VND9012AJ

Datasheet

Double channel high-side driver with current sense analog feedback for automotive applications

PowerSSO-16

Product status lir	ık
VND9012AJ	

Product summary				
Order code	VND9012AJTR			
Package	PowerSSO-16			
Packing	Tape and reel			

Features

Max transient supply voltage	V _{CC}	36 V
Operating voltage range	V _{CC}	4 to 28 V
Typ. on-state resistance (per Ch)	R _{ON}	12 mΩ
Current limitation (typ)	I _{LIMH}	63 A
Standby current (max)	I _{STBY}	0.5 µA

- AEC-Q100 qualified
- Extreme low voltage operation for deep cold cranking applications (compliant with LV124, revision 2013)
- General
 - Double channel smart high-side driver with current sense analog feedback
 - Very low standby current
 - Compatible with 3 V and 5 V CMOS outputs
- Current sense diagnostic functions
 - Multiplexed analog feedback of load current with high precision proportional current mirror
 - Overload and short to ground (power limitation) indication
 - Thermal shutdown indication
 - OFF-state open-load detection
 - Output short to V_{CC} detection
 - Sense enable/disable
- Protections
 - Undervoltage shutdown
 - Overvoltage clamp
 - Load current limitation
 - Self limiting of fast thermal transients
 - Configurable latch-off on overtemperature or power limitation with dedicated fault reset pin
 - Loss of ground and loss of V_{CC}
 - Reverse battery through self turn-on
 - Electrostatic discharge protection

Applications

- Automotive resistive, inductive and capacitive loads
- Protected supply for ADAS systems: radars and sensors

Description

The device is a double channel high-side driver manufactured using ST proprietary VIPower M0-9 technology and housed in PowerSSO-16 package. The device is designed to drive 12 V automotive grounded loads through a 3 V and 5 V CMOS-compatible interface, providing protection and diagnostics.

The device integrates advanced protective functions such as load current limitation, overload active management by power limitation and overtemperature shutdown with configurable latch-off.

A FaultRST pin unlatches the output in case of fault or disables the latch-off functionality.

A dedicated multifunction multiplexed analog output pin delivers diagnostic functions including high precision proportional load current sense, in addition to the detection of overload and short circuit to ground, short to V_{CC} and OFF-state open-load.

A sense enable pin allows OFF-state diagnosis to be disabled during the module low-power mode as well as external sense resistor sharing among similar devices.

57

Figure 1. Block diagram

GADG0507181254PS

Table 1. Pin functions

Name	Function
V _{CC}	Battery connection.
OUTPUT _{0,1}	Power output.
GND	Ground connection. Must be reverse battery protected by an external diode / resistor network.
INPUT _{0,1}	Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs. It controls output switch state.
CS	Multiplexed analog sense output pin; it delivers a current proportional to the selected load current.
SEn	Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the CS diagnostic pin.
SEL	Active high compatible with 3 V and 5 V CMOS outputs pin; it addresses the CS multiplexer.
FaultRST	Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in case of fault; If kept low, sets the outputs in auto-restart mode.

Figure 2. Configuration diagram (top view)

GADG1605171045PS

Table 2. Suggested connections for unused and not connected pins

Connection / pin	CS	N.C.	Output	Input	SEn, SELx, FaultRST
Floating	Not allowed	х	X ⁽¹⁾	Х	Х
To ground	Through 1 k Ω resistor	Х	Not allowed	Through 15 k Ω resistor	Through 15 k Ω resistor

1. X: do not care.

2 Electrical specifications

57

GADG1605171029PS

Note: $V_{Fn} = V_{OUTn} - V_{CC}$ during reverse battery condition.

2.1 Absolute maximum ratings

Stressing the device above the rating listed in Table 3. Absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in the table below for extended periods may affect the device reliability.

Table 3.	Absolute	maximum	ratings
----------	----------	---------	---------

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage	36	V
-V _{CC}	Reverse DC supply voltage	16	V
V _{CCJS}	Maximum jump start voltage for single pulse short circuit protection	28	V
-I _{GND}	DC reverse ground pin current	200	mA
I _{OUT}	OUTPUT _{0,1} DC output current	Internally limited	
-I _{OUT}	Reverse DC output current	13	A
I _{IN}	INPUT _{0,1} DC input current	-1 to 10	
I _{SEn}	SEn DC input current	-1 to 1	
I _{SEL}	SEL DC input current	1 to 10	mA
I _{FR}	FaultRST DC input current	-1 to 10	
1	CS pin DC output current (V _{GND} = V _{CC} and V _{SENSE} < 0 V)	10	
ISENSE	CS pin DC output current in reverse (V _{CC} < 0 V)	-20	mA
E _{MAX}	Maximum switching energy (single pulse) T _{jstart} = 150 °C)	29.5	mJ

Figure 3. Current and voltage conventions

Symbol	Parameter	Value	Unit
	Electrostatic discharge (JEDEC 22A-114F)	2000	V
	• INPUT _{0,1}	2000	V
V _{ESD}	CS SEn, SEL, FaultRST	2000	V
	 OUTPUT_{0.1} 	4000	V
	• V _{CC}	4000	V
V _{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
Tj	Junction operating temperature	-40 to 150	°C
T _{stg}	Storage temperature	-55 to 150	

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Typ. value	Unit
R _{thj-board}	Thermal resistance junction-board (JEDEC JESD 51-5 / 51-8) ^{(1) (2)}	6.7	
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-5) ⁽¹⁾⁽³⁾	54.8	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-7) ^{(1) (2)}	22.2	

1. One channel ON.

2. Device mounted on a four-layer 2s2p PCB

3. Device mounted on a two-layer 2s0p PCB with 2 cm² heatsink copper trace

57

2.3 Main electrical characteristics

7 V < V_{CC} < 28 V; -40°C < T_j < 150°C, unless otherwise specified. All typical values refer to V_{CC} = 13 V; T_j = 25°C, unless otherwise specified.

Table 5. Power section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Uni
V _{CC}	Operating supply voltage		4	13	28	V
V _{USD}	Undervoltage shutdown			2.1	2.7	V
V _{USDReset}	Undervoltage shutdown reset				4.5	V
V _{USDhyst}	Undervoltage shutdown hysteresis			0.15		V
		I _{OUT} = 4.75 A; T _j = 25°C		12		
D	O (1)	I _{OUT} = 4.75 A; T _j = 150°C			26.4	
RON	Un-state resistance (1)	I _{OUT} = 4.75 A; V _{CC} = 4 V; T _j = 25°C			20.4	- mΩ
	I_{OUT} = 1 A; V_{CC} = 2.7 V; V_{CC} decreasing			72		
R _{ON_REV}	R _{DSON} in reverse battery condition	V _{CC} = -13 V; I _{OUT} = -4.75 A; T _J = 25°C		12		m۵
N		I _S = 20 mA; 25°C < T _j < 150°C	36	38	45	V
V _{clamp}	Clamp voltage	I _S = 20 mA; T _j = -40°C	36			V
		$V_{CC} = 13 \text{ V}; V_{IN0,1} = V_{OUT0,1} = V_{FR} = V_{SEn} = 0 \text{ V};$ $V_{SEL} = 0 \text{ V}; T_j = 25^{\circ}\text{C}$			0.5	
I _{STBY}	Supply current in standby at V _{CC} = 13 V $^{(2)}$				0.5	μA
		$V_{CC} = 13 \text{ V}; V_{IN0,1} = V_{OUT0,1} = V_{FR} = V_{SEn} = 0 \text{ V};$ $V_{SEL} = 0 \text{ V}; T_j = 125^{\circ}C$			3	-
t _{D_STBY}	Standby mode blanking time	$\label{eq:VCC} \begin{array}{l} V_{CC} = 13 \; V; \; V_{IN} = V_{OUT} = V_{FR} = V_{SEL0,1} = 0 \; V; \\ V_{SEn} = 5 \; V \; to \; 0 \; V \end{array}$	60	260	550	μs
I _{S(ON)}	Supply current	$V_{CC} = 13 \text{ V}; V_{SEn} = V_{FR} = V_{SEL0,1} = 0 \text{ V}; V_{IN0} = 5 \text{ V};$ $V_{IN1} = 5 \text{ V};$ $I_{OUT0} = 0 \text{ A}; I_{OUT1} = 0 \text{ A}$		2.9	4	m/
I _{GND(ON)}	Control stage current consumption in ON state. All channels active.	V _{CC} = 13 V; V _{SEn} = 5 V; V _{FR} = V _{SEL} = 0 V; V _{IN0} = 5 V; V _{IN1} = 5 V; I _{OUT0} = 4.75 A; I _{OUT1} = 4.75 A			4.5	m/
1	Off-state output current at	$V_{IN0,1} = V_{OUT0,1} = 0 V; V_{CC} = 13 V; T_j = 25^{\circ}C$	0	0.01	0.5	
VccOperating supply voltageVuSDUndervoltage shutdown/uSDResetUndervoltage shutdown resetVuSDhystUndervoltage shutdownVuSDhystUndervoltage shutdownRoNOn-state resistance (1)RON_REVRDSON in reverse battery conditionVclampClamp voltageISTBYSupply current in standby at Vcc = 13 V (2)IstarySupply currentIstarySupply current <tr< td=""><td>V_{IN0,1} = V_{OUT0,1} = 0 V; V_{CC} = 13 V; T_j = 125°C</td><td>0</td><td></td><td>3</td><td>μA</td></tr<>	V _{IN0,1} = V _{OUT0,1} = 0 V; V _{CC} = 13 V; T _j = 125°C	0		3	μA	
V _F		I _{OUT} = -4.75 A; T _j = 150°C			0.7	V

1. For each channel

2. PowerMOS leakage included.

3. Parameter specified by design; not subject to production test.

Table 6. Switching

V _{CC} = 13 V; -40°C < T _j < 150°C, unless otherwise specified						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} ⁽¹⁾	Turn-on delay time at T _j = 25 °C	- R _L = 2.8 Ω	10	58	120	
t _{d(off)} ⁽¹⁾	Turn-off delay time at T_j = 25 °C	$R_{L} = 2.8 \Omega$		26	100	μs
$(dV_{OUT}/dt)_{on}$ ⁽¹⁾	Turn-on voltage slope at T _j = 25 °C	R _I = 2.8 Ω	0.2	0.44	0.7	Mus
$(dV_{OUT}/dt)_{off}$ ⁽¹⁾	Turn-off voltage slope at T _j = 25 °C	RL - 2.0 12	0.2	0.53	0.7	V/µs
W _{ON}	Switching energy losses at turn-on (t_{won})	R _L = 2.8 Ω	_	0.4	0.95 (2)	mJ
W _{OFF}	Switching energy losses at turn-off (t_{woff})	R _L = 2.8 Ω	_	0.34	0.55 ⁽²⁾	mJ
t _{SKEW} ⁽¹⁾	Differential Pulse skew (t _{PHL} - t _{PLH})	R _L = 2.8 Ω	-85	-35	15	μs

1. See Figure 4. Switching time and Pulse skew.

2. Parameter guaranteed by design and characterization; not subject to production test.

		V _{CC} < 28 V; -40°C < T _j < 150°C				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Uni
		INPUT _{0,1} characteristics				
VIL	Input low level voltage				0.9	V
Ι _{ΙΕ}	Low level input current	V _{IN} = 0.9 V	1			μA
VIH	Input high level voltage		2.1			V
I _{IH}	High level input current	V _{IN} = 2.1 V			10	μA
V _{I(hyst)}	Input hysteresis voltage		0.2			V
Maria	Input clomp voltage	I _{IN} = 1 mA	6		8.5	v
V _{ICL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V
		FaultRST characteristics	!			
V _{FRL}	Input low level voltage				0.9	V
I _{FRL}	Low level input current	V _{IN} = 0.9 V	1			μA
V _{FRH}	Input high level voltage		2.1			V
I _{FRH}	High level input current	V _{IN} = 2.1 V			10	μA
V _{FR(hyst)}	Input hysteresis voltage		0.2			V
M	Input clamp voltage	I _{IN} = 1 mA	6		8.5	V
V _{FRCL}		I _{IN} = -1 mA		-0.7		
	SEL cl	naracteristics (7 V < V_{CC} < 18 V)				
V _{SELL}	Input low level voltage				0.9	V
I _{SELL}	Low level input current	V _{IN} = 0.9 V	1			μA
V _{SELH}	Input high level voltage		2.1			V
I _{SELH}	High level input current	V _{IN} = 2.1 V			10	μA
V _{SEL(hyst)}	Input hysteresis voltage		0.2			V
		I _{IN} = 1 mA	6		8.5	
V _{SELCL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V
	SEn cl	naracteristics (7 V < V_{CC} < 18 V)	I			
V _{SEnL}	Input low level voltage				0.9	V
I _{SEnL}	Low level input current	V _{IN} = 0.9 V	1			μA
V _{SEnH}	Input high level voltage		2.1			V
I _{SEnH}	High level input current	V _{IN} = 2.1 V			10	μA
V _{SEn(hyst)}	Input hysteresis voltage		0.2			V
		I _{IN} = 1 mA	9		12	
V _{SEnCL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V

Table 7. Logic inputs

	7 V < V _{CC} < 18 V; −40°C < T _j < 150°C						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
L (1)		V _{CC} = 16 V; T _j = -40°C	-15%	68	15%		
I _{LIMH} ⁽¹⁾		V _{CC} = 16 V; T _j = 150°C	-15%	56	15%		
(2)	DC short- circuit current	V _{CC} = 19 V; T _j = -40°C	-15%	53	15%	A	
I _{LIMH2} ⁽²⁾		V _{CC} = 19 V; T _j = 150°C	-15%	43	15%		
I _{LIMH} at 22 V		V _{CC} = 22 V; T _j = 25°C		20		Α	
	Shutdown temperature		150	175	210		
T _{TSD}	Shutdown temperature (V _{CC} decreasing)	V _{CC} = 2.7 V	140				
T _{RS}	Thermal reset of fault diagnostic indication	V _{FR} = 0 V; V _{SEn} = 5 V	135			°C	
T _{HYST}	Thermal hysteresis $(T_{TSD} - T_{RS})^{(3)}$			7			
AT		V _{CC} = 16 V;		80			
$\Delta T_{J_{SD}}$	Dynamic temperature	V _{CC} = 19 V;		55		K	
t _{LATCH_RST}	Fault reset time for output unlatch (3)	$V_{FR} = 5 V \text{ to } 0 V; V_{SEn} = 5 V;$ • E.g. Ch ₀ : $V_{IN0} = 5 V; V_{SEL} = 0 V$	3	10	20	μs	
t _{D_Restart}	Latch-OFF delay time before automatic restart			50		ms	
		I _{OUT} = 1 A; L = 6 mH; T _j = -40 °C	V _{CC} - 36			V	
V _{DEMAG}	Turn-off output voltage clamp	I _{OUT} = 1 A; L = 6 mH; T _j = 25°C to 150 °C	V _{CC} - 36	V _{CC} - 38	V _{CC} - 45	V	

Table 8. Protections

1. I_{LIMH} guaranteed between 7V and 16V, -40°C < T_j < 150°C

2. I_{LIMH2} guaranteed between 16V and 19V, -40°C < T_j < 150°C

3. Parameter guaranteed by design and characterization; not subject to production test.

		/ _{CC} < 18 V; -40°C < T _j < 150°C				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Uni
		V _{SEn} = 0 V; I _{SENSE} = 1 mA	-9	-8	-7	v
V _{SENSE_CL} CS clamp voltage		V _{SEn} = 0 V; I _{SENSE} = -1 mA		7		V
	Cu	irrent sense characteristics				
K _{LED}	I _{OUT} /I _{SENSE}	I _{OUT} = 0.05 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-35%	10050	+35%	
IK _{LED} /K _{LED} ⁽¹⁾ ⁽²⁾	Current sense ratio drift at calibration point	I _{OUT} = 0.05 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-25		25	%
K ₀	I _{OUT} /I _{SENSE}	I _{OUT} = 0.25 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-20%	10050	+20%	
dK ₀ /K ₀ ^{(1) (2)}	Current sense ratio drift	I _{OUT} = 0.25 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-15		15	%
K ₁	I _{OUT} /I _{SENSE}	I _{OUT} = 0.95 A; V _{SENSE} = 3.5 V; V _{SEn} = 5 V	-15%	10050	+15%	
dK ₁ /K ₁ ^{(1) (2)}	Current sense ratio drift	I _{OUT} = 0.95 A; V _{SENSE} = 3.5 V; V _{SEn} = 5 V	-10		10	%
K ₂	I _{OUT} /I _{SENSE}	I _{OUT} = 4.75 A; V _{SENSE} = 3.5 V; V _{SEn} = 5 V	7%	10050	+7%	
dK ₂ /K ₂ ^{(1) (2)}	Current sense ratio drift	I _{OUT} = 4.75 A; V _{SENSE} = 3.5 V; V _{SEn} = 5 V	-7		7	%
K ₃	I _{OUT} /I _{SENSE}	I _{OUT} = 14 A; V _{SENSE} = 3.5 V; V _{SEn} = 5 V	-5%	10050	+5%	
dK_3/K_3 ⁽¹⁾ ⁽²⁾	Current sense ratio drift	I _{OUT} = 14 A; V _{SENSE} = 3.5 V; V _{SEn} = 5 V	-5		5	%
		CS disabled: V _{SEn} = 0 V	0		0.5	
		CS disabled: -1 V < V _{SENSE} < 5 V	-1		1	-
I _{SENSE0}	Current sense leakage current	CS enabled: $V_{SEn} = 5 V$; All channels ON; $I_{OUTX} = 0 A$; Ch_X diagnostic selected; • E.g. Ch_0 : $V_{IN0} = 5 V$; $V_{IN1} = 5 V$; $V_{SEL} = 0 V$; $I_{OUT0} = 0 A$; $I_{OUT1} = 4.75 A$	0		10	μ
		CS enabled: $V_{SEn} = 5 V$; $Ch_X OFF$; Ch_X diagnostic selected: • E.g. Ch_0 : $V_{IN0} = 0 V$; $V_{IN1} = 5 V$; $V_{SEL0} = 0 V$; $V_{SEL1} = 0 V$; $I_{OUT1} = 4.75 A$	0		1	

Table 9. Current sense

		_{CC} < 18 V; -40°C < T _j < 150°C				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Uni
Vout_msd ⁽¹⁾	Output Voltage for CS shutdown	V_{SEn} = 5 V; R _{SENSE} = 2.7 kΩ; • E.g. Ch ₀ : V_{IN0} = 5 V; V _{SEL} = 0 V; I_{OUT0} = 4.75 A		5		v
V _{SENSE_SAT}	Current sense saturation voltage	$V_{CC} = 7 \text{ V}; \text{ R}_{SENSE} = 10 \text{ k}\Omega;$ $V_{SEn} = 5 \text{ V}; \text{ V}_{IN0} = 5 \text{ V}; \text{ V}_{SEL} = 0 \text{ V};$ $I_{OUT0} = 14; \text{ T}_{j} = -40^{\circ}\text{C}$	4.8			V
ISENSE_SAT ⁽¹⁾	CS saturation current	V _{CC} = 7 V; V _{SENSE} = 3.5 V; V _{IN0} = 5 V; V _{SEn} = 5 V; V _{SEL} = 0 V; T _i = 150°C	2			mA
I _{OUT_SAT} ⁽¹⁾	Output saturation current	V _{CC} = 7 V; V _{SENSE} = 3.5 V; V _{IN0} = 5 V; V _{SEn} = 5 V; V _{SEL} = 0 V; T _i = 150°C	29			A
		OFF-state diagnostic				
		V _{SEn} = 5 V; Ch _X OFF;				
V _{OL}	OFF-state open-load voltage detection threshold	Ch _X diagnostic selected • E.g: Ch ₀ $V_{IN0} = 0 V; V_{SEL} = 0 V;$	2	3	4	V
I _{L(off2)}	OFF-state output sink current	$V_{IN} = 0 V; V_{OUT} = V_{OL};$ $T_j = -40^{\circ}C \text{ to } 125^{\circ}C$	-150	-40	-5	μA
t _{dstkon}	OFF-state diagnostic delay time from falling edge of INPUT (see Figure 6. T _{DSTKON})	$V_{SEn} = 5 \text{ V}; Ch_X \text{ ON to OFF transition};$ $Ch_X \text{ diagnostic selected}$ $\bullet E.g: Ch_0$ $V_{IN0} = 5 \text{ V to 0 V}; V_{SEL} = 0 \text{ V};$ $I_{OUT0} = 0 \text{ A}; V_{OUT} = 4 \text{ V}$	100	170	250	μs
t _{D_OL_V}	Settling time for valid OFF- state open load diagnostic indication from rising edge of SEn				60	μ
t _{D_VOL}	OFF-state diagnostic delay time from rising edge of V _{OUT}	V_{SEn} = 5 V; Ch _X OFF; Ch _X diagnostic selected		5	30	μs
	Fault diagnostic	feedback (see Table 10. Truth table)				
	Current sense output voltage	13 V < V_{CC} < 18 V; Ch0 in open load; R _{SENSE} = 0.7 kΩ; V _{IN0} = 0 V; V _{SEn} = 5 V; I _{OUT0} = 0 A; V _{OUT0} = 4 V	5		7.5	
V _{SENSEH}	in fault condition	V_{CC} = 7 V; Ch0 in open load; R_{SENSE} = 0.7 kΩ; V_{IN0} = 0 V;	4.3			- V

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		13 V < V _{CC} < 18 V; V _{SENSE} = 5 V;				
		Ch0 in open load;	_		10	
		V _{IN0} = 0 V; V _{SEn} = 5 V;	7	8.6	12	
	Current sense output current	I _{OUT0} = 0 A; V _{OUT0} = 4 V				
ISENSEH	in fault condition	V _{CC} = 7 V; V _{SENSE} = 5 V;				mA
		Ch0 in open load;				
		V _{IN0} = 0 V; V _{SEn} = 5 V;	4.4			
		I _{OUT0} = 0 A; V _{OUT0} = 4 V				
Current s	ense timings (current sense mode	e - see Figure 5. Current sense timings (current s	ense moo	de)) ⁽³⁾	
t _{DSENSE1H}	Current sense settling time from rising edge of SEn				60	μs
t _{DSENSE1L}	Current sense disable delay time from falling edge of SEn	$V_{IN} = 5 \text{ V}; V_{SEn} = 5 \text{ V to } 0 \text{ V};$ $R_{SENSE} = 1 \text{k} \Omega; \text{R}_{L} = 2.8 \Omega$		5	20	μs
t _{DSENSE2H}	Current sense settling time from rising edge of INPUT	V_{IN} = 0 V to 5 V; V_{SEn} = 5 V; R_{SENSE} = 1 k Ω ; R_L = 2.8 Ω		100	200	μs
∆t _{DSENSE2H}	Current sense settling time from rising edge of I_{OUT} (dynamic response to a step change of I_{OUT})	$\label{eq:VIN} \begin{split} V_{\text{IN}} &= 5 \text{ V}; V_{\text{SEn}} = 5 \text{V}; \text{R}_{\text{SENSE}} = 1 \text{k} \Omega; \\ \text{I}_{\text{SENSE}} &= 90 \text{\% of } \text{I}_{\text{SENSEMAX}}; \\ \text{R}_{\text{L}} &= 2.8 \Omega \end{split}$			100	μs
t _{DSENSE2L}	Current sense turn-off delay time from falling edge of INPUT	V_{IN} = 5 V to 0 V; V_{SEn} = 5 V; R_{SENSE} = 1 kΩ; R_L = 2.8 Ω		50	250	μs
t _{DSENSE3H}	Current sense latch-OFF filtering time		1.4	2.0	2.6	ms
	Current sense ti	mings (Multiplexer transition times) ⁽³⁾				
t _{D_XtoY}	Current sense transition delay from Ch_X to Ch_Y				30	μs
D_CStoVSENSEH	Current sense transition delay from stable current sense on Ch_X to V_{SENSEH} on Ch_Y				20	μs

1. Parameter guaranteed by design and characterization; not subject to production test.

2. All values refer to V_{CC} = 13 V; T_j = 25°C, unless otherwise specified.

3. Transition delay is measured up to +/- 10% of final conditions.

Figure 5. Current sense timings (current sense mode)

GAPG1003141014CFT

Figure 6. T_{DSTKON}

GADG0112170745PS

Table 10. Truth table

Mode	Conditions	IN _X	FR	SEn	SELX	OUT _X	CS	Comments				
Standby	All logic inputs low	L	L	L	L	L	Hi-Z	Low quiescent current consumption				
		L	х			L	See (1)					
Normal	Nominal load connected; T _i < 150 °C	н	L	Se	e ⁽¹⁾	н	See (1)	Outputs configured for auto-restart				
	1, < 150 C	н	н			н	See (1)	Outputs configured for Latch-off				
	Overload or short to GND causing:		Overload or short to GND causing:		Overload or short to GND causing:	L	х			L	See (1)	
Overload	$T_j > T_{TSD}$ or $\Delta T_j > \Delta T_j \{SD}$	н	L	See (1)		н	See (1)	Output cycles with temperature hysteresis				
		н	н			L	See (1)	Output latches-off				
Undervoltage	V _{CC} < V _{USD} (falling)	x	x	x	x	L	Hi-Z Hi-Z	Re-start when V _{CC} > V _{USD} + V _{USDhyst} (rising)				
OFF-state	Short to V _{CC}		Х	2 (1)		н	See (1)					
diagnostics	Open-load	L	Х	See ⁽¹⁾		Н	See (1)	External pull-up				
Negative output voltage	Inductive loads turn-off	L	х	Se	e ⁽¹⁾	< 0 V	See (1)					

1. Refer to Table 11. Current sense multiplexer addressing

SEn	SEn SEL		MUX channel CS output				
SEII	SEL0	MOX channel	Normal mode	Overload	OFF-state diag.	Negative output	
L	Х		Hi-Z				
Н	L	Channel 0 diagnostic	I _{SENSE} = 1/K * I _{OUT0}	V _{SENSE} = V _{SENSEH}	V _{SENSE} = V _{SENSEH}	Hi-Z	
Н	Н	Channel 1 diagnostic	I _{SENSE} = 1/K * I _{OUT1}	V _{SENSE} = V _{SENSEH}	V _{SENSE} = V _{SENSEH}	Hi-Z	

Table 11. Current sense multiplexer addressing

2.4 Waveforms

57

Figure 7. Latch-off mode - Intermittent short circuit

Figure 8. Auto-restart mode - Intermittent short circuit

Figure 9. Auto-restart mode - Permanent short circuit

3 Protections

3.1 Power limitation

The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔT_j through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔT_j exceeds the safety level of ΔT_{j_SD} . According to the voltage level on the FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled (FaultRST = Low) or remains off (FaultRST = High). The protection prevents fast thermal transient effects and, consequently, reduces thermomechanical fatigue.

3.2 Thermal shutdown

In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175°C), it automatically switches off and the diagnostic indication is triggered. According to the voltage level on the FaultRST pin, the device switches on again as soon as its junction temperature drops to T_R (FaultRST = Low) or remains off (FaultRST = High).

3.3 Current limitation

The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, I_{LIMH} , by operating the output power MOSFET in the active region.

3.4 Negative voltage clamp

In case the device drives inductive load, the output voltage reaches a negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, V_{DEMAG}, allowing the inductor energy to be dissipated without damaging the device.

4 Application information

Figure 12. Application diagram

4.1 GND protection network against reverse battery

Figure 13. Simplified internal structure

4.1.1 Diode (DGND) in the ground line

A resistor (typ. R_{GND} = 4.7 k Ω) should be inserted in parallel to D_{GND} if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (≈600 mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network.

4.2 Immunity against transient electrical disturbances

The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the V_{CC} pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010.

The related function performance status classification is shown in Table 12. ISO 7637-2 - electrical transient conduction along supply line.

Test pulses are applied directly to DUT (device under test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), chapter 4.

The DUT is intended as the current device only, with external components as shown in Figure 14. M0-9 application schematic.

Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: "The function does not perform as designed during the test but returns automatically to normal operation after the test".

Test Pulse 2011(E)	Test pulse severity level with Status II functional performance status of pulses or test		Burst cycle / pulse repetition time		Pulse duration and pulse generator internal	
	Level	U _S ⁽¹⁾	– time	min	max	impedance
1	111	-112 V	500 pulses	0.5 s		2 ms, 10 Ω
2a	111	+55 V	500 pulses	0.2 s	5 s	50 μs, 2 Ω
3a	IV	-220 V	1h	90 ms	100 ms	0.1 μs, 50 Ω
3b	IV	+150 V	1h	90 ms	100 ms	0.1 μs, 50 Ω
4 (2)	IV	-7 V	1 pulse			100 ms, 0.01 Ω
Load dump acco	ording to ISO 16	750-2:2010			1	1
Test B ⁽³⁾		35 V	5 pulse	1 min		400 ms, 2 Ω

Table 12. ISO 7637-2 - electrical transient conduction along supply line

1. U_S is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.

2. Test pulse from ISO 7637-2:2004(E).

3. With 35 V external suppressor referred to ground (-40°C < T_i < 150 °C).

Figure 14. M0-9 application schematic

Note: In case of multiple channels, each OUTPUT must be connected to the resistive nominal load.

4.3 MCU I/Os protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line both to prevent the microcontroller I/O pins from latching-up and to protect the HSD inputs.

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os.

Equation

 $V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C} - V_{IH} - V_{GND}) / I_{IHmax}$

Calculation example:

For V_{CCpeak} = -150 V; $I_{latchup} \ge 20 \text{ mA}$; $V_{OH\mu C} \ge 4.5 \text{ V}$

 $7.5 \text{ k}\Omega \leq \text{R}_{\text{prot}} \leq 140 \text{ k}\Omega.$

Recommended values: $R_{prot} = 15 k\Omega$

A different value of the resistor has to be used for SEn pin, Rprot_SEn, as reported in Figure 12. Application diagram.

4.4 CS - analog current sense

Diagnostic information on device and load status are provided by an analog output pin (CS) delivering the following signals:

Current monitor: current mirror of channel output current

Those signals are routed through an analog multiplexer which is configured and controlled by means of SELx and SEn pins, according to the address map in Table 7.

Figure 15. CurrentSense and diagnostic – block diagram

GADG2004171456PS

4.4.1 Principle of current sense signal generation

Figure 16. CurrentSense block diagram

GAPG2307131200CFT

Current sense

The output is capable to provide:

- Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to known ratio named K
- Diagnostics flag in fault conditions delivering fixed voltage V_{SENSEH}

The current delivered by the current sense circuit, I_{SENSE} , can be easily converted to a voltage V_{SENSE} by using an external sense resistor, R_{SENSE} , allowing continuous load monitoring and abnormal condition detection.

Normal operation (channel ON, no fault, SEn active)

While device is operating in normal conditions (no fault intervention), V_{SENSE} calculation can be done using simple equations

Current provided by MultiSense output: I_{SENSE} = I_{OUT}/K

Voltage on R_{SENSE} : $V_{SENSE} = R_{SENSE} \cdot I_{SENSE} = R_{SENSE} \cdot I_{OUT}/K$ Where:

- V_{SENSE} is voltage measurable on R_{SENSE} resistor
- ISENSE is current provided from CurrentSense pin in current output mode
- I_{OUT} is current flowing through output
- K factor represents the ratio between PowerMOS cells and SenseMOS cells; its spread includes geometric factor spread, current sense amplifier offset and process parameters spread of overall circuitry specifying ratio between I_{OUT} and I_{SENSE}.

Failure flag indication

In case of power limitation/overtemperature, the fault is indicated by the CurrentSense pin which is switched to a "current limited" voltage source, V_{SENSEH}.

In any case, the current sourced by the CurrentSense in this condition is limited to I_{SENSEH}.

The typical behavior in case of overload or hard short circuit is shown in Waveforms.

GADG2702181218RI

Table 13. CS pin levels in off-state

Condition	Output	CS	SEn
	V _{OUT} > V _{OL}	Hi-Z	L
Open-load	VOUI > VOL	V _{SENSEH}	Н
	V _{OUT} < V _{OL}	Hi-Z	L
	VOUI VOL	0	Н
Short to V _{CC}	Vaur S.Vau	Hi-Z	L
Short to VCC	V _{OUT} > V _{OL}	V _{SENSEH}	Н
Nominal	V _{OUT} < V _{OL}	Hi-Z	L
NUTIITA	VOUI < VOL	0	Н

4.4.2 Short to V_{CC} and OFF-state open-load detection

Short to V_{CC}

A short circuit between V_{CC} and output is indicated by the relevant current sense pin set to V_{SENSEH} during the device off-state. Small or no current is delivered by the current sense during the on-state depending on the nature of the short-circuit.

OFF-state open-load with external circuitry

Detection of an open-load in off mode requires an external pull-up resistor R_{PU} connecting the output to a positive supply voltage V_{PU} .

It is preferable that V_{PU} is switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, that is when load is connected.

 R_{PU} must be selected in order to ensure $V_{OUT} > V_{OLmax}$ in accordance with the following equation:

$$R_{PU} < \frac{V_{PU} - 4}{I_{L(off2)min @ 4V}}$$

5 Maximum demagnetization energy (V_{CC} = 16 V)

6 Package and PCB thermal data

6.1 PowerSSO-16 thermal data

Figure 21. PowerSSO-16 on two-layer PCB (2s0p to JEDEC JESD 51-5)

GAPGCFT00321

Figure 22. PowerSSO-16 on four-layer PCB (2s2p to JEDEC JESD 51-7)

Table 14. PCB properties

Dimension	Value
Board finish thickness	1.6 mm +/- 10%
Board dimension	77 mm x 86 mm
Board Material	FR4
Copper thickness (top and bottom layers)	0.070 mm
Copper thickness (inner layers)	0.035 mm
Thermal vias separation	1.2 mm
Thermal via diameter	0.3 mm +/- 0.08 mm
Copper thickness on vias	0.025 mm
Footprint dimension (top layer)	2.2 mm x 3.9 mm
Heatsink copper area dimension (bottom layer)	Footprint, 2 cm ² or 8 cm ²

RTHj_amb(°C/W)

Figure 24. PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)

Equation: pulse calculation formula

$$\label{eq:zthd} \begin{split} Z_{TH\delta} &= R_{TH} \cdot \delta + Z_{THtp} \left(1 - \delta\right) \\ \text{where } \delta &= t_{P}/T \end{split}$$

Note: the fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

Area/island (cm²)	FP	2	8	4L
R1 (°C/W)	2			
R2 (°C/W)	2.2			
R3 (°C/W)	4.6	4.6	4.6	4
R4 (°C/W)	16	6	6	4
R5 (°C/W)	30	20	10	3
R6 (°C/W)	26	20	18	7
C1 (W·s/°C)	0.00008			
C2 (W·s/°C)	0.02			
C3 (W·s/°C)	0.08			
C4 (W·s/°C)	0.2	0.3	0.3	0.4
C5 (W·s/°C)	0.4	1	1	4
C6 (W·s/°C)	3	5	7	18

Table 15. Thermal parameters

57

Package information 7

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

7.1 PowerSSO-16 package information

Figure 26. PowerSSO-16 package dimensions

θ:

Section A-A

Section B-B

8017965_Rev_9

GAPG1605141159CFT

Table 16. PowerSSO-16 mechanical data

	Millimeters				
Symbol -	Min.	Тур.	Max.		
Θ	0°	8°			
Θ1	0°				
Θ2	5°	5° 15°			
Θ3	5°		15°		
Α			1.70		
A1	0.00		0.10		
A2	1.10		1.60		
b	0.20		0.30		
b1	0.20	0.25	0.28		
С	0.19		0.25		
c1	0.19	0.20	0.23		
D	4.90 BSC				
D2	3.31 3.91				
D3	2.61				
e	0.50 BSC				
E	6.00 BSC				
E1		3.90 BSC			
E2	2.20		2.80		
E3	1.49				
h	0.25		0.50		
L	0.40	0.60	0.85		
L1		1.00 REF			
Ν		16			
R	0.07				
R1	0.07				
S	0.20				
	Tolerance of form	n and position			
ааа		0.10			
bbb	0.10				
CCC		0.08			
ddd	0.08				
eee	0.10				
fff	0.10				
999		0.15			

7.2 PowerSSO-16 packing information

Figure 27. PowerSSO-16 reel 13"

TAPG2004151655CFT

Table 17. Reel dimensions

Description	Value ⁽¹⁾	
Base quantity	2500	
Bulk quantity	2500	
A (max)	330	
B (min)	1.5	
C (+0.5, -0.2)	13	
D (min)	20.2	
Ν	100	
W1 (+2 /-0)	12.4	
W2 (max)	18.4	

1. All dimensions are in mm.

Figure 28. PowerSSO-16 carrier tape

GAPG2204151242CFT

Table 18. PowerSSO-16 carrier tape dimensions

Description	Value ⁽¹⁾
A ₀	6.50 ± 0.1
B ₀	5.25 ± 0.1
K ₀	2.10 ± 0.1
К ₁	1.80 ± 0.1
F	5.50 ± 0.1
P ₁	8.00 ± 0.1
W	12.00 ± 0.3

1. All dimensions are in mm.

GAPG2004151511CFT

PowerSSO-16 marking information 7.3

Parts marked as '&' are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

57

Revision history

Table 19. Document revision history

Date	Revision	Changes
02-Oct-2018	1	Initial release.
03-Jun-2021	2	Added: • Application information. Updated: • Figure 1. Block diagram; • Table 3. Absolute maximum ratings; • Table 8. Protections; • Table 9. Current sense; • Section Features; • Section 2.4 Waveforms. Minor text changes in: • Table 7. Logic inputs.
14-Jul-2022	3	Updated Section Features, Table 2. Suggested connections for unused and not connected pins, Table 3. Absolute maximum ratings, Table 4. Thermal data, Table 6. Switching, Table 8. Protections, Table 9. Current sense and Section 4 Application information. Inserted Section 5 Maximum demagnetization energy (VCC = 16 V) and Section 6 Package and PCB thermal data. Minor text changes.

Contents

1	Bloo	ck diagi	ram and pin description	3
2	Elec	trical s	specifications	5
	2.1	Absol	ute maximum ratings	
	2.2	Therm	nal data	6
	2.3	Main e	electrical characteristics	
	2.4	Wave	forms	
3	Prot	tections	S	
	3.1	Power	r limitation	
	3.2	Therm	nal shutdown	
	3.3	Curre	nt limitation	
	3.4	Negat	tive voltage clamp	
4	Арр	lication	n information	
	4.1	GND	protection network against reverse battery	
		4.1.1	Diode (DGND) in the ground line	
	4.2	Immu	nity against transient electrical disturbances	
	4.3	MCU	I/Os protection	
	4.4	CS - a	analog current sense	
		4.4.1	Principle of current sense signal generation	23
		4.4.2	Short to V_{CC} and OFF-state open-load detection	
5	Мах	imum c	demagnetization energy (V _{CC} = 16 V)	
6	Pac	kage ar	nd PCB thermal data	
	6.1	Power	rSSO-16 thermal data	
7	Pac	kage in	formation	
	7.1	Power	rSSO-16 package information	
	7.2	Power	rSSO-16 packing information	
	7.3	Power	rSSO-16 marking information	
Re	vision	history	y	

List of tables

Table 1.	Pin functions	. 3
Table 2.	Suggested connections for unused and not connected pins	. 4
Table 3.	Absolute maximum ratings	. 5
Table 4.	Thermal data	. 6
Table 5.	Power section	. 7
Table 6.	Switching	. 8
Table 7.	Logic inputs.	. 9
Table 8.	Protections	10
Table 9.	Current sense	11
Table 10.	Truth table	15
Table 11.	Current sense multiplexer addressing.	16
Table 12.	ISO 7637-2 - electrical transient conduction along supply line	21
Table 13.	CS pin levels in off-state	26
Table 14.	PCB properties	28
Table 15.	Thermal parameters	30
Table 16.	PowerSSO-16 mechanical data	32
Table 17.	Reel dimensions	33
Table 18.	PowerSSO-16 carrier tape dimensions	34
Table 19.	Document revision history	36

List of figures

Figure 1.	Block diagram	. 3
Figure 2.	Configuration diagram (top view).	. 4
Figure 3.	Current and voltage conventions.	. 5
Figure 4.	Switching time and Pulse skew	14
Figure 5.	Current sense timings (current sense mode).	14
Figure 6.	T _{DSTKON}	15
Figure 7.	Latch-off mode - Intermittent short circuit	17
Figure 8.	Auto-restart mode - Intermittent short circuit	17
Figure 9.	Auto-restart mode - Permanent short circuit	18
Figure 10.	Standby mode activation	18
Figure 11.	Standby state diagram	18
Figure 12.	Application diagram.	20
Figure 13.	Simplified internal structure	20
Figure 14.	M0-9 application schematic	
Figure 15.	CurrentSense and diagnostic – block diagram	23
Figure 16.	CurrentSense block diagram	
Figure 17.	Analog HSD – open-load detection in off-state	25
Figure 18.	Open-load / short to V _{CC} condition	25
Figure 19.	Maximum turn off current versus inductance	27
Figure 20.	Maximum turn off energy versus inductance	27
Figure 21.	PowerSSO-16 on two-layer PCB (2s0p to JEDEC JESD 51-5)	28
Figure 22.	PowerSSO-16 on four-layer PCB (2s2p to JEDEC JESD 51-7)	28
Figure 23.	R _{thj-amb} vs PCB copper area in open box free air condition (one channel on)	29
Figure 24.	PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)	29
Figure 25.	Thermal fitting model of a double-channel HSD in PowerSSO-16	30
Figure 26.	PowerSSO-16 package dimensions	31
Figure 27.	PowerSSO-16 reel 13"	33
Figure 28.	PowerSSO-16 carrier tape	34
Figure 29.	PowerSSO-16 schematic drawing of leader and trailer tape	34
Figure 30.	PowerSSO-16 marking information	35

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

TLE6232GP NCP45520IMNTWG-L VND5E004ATR-E FPF1018 DS1222 NCV380HMUAJAATBG SZNCP3712ASNT3G NCP45520IMNTWG-H VND5004ATR-E AP22811BW5-7 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 TS13011-QFNR VND7012AYTR NCV459MNWTBG NCP4545IMNTWG-L NCV8412ASTT1G NCV8412ASTT3G FPF2260ATMX SLG5NT1765V SLG5NT1757V NCP45780IMN24RTWG AP2151DMPG-13 AP2151AMP-13 NCP45540IMNTWG-L TPS2022P FPF2495BUCX NCP45650IMNTWG NCV8412ADDR2G DK5V100R20S BTS7020-2EPA BTT6100-2ERA BTS71220-4ESA DK5V100R15M WS3220C9-9/TR AW32405CSR BTT6030-2ERA TLE75602-ESH BTS5200-4EKA DK5V150R25M DK5V45R25 DK5V100R25S AW35206FOR BTS7120-2EPA TLE75008-ESD BTS7040-1EPA BTT6030-1ERA DK5V60R10S DK5V45R25S