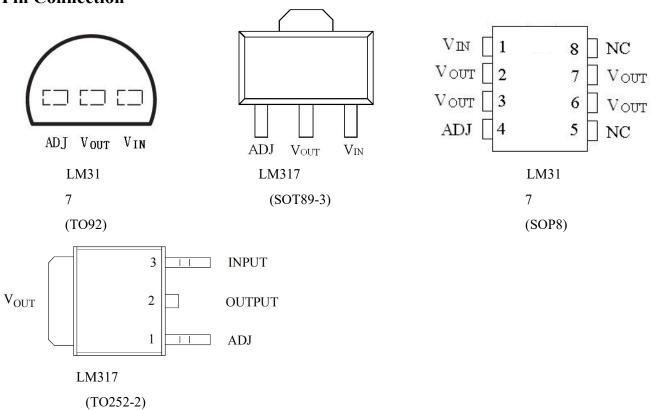
The LM317serves a wide variety of applications including local, on card regulation. This device can also be used to make a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM317can be used as a precision current regulator.

Features

- Adjustable output down to 1.2V
- Guaranteed 100 mA output current
- Line regulation typically 0.01%V
- Load regulation typically 0.1%
- Current limit constant with temperature
- Eliminates the need to stock many voltages
- 80 dB ripple rejection
- Output is short circuit protected

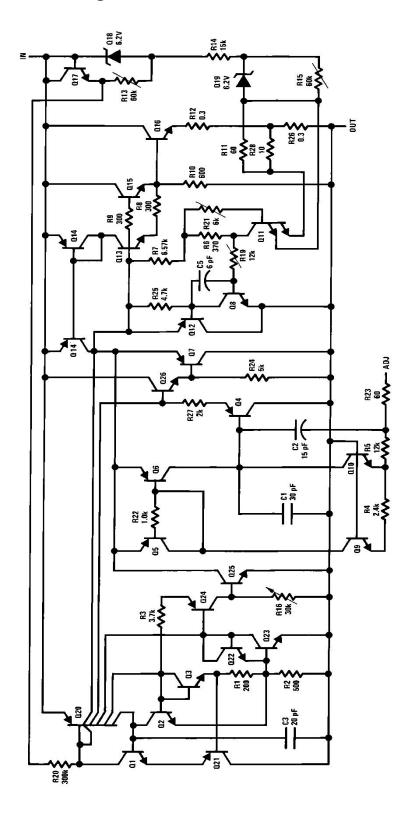
Package Information

Part NO.	Package Description	Package Marking	Package Option
D317L	TO92	D317L SXXXX	1000/Bag 2000/Tape
D317L	SOT89-3	D317L SXXXX	1000/Reel
D317L	SOP8	D317L SXXXX	100/Tube 4000/Reel



LM317

Part NO.	Package Description	Package Marking	Package Option
D317L	TO252-2	D317L SXXXX	2500/Tape
LM317L	TO92	LM317L SXXXX	1000/Bag 2000/Tape
LM317L	SOT89-3	LM317L SXXXX	1000/Reel
LM317L	SOP8	LM317L SXXXX	100/Tube 4000/Reel
LM317L	TO252-2	LM317L SXXXX	2500/Tape


:Trademark LM317:Part NO. SXXXX:Lot NO.

Pin Connection

Block Diagram

Absolute Maximum Ratings (Tamb=25°C)

Characteristic	Symbol	Value	Unit
Input-Output Voltage Differential	Vi-Vo	40	V
Power Dissipation	PD	Internally Limited	W
Operating Junction Temperature Range	Tj	-40~125	°C
Lead Temperature (Soldering, 4 seconds)	TL	250	°C
Storage Temperature Range	Tstg	-55~150	°C

Electrical Characteristics

(unless otherwise specified: Vi-Vo=5.0V; Io=40mA; Tj=0 \sim 125°C; Imax=100mA and Pmax=625mW)

Characteristics	Test conditions Symbol		Min.	Тур.	Max.	Unit	
Line Regulation	Tj=25°C, IL≤20mA 3V≤(V _{IN} -V _{OUT})≤40V	Regline	-	0.01	0.05	% /V	
Load Regulation	Tj=25°C, 5mA≤Iout≤Imax	Regload	-	0.1	0.5	%	
Thermal Regulation	Tj=25℃, 10ms Pulse	Regther	-	0.04	0.2	%/W	
Adjustment Pin Current	-	Iadj	-	50	100	μА	
Adjustment Pin Current Change	5mA≤IL≤100mA 3V≤(VIN-VOUT) ≤40V, P≤625mW	Δ Iadj	-	0.2	6	μА	
Reference Voltage	$3V \leq (V_{\text{IN-VOUT}}) \leq 40V$, $5\text{mA} \leq I_{\text{OUT}} \leq 100\text{mA}$, Vref $P \leq 625\text{mW}$		1.15	1.25	1.35	V	
Line Regulation	Regulation $3V \leq (V_{\text{IN}}-V_{\text{OUT}}) \leq 40V, I \leq 20\text{mA}$		-	0.02	0.05	%/V	
Load Regulation	5mA≤Iouт≤100mA	Regload	-	0.3	1.2	%	
Temperature Stability	TMIN≤Tj≤TMAX	Ts	-	0.65	-	%	
M: 1 10 4	(Vin-Vout) ≤40V	T- '	-	3.5	17		
Minimum Load Current	3V≤(V _{IN} -V _{OUT}) ≤15V	ILmin		1.5	6	mA	
C III	3V≤(Vin-Vout) ≤13V	T.	40	200	260	mA	
Current Limit	(VIN-VOUT) =40V	Imax	25	50	70	mA	
Rms Noise % of Vo	Rms Noise % of Vo Tj=25°C, 10Hz≤f≤10KHz		-	0.003	0.008	%	
D: 1 D : 4:	Vout=10V, f=120Hz, Cadj=0	D.D.		65	80	dB	
Ripple Rejection	Cadj=10 μ F	RR	66	80			
Long-Term Stability	Tj=125°C, 1000Hours	S	-	0.3	1	%	

Application Summary

1. Basic circuit operation

In operation, the LM317develops a nominal 1.25V reference voltage, Vref, between the output and adjustment terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current I1 then flows through the output set resistor R2, giving an output voltage of

Since the $100\mu A$ current from the adjustment terminal represents an error term, the LM317was designed to minimize Iadj and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output will rise.

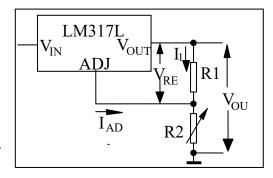
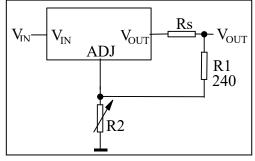



Figure: Basic circuit configuration

2. Load Regulation

The LM317is capable of providing extremely good load regulation, but a few precautions are

needed to obtain maximum performance. For best performance the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation

Regulator with line resistance in output lead

3.External capacitors

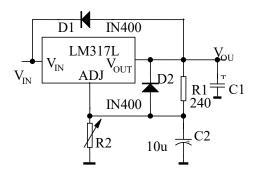
A $0.1\,\mu F$ disc or $1.0\,\mu F$ tantalum input bypass capacitor (Cin) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection.

This capacitor (Cadj) prevents ripple from being amplified as the output voltage is increased. A $10\mu F$ capacitor should improve ripple rejection about 15dB at 120Hz in a 10V application.

Although the LM317 is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (Co) in the form of a 1.0 µF tantalum or 25 µF aluminum electrolytic capacitor on the output swamps this effect and insures stability.

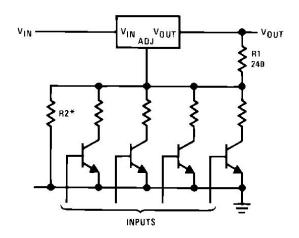
4. Protection Diodes

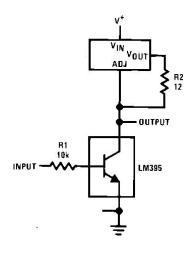


When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Most $10\mu F$ capacitors have low enough internal series resistance to deliver 20A spikes when shorted. Although the surge is short, there is enough energy to damage parts of the IC.

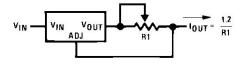
When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of Vin . In the LM317, this discharge path is through a large junction that is able to sustain a 2A surge with no problem. This is not true of other types of positive regulators. For output capacitors of $25\mu F$ or less, the LM317's ballast resistors and output structure limit

the peak current to a low enough level so that there is no need to use a protection diode.

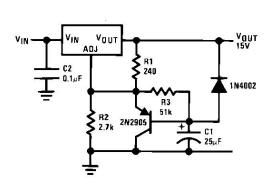

The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge occurs when either the input or output is shorted. Internal to the LM317is a 50Ω resistor which limits the peak discharge current. No protection is needed for output voltages of 25V or less and $10\mu F$ capacitance. Figure in right shows an LM317with protection diodes included for use with outputs greater than 25V and high values of output capacitance.


Regulator with protection diodes

Application Circuit

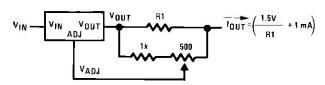


*Sets maximum Vout Digitally Selected Outputs

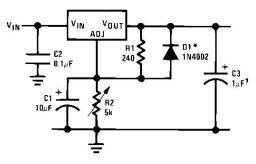


High Gain Amplifier

Adjustable Current Limiter



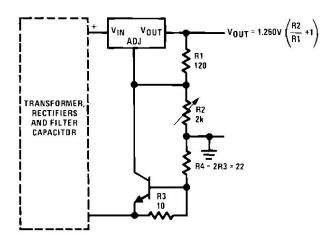
 $12 \le R1 \le 240$ Adjustable Current Limiter


Slow Turn-on 15V Regulator Improved Ripple Rejection

Precision Current Limiter

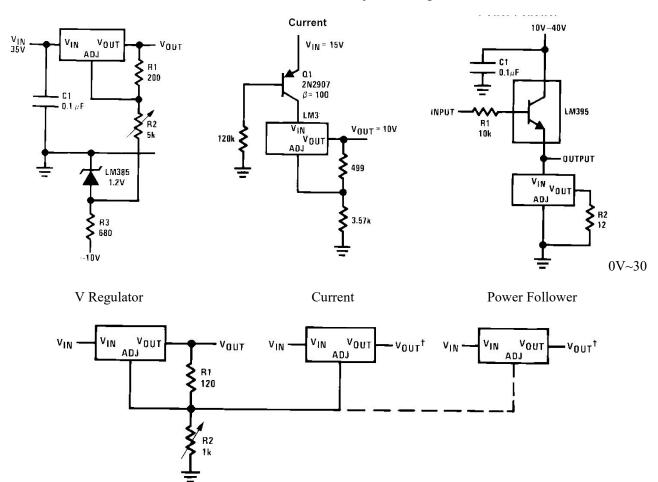
Precision Current Limiter

Improved Ripple Rejection

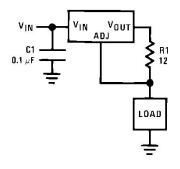

+Sold tantalum

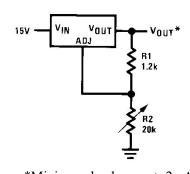
*Discharges C1 if output is shorted to ground

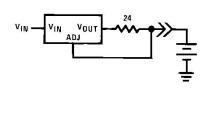
Adjustable Regulator with


High Stability 10V Regulator

Short circuit current is approximately 600mV/R3,

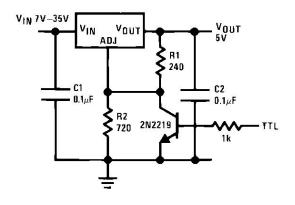

At 25mA output only 3/4V of drop occurs in R3 and R4


Adjustable Regulator with Current Limiter



Adjusting Multiple on-Card Regulators with Single Control

100mA Current Regulator


*Minimum load current=2mA 1.2V~12V Regulator with

Minimum Program Current

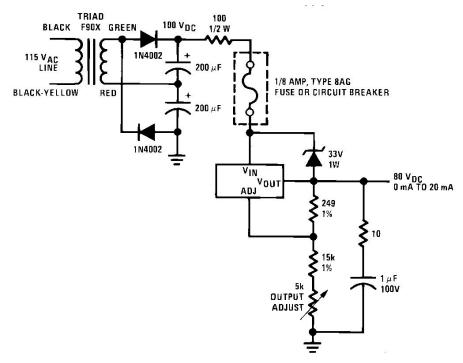
50mA constant Current

Battery Charger for

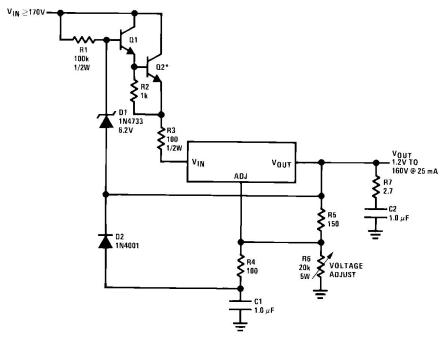
Nickel-Cadmium Batteries

*Minimum output=1.2V

9V TO 30V VIN VOUT ADJ 240 1.1k 2N2222 R1 10*

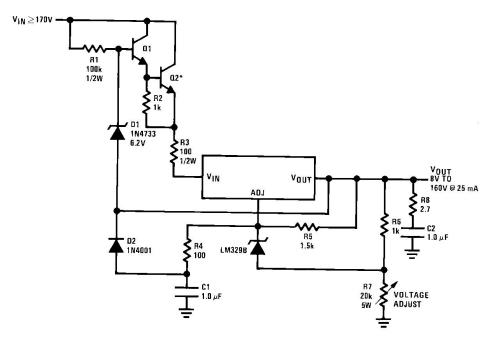

*Sets peak current, Ipeak=0.6V/R1

** $1000\mu F$ is recommended to filter out any input transients


Current Limited 6V Charger

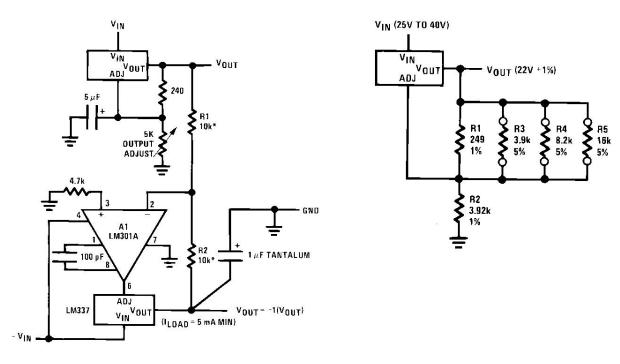
5V Logic Regulator with Electronic Shutdown

Short Circuit Protected 80V Supply

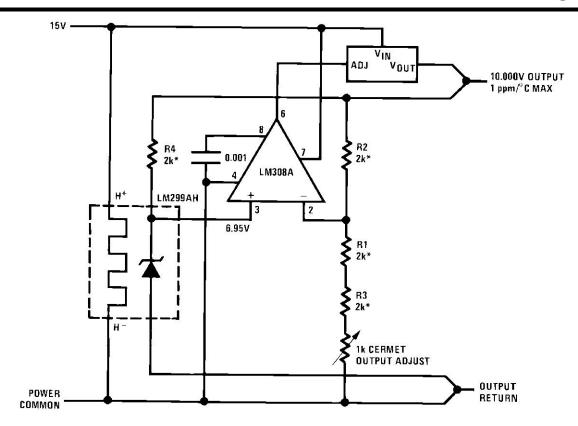

Q1,Q2:NSD134 or similar

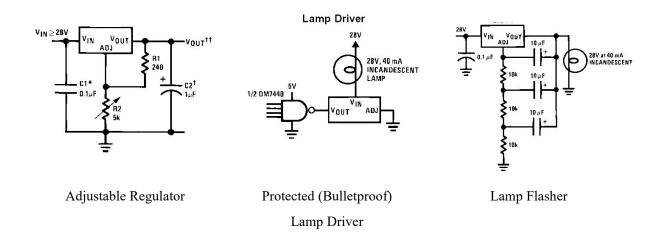
C1,C2: 1µF, 200V mylar**

*Heat sink

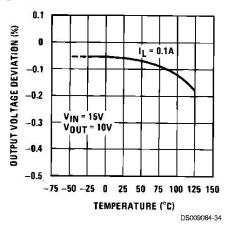

Basic High Voltage Regulator

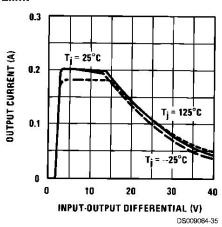
Q1,Q2:NSD134 or similar C1,C2: $1\mu F$, 200V mylar** *Heat sink ** Mylar is a registered trademark of DuPont Co.


Precision High Voltage Regulator

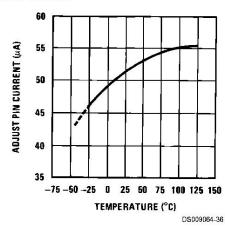

Tracking Regulator

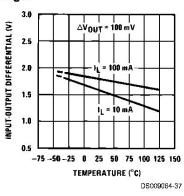
Regulator with Trimmable output Voltage

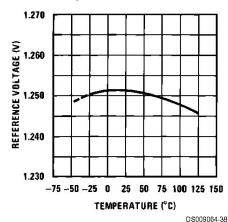

Precision Reference with Short-Circuit Proof Output

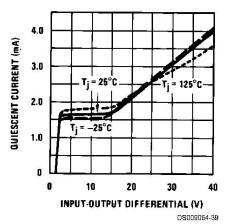


Characteristics Curves

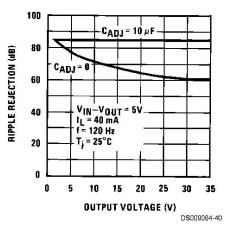

Load Regulation


Current Limit

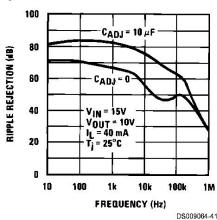

Adjustment Current

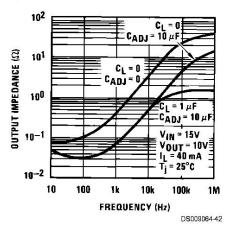

Dropout Voltage

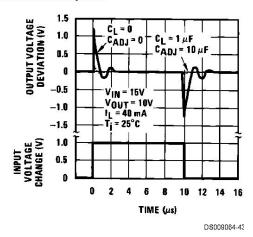
Reference Voltage Temperature Stability

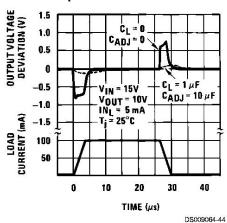


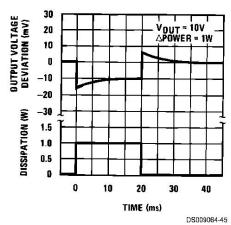
Minimum Operating Current



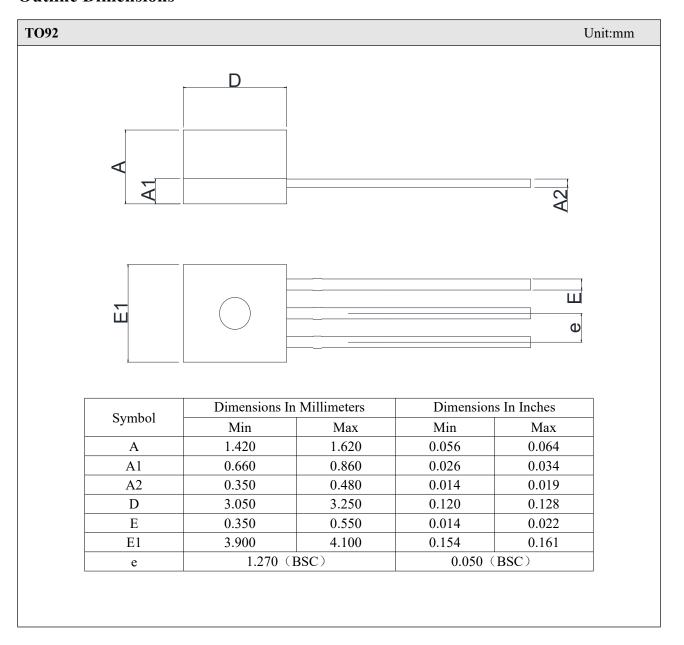

Ripple Rejection


Ripple Rejection

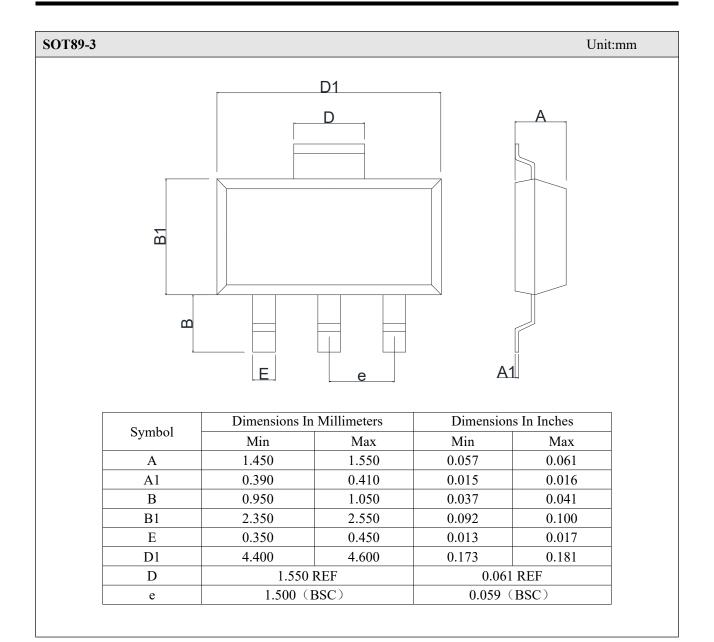

Output Impedance

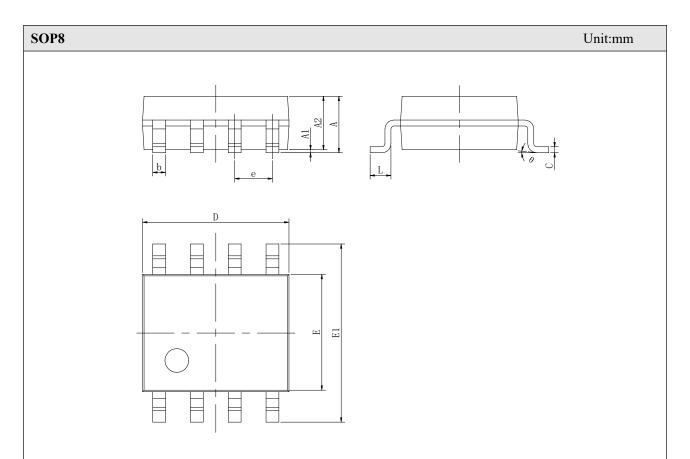

Line Transient Response

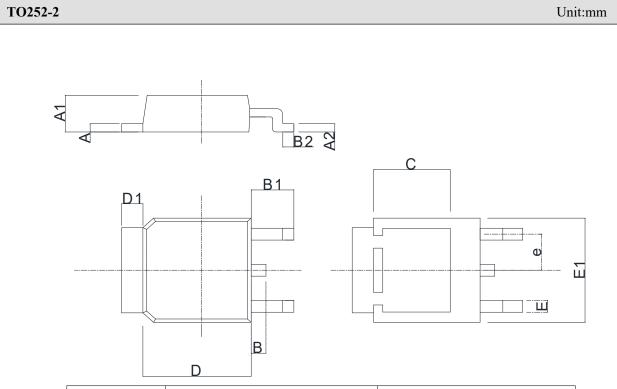
Load Transient Response



Thermal Regulation




Outline Dimensions



Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	1.350	1.800	0.053	0.071
A1	0.000	0.250	0.000	0.010
A2	1.250	1.550	0.053	0.061
b	0.300	0.510	0.011	0.020
c	0.170	0.250	0.006	0.010
D	4.700	5.100	0.185	0.201
Е	3.800	4.000	0.150	0.157
E1	5.800	6.300	0.228	0.244
e	1.270(BSC)		0.050(B	SC)
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	0.470	0.570	0.018	0.023
A1	2.220	2.380	0.087	0.094
A2	0.470	0.570	0.018	0.023
В	0.820	0.840	0.032	0.033
B1	2.380	2.480	0.093	0.098
B2	0.500	0.520	0.019	0.021
С	4.250	4.450	0.167	0.176
D	6.000	6.200	0.236	0.245
D1	1.150	1.250	0.045	0.050
Е	0.650	0.850	0.025	0.034
E1	6.450	6.750	0.253	0.266
e	2.285 (BSC)		0.090 ((BSC)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by TDSEMIC manufacturer:

Other Similar products are found below:

AP7363-SP-13 NCV8664CST33T3G L79M05TL-E AP7362-HA-7 PT7M8202B12TA5EX TCR3DF185,LM(CT TLF4949EJ

NCP4687DH15T1G NCV8703MX30TCG LP2951CN NCV4269CPD50R2G AP7315-25W5-7 NCV47411PAAJR2G AP2111H-1.2TRG1

ZLDO1117QK50TC AZ1117ID-ADJTRG1 NCV4263-2CPD50R2G NCP114BMX075TCG MC33269T-3.5G TLE4471GXT AP7315-33SA-7 NCV4266-2CST33T3G NCP715SQ15T2G NCV8623MN-50R2G NCV563SQ18T1G NCV8664CDT33RKG NCV4299CD250R2G

NCP715MX30TBG NCV8702MX25TCG L974113TR TLE7270-2E NCV562SQ25T1G AP2213D-3.3TRG1 AP2202K-2.6TRE1

NCV8170BMX300TCG NCV8152MX300180TCG NCP700CMT45TBG AP7315-33W5-7 LD56100DPU28R NCP154MX180300TAG

AP2210K-3.0TRE1 AP2113AMTR-G1 NJW4104U2-33A-TE1 MP2013AGG-5-P NCV8775CDT50RKG NJM2878F3-45-TE1 S
19214B00A-V5T2U7 S-19214B50A-V5T2U7 S-19213B50A-V5T2U7 S-19214BC0A-E8T1U7*1