

High-side current sense amplifier

Datasheet - production data

Features

- Wide common-mode operating range independent of supply: 2.8 V to 30 V
- Wide common-mode survival range: -32 V to 60 V (reversed battery and load-dump conditions)
- Maximum input offset voltage:
 - ±1.5 mV for T_{amb} = 25 °C
 - ±2.3 mV for -40 °C < T_{amb} < 125 °C
- Maximum total output voltage error:
 - ±1.5 % for T_{amb} = 25 °C
 - ±2.5 % for -40 °C < T_{amb} < 125 °C
- Maximum variation over temperature:
 - dV_{os}/dT = 8 μ V/°C
 - $dV_{out}/dT = 100 \text{ ppm/}^{\circ}C$
- Low current consumption: $I_{CC} max = 300 \ \mu A$
- -40 °C to 125 °C operating temperature range
- Internally fixed gain: 20 V/V, 50 V/V
- EMI filtering

Related products

 See TSC103 for higher common-mode operating range (2.9 V to 70 V)

Applications

- Automotive current monitoring
- Notebook computers
- Server power supplies
- Telecom equipment
- Industrial SMPS
- Current sharing
- LED current measurement

Description

The TSC1021 measures a small differential voltage on a high-side shunt resistor and translates it into a ground-referenced output voltage.

The TSC1021 has been specifically designed for automotive conditions: load-dump protection up to 60 V, reverse-battery protection up to -32 V, ESD protection up to 4 kV and internal filtering for EMI performance.

Input common-mode and power supply voltages are independent: the common-mode voltage can range from 2.8 to 30 V in operating conditions and up to 60 V in absolute maximum ratings while the TSC1021 can be supplied by a 5 V independent supply line.

The TSC1021 is housed in a tiny TSSOP8 package and integrates a buffer that provides low impedance output to ease interfacing and avoid accuracy losses. The overall device current consumption is lower than $300 \ \mu$ A.

November 2015

DocID017857 Rev 4

This is information on a product in full production.

Contents

1	Applica	tion diagram	3
2	Pin con	figuration	4
3	Absolut	e maximum ratings and operating conditions	5
4	Electric	al characteristics	6
5	Electric	al characteristics curves: current sense amplifier	8
6	Parame	ter definitions	11
	6.1	Common mode rejection ratio (CMR)	11
	6.2	Supply voltage rejection ratio (SVR)	11
	6.3	Gain (Av) and input offset voltage (Vos)	11
	6.4	Output voltage drift versus temperature	11
	6.5	Output voltage accuracy	12
7	Packag	e information	13
	7.1	TSSOP8 package information	14
8	Orderin	g information	15
9	Revisio	n history	16

1 Application diagram

The TSC1021 high-side current-sense amplifier features a 2.8 V to 30 V input commonmode range that is independent of the supply voltage. The main advantage of this feature is that it allows high-side current sensing at voltages much greater than the supply voltage (V_{CC}).

2 Pin configuration

Table 1: "Pin description" describes the function of each pin. Their position is shown in the illustration on the cover page and in *Figure 2: "Pin connections (top view)"* above.

Pin number	Symbol	Туре	Function
1	Vm	Analog input	Connection for the external sense resistor. The measured current exits the shunt on the \overline{V}_{m} side.
3	Gnd	Power supply	Ground line
4	Out	Analog output	Buffered output of the current sensing amplifier
6	V _{CC}	Power supply	Positive power supply line
8	Vp	Analog input	Connection for the external sense resistor. The measured current enters the shunt on the \overline{V}_{P} side.

Table 1: Pin description

3 A

Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit
V_{id}	Input pins differential voltage (Vp-Vm)	±20	
Vi	Current sensing input pin voltages (V_p and V_m) $^{\left(1\right)}$	-32 to 60	V
V ₁	Voltage for Vcc, Out pins ⁽¹⁾	-0.3 to 7	
T _{stg}	Storage temperature	-65 to 150	°C
Tj	Maximum junction temperature	150	-0
R_{thja}	TSSOP8 thermal resistance junction to ambient	120	°C/Ω
	HBM: human body model for $V_{p}andV_{m}$ pins $^{(2)}$	4	kV
ESD	HBM: human body model for all other pins ⁽²⁾	2	κv
	MM: machine model ⁽³⁾	250	V
	CDM: charged device model ⁽⁴⁾	1.5	kV

Notes:

 $\ensuremath{^{(1)}}\xspace$ values are measured with respect to the GND pin.

 $^{(2)}$ Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 k Ω resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

⁽³⁾Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.

⁽⁴⁾Charged device model: all pins and package are charged together to the specified voltage and then discharged directly to ground.

Symbol	Parameter	Value	Unit
Vcc	DC supply voltage from T_{min} to T_{max}	3.5 to 5.5	V
T _{oper}	Operational temperature range (T_{min} to T_{max})	-40 to 125	°C
V _{icm}	Common-mode voltage range (V_m and V_p pin voltage)	2.8 to 30	V

Table 3: Operating conditions

4 Electrical characteristics

The electrical characteristics given in the following tables are measured under the following test conditions unless otherwise specified: $T_{amb} = 25 \text{ °C}$, $V_{CC} = 5 \text{ V}$, $V_{sense} = V_{p} \text{-} V_{m} = 50 \text{ mV}$, $V_{m} = 12 \text{ V}$, no load on Out, all gain configurations.

	Table 4: Supply					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Icc	Total supply current	$V_{sense} = 0 \text{ V}, -40 ^{\circ}\text{C} < T_{amb} < 125 ^{\circ}\text{C}$			300	
I _{CC1}	Total supply current	V_{sense} = 50 mV, -40 °C < T _{amb} < 125 °C	— —	450	μA	

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
DC CMR	DC common-mode rejection, variation of V_{out} versus V_m referred to input ⁽¹⁾	90 105					
AC CMR	AC common mode rejection, variation of V _{out} versus V _m referred to input (peak-to-peak voltage variation)	2.8 V < V_m < 30 V, DC to 1 kHz sine wave		75	dB		
SVR	Supply voltage rejection, variation of V _{out} versus V _{CC} $^{(1)}$	$3.5 \text{ V} < \text{V}_{CC} < 5.5 \text{ V},$ -40 °C< T _{amb} < 125°C	80	95			
		$2.8 \text{ V} < \text{V}_{\text{m}} < 30 \text{ V}, \text{ T}_{\text{amb}} = 25 \text{ °C}$			±1.5		
V _{os}	Input offset voltage ⁽¹⁾	2.8 V < V _m < 30 V, -40 °C < T _{amb} < 125 °C			±2.3	mV	
dV _{os} /dT	Input offset drift vs. T	-40 °C< T _{amb} < 125 °C			8	µV/°C	
dV _{out} /dT	Output voltage drift vs. T	-40 °C< T _{amb} < 125 °C			100	ppm/°C	
l _{ik}	Input leakage current	$V_{CC} = 0 \text{ V}, -40 \text{ °C} < T_{amb} < 125 \text{ °C}$			1	μA	
l _{ib}	Input bias current	V_{sense} = 0 V, -40 °C < T _{amb} < 125 °C			7	μΛ	
Av	Gain, (variation of V _{out}	TSC1021A		20		V/V	
,,,,	versus V _{sense})	TSC1021B		50		•/•	
		$V_{sense} = 50 \text{ mV}, T_{amb} = 25 ^{\circ}\text{C}$			±1.5		
		V_{sense} = 50 mV, T_{min} < T_{amb} < T_{max}			±2.5		
		V_{sense} = 100 mV, T_{amb} = 25 °C			±1.5		
ΔV _{out}	Total output voltage	V _{sense} = 100 mV, T _{min} < T _{amb} < T _{max}			±2.5	%	
	accuracy ⁽²⁾	$V_{sense} = 20 \text{ mV}, T_{amb} = 25 \text{ °C}$			±7	70	
		V_{sense} = 20 mV, T_{min} < T_{amb} < T_{max}			±9	-	
		$V_{sense} = 10 \text{ mV}, T_{amb} = 25 ^{\circ}\text{C}$			±12		
		V_{sense} = 10 mV, T_{min} < T_{amb} < T_{max}			±15		
$\Delta V_{out} / \Delta I_{out}$	Output stage load regulation	-5 mA < I _{out} <5 mA, I _{out} sink or source current		±0.4	±2	mV/mA	

Table 5: Electrical performances

6/17

TSC1021

Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{oh}	Out high level saturation	V _{sense} = 1 V, I _{out} = 1 mA, T _{amb} = 25 °C		90	135	
	voltage, V _{oh} =V _{cc} -V _{out}	V _{sense} = 1 V, I _{out} = 1 mA, -40 °C< T _{amb} < 125 °C			185	
V _{ol}	Out low level saturation voltage	$V_{sense} = -1 V$, $I_{out} = 1 mA$, $T_{amb} = 25 \ ^{\circ}C$		80	125	mV
		$V_{sense} = -1 V$, $I_{out} = 1 mA$, -40 °C< $T_{amb} < 125 °C$			165	

Notes:

⁽¹⁾See Section 6: "Parameter definitions".

⁽²⁾Output voltage accuracy is the difference with the expected theoretical output voltage V_{out-th} = Av x V_{sense}. See Section 6: "Parameter definitions" for a more detailed definition.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
ts	V_{out} settling to 1 % final value	$V_{sense} = 10 \text{ mV} \text{ to } 100 \text{ mV},$ $C_{load} = 47 \text{ pF}$		7		μs
SR	Slew rate	$V_{sense} = 10 \text{ mV} \text{ to } 100 \text{ mV}$	0.3	0.45		V/µs
BW	3 dB bandwidth	C _{load} = 47 pF		800		kHz
e _N	Equivalent input noise voltage	f = 1 kHz		50		nV/√ Hz

Table 6: Dynamic performances

5 Electrical characteristics curves: current sense amplifier

Unless otherwise specified, the test conditions for the following curves are:

- Tamb = 25 °C, V_{CC} = 5 V, Vsense = Vp Vm = 50 mV, Vm = 12 V.
 - No load on the Out pin.

Electrical characteristics curves: current sense amplifier

DocID017857 Rev 4

Electrical characteristics curves: current sense amplifier

6 Parameter definitions

6.1 Common mode rejection ratio (CMR)

The common-mode rejection ratio (CMR) measures the ability of the current-sensing amplifier to reject any DC voltage applied on both inputs V_p and V_m . The CMR is referred back to the input so that its effect can be compared with the applied differential signal. The CMR is defined by the formula:

$$CMR = -20 \cdot \log \frac{\Delta V_{out}}{\Delta V_{icm} \cdot Av}$$

6.2 Supply voltage rejection ratio (SVR)

The supply-voltage rejection ratio (SVR) measures the ability of the current-sensing amplifier to reject any variation of the supply voltage V_{CC} . The SVR is referred back to the input so that its effect can be compared with the applied differential signal. The SVR is defined by the formula:

$$SVR = -20 \cdot \log \frac{\Delta V_{out}}{\Delta V_{cc} \cdot Av}$$

6.3 Gain (Av) and input offset voltage (Vos)

The input offset voltage is defined as the intersection between the linear regression of the V_{out} vs. the V_{sense} curve with the X-axis. If V_{out1} is the output voltage with $V_{sense} = V_{sense1} = 50$ mV, and V_{out2} is the output voltage with $V_{sense} = V_{sense2} = 5$ mV, then V_{os} can be calculated with the following formula.

$$V_{os} = V_{sense1} - \frac{V_{sense1} - V_{sense2}}{V_{out1} - V_{out2}} \cdot V_{out1}$$

6.4 Output voltage drift versus temperature

The output voltage drift versus temperature is defined as the maximum variation of V_{out} with respect to its value at 25 °C, over the temperature range. It is calculated as follows:

$$\frac{\Delta V_{out}}{\Delta T} = \max \left| \frac{V_{out}(Tamb) - V_{out}(25^{\circ} C)}{Tamb - 25^{\circ} C} \right|$$

with $T_{min} < T_{amb} < T_{max}$.

6.5 Output voltage accuracy

The output voltage accuracy is the difference between the actual output voltage and the theoretical output voltage. Ideally, the current sensing output voltage should be equal to the input differential voltage multiplied by the theoretical gain, as in the following formula.

 $V_{out-th} = Av \cdot V_{sense}$

The actual value is very slightly different, mainly due to the effects of:

- the input offset voltage V_{os}
- the non-linearity
- the voltage saturation of V_{OL} and V_{OH}

The output voltage accuracy, expressed as a percentage, can be calculated with the following formula.

$$\Delta V_{out} = \frac{abs(V_{out} - (Av \cdot V_{sense}))}{Av \cdot V_{sense}}$$

With Av = 20 V/V for TSC1021A and Av = 50 V/V for TSC1021B.

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 TSSOP8 package information

Table 7: TSSOP8 mechanical data

	Dimensions							
Ref.		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А			1.2			0.047		
A1	0.05		0.15	0.002		0.006		
A2	0.80	1.00	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.008		
D	2.90	3.00	3.10	0.114	0.118	0.122		
E	6.20	6.40	6.60	0.244	0.252	0.260		
E1	4.30	4.40	4.50	0.169	0.173	0.177		
е		0.65			0.0256			
k	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		
L1		1			0.039			
aaa		0.1			0.004			

8 Ordering information

Table 8: Order codes							
Part number	Temperature range	Package	Packaging	Marking	Gain		
TSC1021AIPT	-40 °C to 125 °C	TOOODO	Tana and as al	O21AI	20		
TSC1021BIPT	-40 0 10 125 0			O21BI	50		
TSC1021AIYPT	-40 °C to 125 °C	TSSOP8	Tape and reel	O21AY	20		
TSC1021BIYPT	automotive grade ⁽¹⁾			O21BY	50		

Notes:

⁽¹⁾Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q002 or equivalent.

Revision history 9

Tab	ole 9:	Document	revision	history

Date	Revision	Changes
23-Sep-2010	1	Initial release
26-Feb-2014	2	Added Section 5: "Electrical characteristics curves: current sense amplifier". Updated footnote 1 of Table 8: "Order codes"
18-Aug-2014	3	Added Related products Replaced Figure 2: Pin connections (top view) Table 5: Electrical performances: corrected several erroneous symbols. Table 8: Order codes: updated "Marking", updated footnote 1
06-Nov-2015	4	Table 2: "Absolute maximum ratings": updated second "HBM" parameter.Table 5: "Electrical performances": updated unit of Vos parameter from μV to mV.Table 7: "TSSOP8 mechanical data": updated parameter "aaa"

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Current Sense Amplifiers category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

MCP6C02T-050H/Q8B_TSC210ICT_INA212BIDCKR_MAX4372HEBT+T_NTE955M_INA199C3DCKT_LTC6102IDD#PBF LTC6103CMS8#PBF_FAN4010IL6X-F113_LT6100IDD#PBF_LT1217CN8#PBF_INA212CIDCKR_LMP8480ASQDGKRQ1 INA212CIRSWT_LMP8481AHQDGKRQ1_LT6108HDCB-1#TRMPBF_INA211CIRSWT_LT6108AHMS8-1#PBF_INA214CIRSWR LT1620CMS8#PBF_INA215CIDCKR_LTC6101HVBCS5#TRMPBF_LT6106HS5#PBF_NTE1609_NTE926_NTE955MC_NTE955S NTE955SM_NTE978_NTE978C_NTE978SM_AD8211YRJZ-R2_AD8213WHRMZ_AD8214ARMZ_AD8214ARMZ-R7_AD8219BRMZ AD8290ACPZ-R2_AD8290ACPZ-R7_AD22057RZ_AD8215YRZ_AD8210YRZ_AD22057RZ-RL_AD8210YRZ-REEL7_AD8215WYRZ AD8210WYRZ-R7_LT1999HMS8-50F#WPBF_LT1999HMS8-10F#WPBF_LTC6102HVIMS8#PBF_LTC6101AIMS8#PBF_LTC6102CMS8 1#PBF