

TDA7715

3 band car audio processor

Datasheet - production data

Features

- Input multiplexer
 - QD0 to QD3: quasi-differential stereo input
 - SE0 to SE4: stereo single-ended input
- Loudness
 - 2nd order frequency response
 - Programmable center frequency (400 Hz/800 Hz/2400 Hz)
 - 15 dB with 1 dB steps
 - Selectable high frequency boost
 - Selectable flat-mode (constant attenuation)
- Volume
 - +23 dB to -23 dB with 1 dB step resolution
 - Soft-step control with programmable blend
- times
- Bass
 - 2nd order frequency response
 - Programmable center frequency (60/70/80/100//110/120/130/150 Hz)
 - Q programmable 1.0/1.25/1.5/2.0
 - DC gain programmable
 - -15 to 15 dB range with 1 dB resolution
 - Soft-step control with programmable blend times
- Middle
 - 2nd order frequency response
 - Programmable center frequency (500 Hz/1 kHz/1.5 kHz/2 kHz)
 - Q programmable 1.0/2.0
 - -15 to 15 dB range with 1 dB resolution
 - Soft-step control with programmable blend times
- Treble
 - 2nd order frequency response
 - Center frequency programmable in 4 steps (10/12.5 /15/17.5 kHz)

- -15 to 15 dB range with 1 dB resolution
- Soft-step control with programmable blend times
- High pass filter
 - 2nd order frequency response
 - Programmable cut off frequency (50/60/80/100/120/150/180/220 Hz)
- Low pass filter
 - 2nd order low pass filter
 - Programmable cut off frequency
 - (50 Hz/60 Hz/80 Hz/100 Hz/120 Hz)
- Speaker
 - 6 independent soft-step speaker controls
 - +23 dB to -79 dB with 1 dB steps
 - Soft-step control with programmable blend times
- Output driver
 - Four dedicated outputs for an internal (onboard) power amplifier.
 - Six 3.55 VRMs line-driver outputs for an external (remote) power amplifier
- Mute functions
 - Direct mute
 - Main/Sub channel: digitally controlled softmute with 4 programmable mute-times
 - (0.5 ms/4 ms/8 ms/16 ms)
 - Speaker: digitally controlled soft-mute with 4 programmable mute-times (4 ms/8 ms/32 ms/64 ms)
- Spectrum analyzer
 - 7-band, fully integrated 2nd order bandpass filter with programmable filter quality for different visual behavior
 - Selectable In-gain 0/2/4/6dB
- AC coupling
 - Three AC-coupling input
 - One AC-coupling output
- Offset detection
 - Offset voltage detection circuit for on-board power amplifier failure diagnosis

Table 1. Device summary

Order code	Package	Packing
TDA7715	LQFP64	Tray

September 2013

DocID023988 Rev 3

This is information on a product in full production.

Contents

1	Desc	cription	and block circuit diagram	6
	1.1	Descrip	otion	6
	1.2	Block c	ircuit diagram	6
2	Pins	connec	tion and description	7
	2.1			
	2.2		escription	
	2.2	T INO GO		
3	Elec	trical sp	ecifications	10
	3.1	Therma	al data	10
	3.2	Absolu	te maximum ratings	10
	3.3		al characteristics	
4	Desc	rintion	of audio processor	18
-	4.1	-	•	
	4.1	4.1.1	ageSingle-ended stereo input (SE0, SE1, SE2, SE3, SE4)	
		4.1.1	Quasi-differential stereo Input (QD0, QD1, QD2, QD3)	
		4.1.2	Fast charge	
	4.2)	
	4.3		ess	
	4.5	4.3.1	Loudness attenuation	
		4.3.1	Peak frequency	
		4.3.3	High frequency boost	
		4.3.4	Flat mode	
	4.4		ute	
	4.5			
	4.0	4.5.1	Bass attenuation	
		4.5.2	Center frequency	
		4.5.3	Quality factors	
		4.5.4	DC Mode	
	4.6			
	-	4.6.1	Middle attenuation	
		4.6.2	Middle center frequency	

		4.6.3	Quality factors	. 25
	4.7	Treble		25
		4.7.1	Treble attenuation	. 25
		4.7.2	Center frequency	. 26
	4.8	High pa	ss filter	26
	4.9	Low pas	ss filter	27
	4.10	Soft-ste	р	27
	4.11	DC Offs	et Detector	28
	4.12	Spectru	m analyzer	29
	4.13	Output	stage	30
	4.14	Mixing		32
	4.15	Audio p	rocessor testing	32
	4.16	Applicat	ion note	33
5	l ² C bι	us spec	ification	34
	5.1	-	e protocol	
	5.2	I2C bus	electrical characteristics	34
		5.2.1	Receive mode	. 35
		5.2.2	Transmission mode	. 35
		5.2.3	Reset condition	. 35
	5.3	Data by	te specification	37
6	Packa	age info	rmation	56
7	Revis	ion hist	ory	57

List of tables

Table 1.	Device summary1
Table 2.	Pins description
Table 3.	Thermal data
Table 4.	Absolute maximum ratings 10
Table 5.	Electrical characteristics
Table 6.	I ² C bus electrical characteristics
Table 7.	Subaddress (receive mode)
Table 8.	Main / sub selector (0)
Table 9.	Mix selector / anti-alias / fast charge (1)
Table 10.	Volume main/sub/mix (2-4)
Table 11.	Soft-step (5)
Table 12.	Soft-mute I (6)
Table 13.	Soft-mute II / middle (7)
Table 14.	Loudness (8)
Table 15.	Treble filter (9)
Table 16.	Middle filter (10)
Table 17.	Bass filter (11)
Table 18.	Bass / low pass filter (12)
Table 19.	High pass filter (13)
Table 20.	Speaker0/1 source selector (14)
Table 21.	Output gain / speaker2 source selector (15)
Table 22.	Speaker attenuation (0L/0R/1L/1R/2L/2R) (16-21)
Table 23.	Auto-mix I (22)
Table 24.	Auto-mix II (23)
Table 25.	Auto-mix III (24)
Table 26.	DC-detector/speaker-limiter (25)
Table 27.	Spectrum analyzer (26)
Table 28.	Test I (27)
Table 29.	Test II (28)
Table 30.	Test III (29)
Table 31.	Document revision history

List of figures

Figure 1.	Block diagram
Figure 2.	Pins connection (top view)
Figure 3.	Input section signal flow
Figure 4.	Loudness attenuation @ fP = 400 Hz
Figure 5.	Loudness center frequencies @ attn. = 15 dB 20
Figure 6.	Loudness attenuation, fc = 2.4 kHz 20
Figure 7.	Soft-mute timing
Figure 8.	Bass control range; fC = 80 Hz, Q = 1.0
Figure 9.	Bass center frequencies; gain = 14 dB, Q = 1.022
Figure 10.	Bass filter quality factors; fC = 80 Hz, gain = 14 dB23
Figure 11.	Bass normal and DC mode @ gain = 14 dB, fc = 80 Hz23
Figure 12.	Middle control @ fc = 1 kHz, Q = 1
Figure 13.	Middle center frequency @ gain = 10 dB, Q = 1
Figure 14.	Middle quality factors @ gain = 10 dB, fc =1 kHz 25
Figure 15.	Treble control @ fc = 17.5 kHz
Figure 16.	Treble center frequencies @ gain = 14 dB 26
Figure 17.	High pass cut frequencies
Figure 18.	Subwoofer cut frequencies
Figure 19.	DC offset detection circuit (simplified)
Figure 20.	Spectrum analyzer block diagram
Figure 21.	Read cycle timing diagram
Figure 22.	Output-section signal flow
Figure 23.	Mixing block diagram
Figure 24.	Application schematic
Figure 25.	I ² C bus interface protocol
Figure 26.	I ² C bus data
Figure 27.	LFQP64 mechanical data and package dimensions56

1 Description and block circuit diagram

1.1 Description

The TDA7715 is a high performance signal processor specifically designed for car radio applications.

The device includes a high performance audio processor with fully integrated audio filters and new soft-step architecture.

The digital control allows programming in a wide range of filter characteristics.

1.2 Block circuit diagram

Figure 1. Block diagram

2 Pins connection and description

2.1 Pins connection

2.2 Pins description

Table 2. Pins description

N#	Pin name	Description	I/O
1	DCERR	DC offset detector output	0
2	WININ	DC offset detector input	I
3	NC	No connected	NC
4	GNDA3	Analog Ground	S
5	CREF	Reference capacitor	0
6	GNDA1	Analog Ground	S
7	GNDD	Digital Ground	S
8	NC	No connected	NC

٦	Table	2.	Pins	description	(continued)

N#	Pin name	Description	I/O
9	VCC1	Supply	S
10	NC	No connected	NC
11	SE0R	Single-end input right	I
12	SEOL	Single-end input left	I
13	SE1R	Single-end input right	I
14	SE1L	Single-end input left	I
15	SE2R	Single-end input right	I
16	SE2L	Single-end input left	I
17	SE3R	Single-end input right	I
18	SE3L	Single-end input left	I
19	SE4R	Single-end input right	I
20	SE4L	Single-end input left	I
21	QD0R	Quasi-differential stereo inputs right	I
22	QD0G	Quasi-differential stereo inputs common	I
23	QD0L	Quasi-differential stereo inputs left	I
24	QD1R	Quasi-differential stereo inputs right	I
25	QD1G	Quasi-differential stereo inputs common	I
26	QD1L	Quasi-differential stereo inputs left	I
27	QD2R/ACIN2R	Quasi-differential stereo inputs right or ac-coupling input	I
28	QD2G/ACIN2L	Quasi-differential stereo inputs common or ac-coupling input	I
29	QD2L/ACIN1R	Quasi-differential stereo inputs left or ac-coupling input	I
30	QD3R/ACIN1L	Quasi-differential stereo inputs right or ac-coupling input	I
31	QD3G/ACIN0R	Quasi-differential stereo inputs common or ac-coupling input	I
32	QD3L/ACIN0L	Quasi-differential stereo inputs left or ac-coupling input	I
33	NC	No connected	NC
34	ACOUTR	AC coupling output, right channel	0
35	ACOUTL	AC coupling output, left channel	0
36	SUBL	Sub channel output left	0
37	SUBR	Sub channel output right	0
38	SARST	Spectrum analyzer reset	I
39	SAOUT	Spectrum analyzer analog voltage output	0
40	SACLK	Spectrum analyzer clock input	
41	SCL	I ² C bus clock	I
42	SDA	I ² C bus data	I/O
43	SMUTEMAIN	External mute pin for main channel	I

N#	Pin name	Description	I/O
44	SMUTESUB	External mute pin for sub channel	I
45	SMUTE0	External mute pin for speaker, signal path 0	I
46	SMUTE1	External mute pin for speaker, signal path 1	I
47	SMUTE2	External mute pin for speaker, signal path 2	I
48	DCSEL	Output DC level select	I
49	NC	No connected	NC
50	LD2R	Line driver output right	0
51	LD2L	Line driver output left	0
52	LD1R	Line driver output right	0
53	LD1L	Line driver output left	0
54	LD0R	Line driver output right	0
55	LDOL	Line driver output left	0
56	GNDA2	Analog Ground	S
57	VCC2	Supply	S
58	PA1R	Out-section rear output, right channel	0
59	PA1L	Out-section rear output, left channel	0
60	PA0R	Out-section front output, right channel	0
61	PA0L	Out-section front output, left channel	0
62	NC	No connected	NC
63	WINTCR	DC offset detector filter output right channel	0
64	WINTCL	DC offset detector filter output left channel	0

Table 2. Pins description (continued)

3 Electrical specifications

3.1 Thermal data

	Table 3. Thermal data		
Symbol	Description	Value	Unit
R _{th j-amb}	Thermal resistance junction-to-ambient	50	°C/W

3.2 Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Operating supply voltage	13	V
V _{in_max}	Maximum voltage for signal input pins	7	V
T _{amb}	Operating ambient temperature	-40 to 85	°C
T _{stg}	Storage temperature range	-55 to 150	°C

3.3 Electrical characteristics

 V_{CC} = 11.5 V; T_{amb} = 25 °C; R_L = 10 k Ω ; all gains = 0 dB; f = 1 kHz; Input = SE1; Output = PAout; unless otherwise specified.

			-	r		1
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Supply						
V _{cc}	Supply voltage	-	7.5	11.5	12.5	V
ls	Supply current	-	48	55	62	mA
Input sele	ctor					
R _{IN}	Input resistance	All single ended inputs	70	100	130	kΩ
V _{CL}	Clipping level	Input Gain = 0 dB, THD = 1%	-	2	-	V _{RMS}
S _{IN}	Input separation	-	80	100	-	dB
Differentia	I stereo inputs					
R _{in}	Input resistance	Differential	70	100	130	kΩ
CMDD	Common mode rejection ratio	V _{CM} =1 V _{RMS} @ 1 kHz	46	60	-	dB
CMRR	for main source	V _{CM} =1 V _{RMS} @ 10 kHz	46	60	-	dB
Loudness	control					
A _{MAX}	Max attenuation ⁽¹⁾	-	14	15	16	dB

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
A _{STEP}	Step resolution ⁽¹⁾	-	0.5	1	1.5	dB
		f _{P1}	-	400	-	Hz
f _{Peak}	Peak frequency ⁽²⁾	f _{P2}	-	800	-	Hz
		f _{P3}	-	2400	-	Hz
Volume co	ontrol			•		
G _{MAX}	Max gain ⁽¹⁾	-	21	23	25	dB
A _{MAX}	Max attenuation ⁽¹⁾	-	-26	-23	-20	dB
A _{STEP}	Step resolution ⁽¹⁾	-	0.5	1	1.5	dB
E _A	Attenuation set error	G = -23 to +23 dB	-1.5	0	1.5	dB
Ε _T	Tracking error	Gain difference of left/right	-	-	0.8	dB
M	DC stops	Adjacent attenuation steps	-	0.1	3	mV
V _{DC}	DC steps	Adjacent gain steps	-	0.5	5	mV
Soft-step	·					
Ŧ	Soft step time	T ₁	5	7.5	12.5	ms
T _{SS}		T ₂	10	15	25	ms
Soft-mute					L	L
A _{MUTE}	Mute attenuation	-	80	100	-	dB
	Delay time (main & sub	T ₁	0.4	0.5	0.6	ms
т		T ₂	3	4	5	ms
T _{D1}	channel)	T ₃	6	8	10	ms
		T ₄	14	16	18	ms
		T ₁	3	4	5	ms
т	Dolov time (apockar)	T ₂	6	8	10	ms
T _{D2}	Delay time (speaker)	T ₃	29	32	35	ms
		T ₄	60	64	68	ms
V_{TH_Low}	Low threshold for MUTE pin $^{(3)}$	-	-	-	0.8	V
V_{TH_High}	High threshold for MUTE pin $^{(3)}$	-	2.4	-	-	V
RPU	Internal pull-up resistor for MUTE Pin	-	25	45	65	kΩ
VPU	Internal pull-up Voltage for MUTE Pin	-	3.1	3.3	3.5	V

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Bass cont	rol					•
		f _{C0}	-	60	-	Hz
		f _{C1}	-	70	-	Hz
		f _{C2}	-	80	-	Hz
Fc	Center frequency ⁽²⁾	f _{C3}	-	100	-	Hz
FC	Center frequency (f _{C4}	-	110	-	Hz
		f _{C5}	-	120	-	Hz
		f _{C6}	-	130	-	Hz
		f _{C7}	-	150	-	Hz
		Q ₁	-	1	-	-
0	Quality factor ⁽²⁾	Q ₂	-	1.25	-	-
Q _{BASS}		Q ₃	-	1.5	-	-
		Q ₄	-	2	-	-
C _{RANGE}	Control range (1)	-	±14	±15	±16	dB
A _{STEP}	Step resolution ⁽¹⁾	-	0.5	1	1.5	dB
	Bass DC gain ⁽¹⁾	DC = off	-1	0	+1	dB
DC _{GAIN}		DC = on, Gain= 14 dB	3.5	4.4	5.5	dB
Middle co	ntrol					
C _{RANGE}	Control range (1)	-	±14	±15	±16	dB
A _{STEP}	Step resolution ⁽¹⁾	-	0.5	1	1.5	dB
		f _{C1}	-	500	-	Hz
Fc	Center frequency ⁽²⁾	f _{C2}	-	1	-	kHz
FC	Center frequency (f _{C3}	-	1.5	-	kHz
		f _{C4}	-	2	-	kHz
0	Quality factor ⁽²⁾	Q ₁	-	1	-	-
Q _{Middle}		Q ₂	-	2	-	-
Treble cor	ntrol					
C _{RANGE}	Control Range (1)	-	±14	±15	±16	dB
A _{STEP}	Step Resolution (1)	-	0.5	1	1.5	dB
		f _{C1}	-	10	-	kHz
Г-	Center frequency ⁽²⁾	f _{C2}	-	12.5	-	kHz
Fc		f _{C3}	-	15	-	kHz
		f _{C4}	-	17.5	-	kHz

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
AC coupli	ng					
R _{IN}	Input resistance	AC inputs	70	100	130	kΩ
V _{CL}	Clipping level	flat, THD = 1%	-	2	-	V _{RMS}
R _{OUT}	Output impedance	AC outputs	-	30	100	Ω
Speaker v	olume					
G _{MAX}	Max gain ⁽¹⁾	-	22	23	24	dB
A _{MAX}	Max attenuation ⁽¹⁾	-	-85	-79	-73	dB
A _{STEP}	Step resolution (1)	-	0.5	1	1.5	dB
A _{MUTE}	Mute attenuation	-	80	90	-	dB
	Attenuation act arran	G = -20 to +15 dB	-1	-	1	dB
EE	Attenuation set error	G = -20 to -79 dB	-4	-	4	dB
M	DC stops	Adjacent attenuation steps	-	0.1	3	mV
V _{DC}	DC steps	Adjacent gain steps	-	0.5	7	mV
Highpass						
	Highpass corner frequency ⁽²⁾	f _{C0}	-	50	-	Hz
		f _{C1}	-	60	-	Hz
		f _{C2}	-	80	-	Hz
_		f _{C3}	-	100	-	Hz
F _{HP}		f _{C4}	-	120	-	Hz
		f _{C5}	-	150	-	Hz
		f _{C6}	-	180	-	Hz
		f _{C7}	-	220	-	Hz
Lowpass						1
		f _{C0}	-	50	-	Hz
		f _{C1}	-	60	-	Hz
F_{LP}	Lowpass corner frequency (2)	f _{C2}	-	80	-	Hz
		f _{C3}	-	100	-	Hz
		f _{C4}	-	120	-	Hz
Audio out	puts		•			•
	Clipping level	THD = 0.3%; V _{CC} = 8.5 V PA OUTPUT	-	2	-	V _{RMS}
V_{CL}		THD = 0.3%; V _{CC} = 8.5 V LD OUTPUT; Low gain	-	2.5	-	V _{RMS}
		THD = 0.3%; V _{CC} = 11.5 V LD OUTPUT; High gain	-	3.55	-	V _{RMS}

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
R _{OUT}	Output impedance	-	-	30	100	Ω
R _L	Output load resistance	-	2	-	-	kΩ
CL	Output load capacitor	-			10	nF
		PA OUTPUT	3.8	4.0	4.2	V
V _{DC}	Output DC level	LD OUTPUT; Low gain	3.8	4.0	4.2	V
		LD OUTPUT; High gain	5.5	5.75	5.9	V
		PA OUTPUT	2	3	4	dB
G _{OUT}	Output gain	LD OUTPUT; Low gain	4	5	6	dB
		LD OUTPUT; High gain	7	8	9	dB
V_{TH_Low}	Low threshold for DESEL pin (3)	-	-	-	0.8	V
V _{TH_High}	High threshold for DCSEL pin (3)	-	2.4	-		V
R _{PU}	Internal pull-up resistor for DCSEL pin	-	32	50	68	kΩ
V _{PU}	Internal pull-up voltage for DCSEL Pin	-	3.1	3.3	3.5	V
	Speaker limiter threshold	PA OUTPUT	1	1.5	2	Vpp
V _{th}			2.5	3	3.5	Vpp
			3.5	4	4.5	Vpp
Auto mix o	detection					
		V ₁	1	5	12	mV
		V ₂	5	10	20	mV
		V ₃	5	15	30	mV
		V ₄	10	20	40	mV
V _{th}	Auto mix detect threshold	V ₅	15	25	45	mV
		V ₆	20	50	80	mV
		V ₇	50	75	120	mV
		V ₈	80	100	150	mV
		T ₁	0.4	0.5	0.6	ms
		T ₂	0.8	1	1.2	ms
Ŧ	Attack time	T ₃	1.6	2	2.4	ms
T _{attach}	Attach time	T ₄	3.5	4	4.5	ms
		T ₅	7	8	9	ms
		T ₆	14	16	18	ms

Table 5. Electrical characteristics (continued)								
Symbol	Parameter		ndition	Min.	Тур.	Max.	Unit	
		T ₁		100	125	150	ms	
		T ₂		200	250	300	ms	
T _{release}	Release time	Т ₃		400	500	600	ms	
Telease		T ₄		800	1000	1200	ms	
		Т ₅		1500	2000	2500	ms	
		т ₆		3000	4000	5000	ms	
A _{MAX}	Attenuation	Auto mix progration	ammable	17	20	23	dB	
A _{STEP}	Step resolution	-		0.5	1	1.5	dB	
G _{mix}	Mix gain	-		5	6	7	dB	
DC offset of	detection							
		V ₁		±5	±30	±60	mV	
	_ ., .	V ₂		±30	±60	±90	mV	
V _{th}	Zero comp. window size	V ₃		±60	±90	±120	mV	
		V ₄		±90	±120	±150	mV	
	Max rejected spike length	-		4	11	25	μs	
T _{sp}		-		8	22	38	μs	
		-		10	33	55	μs	
I _{CHDCErr}	DCErr charge current	-		3	5	6	μA	
IDISDCErr	DCErr discharge current	-		3.5	5	7.5	mA	
V _{OutH}	DCErr high voltage	-		3.1	3.3	3.6	V	
V _{OutH}	DCErr low voltage	-		-	100	500	mV	
V_{TH_Low}	Low threshold for WinIn pin ⁽³⁾	-		-	-	0.7	V	
V _{TH_High}	High threshold for WinIn pin ⁽³⁾	-		2.8	-	-	V	
R _{PU}	Internal pull-up resistor for WinIn pin	-		32	50	68	kΩ	
V _{PU}	Internal pull-up voltage for WinIn pin	-		3.1	3.3	3.5	V	
Spectrum	analyzer							
		V _i = SE,	V _i = 1 Vrms	-	1.6	-	V	
V _{SAout}	Output voltage range ⁽⁴⁾	$v_i = SE$, In-gain = 0 dB,	V _i = AC-short	-	50	200	mV	
		$R_{LOAD} = 1 M\Omega$	$V_i = V_i (max)$	3.1	3.3	3.5	V	
V _{thL}	Low threshold voltage	for SACLK pin for SARST pin		-	-	1.4 1.4	V	
V _{thH}	High threshold voltage	for SACLK pin for SACLK pin for SARST pin		1.6 1.6	-	-	V	

 Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test co	ondition	Min.	Тур.	Max.	Unit
V _{i_max}	Maximum input voltage	for SACLK and	I SARST pins	-	5.5	-	V
C _{RANGE}	In-gain control range	-		5.5	6	6.5	dB
A _{STEP}	In-gain step resolution	-		1.5	2	2.5	dB
f _{C1}	Center frequency, band 1 (2)	-		-	62.5	-	Hz
f _{C2}	Center frequency, band 2 (2)	-		-	125	-	Hz
f _{C3}	Center frequency, band 3 (2)	-		-	250	-	Hz
f _{C4}	Center frequency, band 4 (2)	-		-	500	-	Hz
f _{C5}	Center frequency, band 5 ⁽²⁾	-		-	1	-	kHz
f _{C6}	Center frequency, band 6 ⁽²⁾	-		-	2	-	kHz
f _{C7}	Center frequency, band 7 ⁽²⁾	-		-	4	-	kHz
f _{C8}	Center frequency, band 8 ⁽²⁾	-		-	8	-	kHz
f _{C9}	Center frequency, band 9 ⁽²⁾	-		-	16	-	kHz
0		Q ₁		-	1.75	-	-
Q _f	Filter quality factor ⁽¹⁾	Q ₂		-	3.5	-	-
T _{SAclk}	Read-out clock frequency ⁽⁴⁾	-		1		100	kHz
T _{SAdel}	Analog output delay time ⁽⁴⁾	CLoad at SAou	ut-pin = 100 pF	-	1	2	μs
T _{repeat}	Read-out cycle repeat time (4)	Recommended	d refresh rate	50	-	-	ms
T _{intres}	Internal reset time (4)	Auto-reset mod	de enabled	4	5	6	ms
T _{SAres}	Reset pulse time ⁽⁴⁾	Auto-reset mod	de disabled	500	-	-	ns
T _{settle}	Band pass filter settling time ⁽⁴⁾	-		30	-	-	ms
General						•	•
		BW = 20 Hz to 20 kHz;	PA OUTPUT	-	14	20	μV
		A-Weighted;	LD OUTPUT; Low gain	-	15	20	μV
e _{NO}	Output noise	all gain = 0dB	LD OUTPUT; High gain	-	21	30	μV
			PA OUTPUT	-	12	20	μV
		BW = 20 Hz to 20 kHz; A-Weighted,	LD OUTPUT; Low gain	-	12	20	μV
		A-Weighted, Output muted	LD OUTPUT; High gain	-	16	30	μV

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test condition		Min.	Тур.	Max.	Unit		
S/N		A-weighted; all gain = 0dB	PA OUTPUT; Vo = 2 V _{RMS}	100	104	-	dB		
	Signal to noise ratio		LD OUTPUT; Low gain; Vo = 2.5V _{RMS}	100	104	-	dB		
			LD OUTPUT; Vo =3.55V _{RMS}	100	104	-	dB		
	Distortion	VIN=1V _{RMS;} all gain = 0dB	PA OUTPUT	-	0.01	0.1	%		
D			LD OUTPUT; Low gain	-	0.01	0.1	%		
			LD OUTPUT; High gain	-	0.01	0.1	%		
S _C	Channel Separation left/right	-		75	90	-	dB		

Table 5. Electrical characteristics (continued)

1. Measure performed in DC.

2. Value guaranteed by measuring correlated parameter.

3. Verified only in characterization.

4. Guaranteed by design.

4 Description of audio processor

4.1 Input stage

Four quasi-differential stereo input and five single-ended inputs are available. The inputsection of the TDA7715 incorporates three independent stereo signal paths, where each of them can be connected to a variety of inputs. For simplicity only the left inputs are shown.

Figure 3. Input section signal flow

4.1.1 Single-ended stereo input (SE0, SE1, SE2, SE3, SE4)

The input-impedance at each input is 100 $k\Omega$ and the attenuation is fixed to -3 dB for incoming signals.

4.1.2 Quasi-differential stereo Input (QD0, QD1, QD2, QD3)

The QD input is implemented as a buffered quasi-differential stereo stage with 100 k Ω input-impedance at each input. There is -3 dB attenuation at QD input stage.

4.1.3 Fast charge

Each differential input pin features a "fast-charge" switch allowing to quickly charge any external large coupling capacitors upon power-on of the device. When the device is powered-on, the "fast-charge" switches are automatically turned on, for normal operation these switches need to be released by any programming of byte_0.

4.2 Volume

A ±3 dB input gain is selectable in volume stage. When the volume-level is changed audible clicks could appear at the output. The root cause of those clicks could either be a DC-Offset before the volume-stage or a sudden change in the envelope of the audio signal. With the soft-step feature both kind of clicks could be reduced to a minimum and are no longer audible. The blend-time from one step to the next is programmable and can be set 7.5 ms or 15 ms. The soft-step control is described in detail in Section 4.10.

4.3 Loudness

There are four parameters programmable in the loudness stage.

4.3.1 Loudness attenuation

Figure 4 shows the attenuation as a function of frequency at $f_P = 400 \text{ Hz}$

4.3.2 Peak frequency

Figure 5 shows the four possible peak-frequencies at 400, 800 and 2400 Hz

4.3.3 High frequency boost

Figure 6 shows the different loudness shapes in low & high frequency boost.

Figure 6. Loudness attenuation, $f_c = 2.4$ kHz

4.3.4 Flat mode

In flat mode the loudness stage works as a 0 dB to -15 dB attenuator.

4.4 Soft-mute

The digitally controlled soft-mute stage allows muting/de-muting the signal with an I^2C bus programmable slope. The mute process can be activated either by the soft-mute pin or by the I^2C -bus. This slope is realized in a special S-shaped curve to mute slowly in the critical regions (see *Figure 7*).

For timing purposes the soft-mute bit of the I^2C bus output register is set to 1 from the start of muting until the end of de-muting.

Figure 7. Soft-mute timing

Note: Please note that a started Mute-action is always terminated and could not be interrupted by a change of the mute –signal.

In this device an auto-mute function is available to reduce the complexity of programming. When auto-mute is on, all setting related to filter will trigger an auto-mute for Smute0, Smute1 and Smute2. The auto-mute procedure is as follows:

- a) Filter setting is changed by I²C, but the changed setting is blocked by auto-mute
- b) Smute0/1/2 soft-mute is triggered
- c) Filter setting is changed after soft-mute is finished
- d) Smute0/1/2 is de-muted

The filter setting which will activate auto-mute is as follows:

- a) Loudness: center frequency, high boost
- b) Treble: center frequency
- c) Middle: center frequency, quality factor
- d) Bass: center frequency, quality factor, DC mode
- e) LPF: corner frequency, phase inversion
- f) HPF: corner frequency, phase inversion

4.5 Bass

4.5.1 Bass attenuation

Figure 8 shows the control range in the frequency domain at 80 Hz center frequency.

4.5.2 Center frequency

Figure 9 shows all the selectable center frequencies at a gain of 14 dB.

Figure 9. Bass center frequencies; gain = 14 dB, Q = 1.0

4.5.3 Quality factors

Figure 10 shows the four selectable filter quality factors at a gain of 14 dB.

Figure 10. Bass filter quality factors; $f_c = 80$ Hz, gain = 14 dB.

4.5.4 DC Mode

Figure 11 shows the effect of the DC-mode at a filter gain of 15 dB. In this mode the DC-gain is increased by 4.4 dB. In addition the programmed center frequencies and quality factors are decreased by 25%, which realizes alternative frequency responses.

Figure 11. Bass normal and DC mode @ gain = 14 dB, fc = 80 Hz

Note: The center frequency, Q and DC-mode can be independently set.

4.6 Middle

There are three parameters programmable in the mid-filter stage.

4.6.1 Middle attenuation

Figure 12 shows the attenuation as a function of frequency at a center frequency of 1 kHz.

4.6.2 Middle center frequency

Figure 13 shows the four possible center frequencies 500 Hz, 1 kHz, 1.5 kHz and 2.5 kHz.

Figure 13. Middle center frequency @ gain = 10 dB, Q = 1

4.6.3 Quality factors

Figure 14 shows the two possible quality factors 1 and 2

Figure 14. Middle quality factors @ gain = 10 dB, fc =1 kHz

4.7 Treble

There are two parameters programmable in the treble stage.

4.7.1 Treble attenuation

Figure 15 shows the attenuation as a function of frequency at a center frequency of 17.5 kHz.

Figure 15. Treble control @ fc = 17.5 kHz

4.7.2 Center frequency

Figure 16 shows the four possible center frequencies 10k, 12.5k, 15k and 17.5 kHz.

Figure 16. Treble center frequencies @ gain = 14 dB

4.8 High pass filter

The high pass filter has 2 order filter characteristics with programmable cut-off frequency (50/60/80/100/120/150/180/220 Hz)

Figure 17. High pass cut frequencies

4.9 Low pass filter

The subwoofer lowpass filter has Butterworth characteristics with programmable cut-off frequency (50/60/80/100/120 Hz). The output phase can be selected between 0 deg and 180 deg. The input of subwoofer takes signal from bass filter output or output of input mux.

4.10 Soft-step

In this device, the soft-step function is available for volume, speaker, loudness, treble, middle and bass block. With the soft-step function, the audible noise of DC offset or the sudden change of signal can be avoided when adjusting the gain setting of the block.

For each block, the soft-step function is controlled by soft-step on/off control bit in the control table. The soft-step transient time selection (7.5 ms or 15 ms) is common for all blocks and it is controlled by soft-step time control bit. The soft-step operation of all blocks has a common centralized control. In this case, a new soft-step operation will not be started before the completion of previous soft-step.

There are two different modes to activate the soft-step operation. The soft-step operation can be started right after l^2C data sending, or the soft-step can be activated in parallel after data sending of several different blocks. The two modes are controlled by the 'act bit' (it is normally bit7 of the byte.) of each byte. When act bit is '0', which means action, the soft-step is activated right after the date byte is sent. When the act bit is '1', which means wait, the block goes to wait for soft-step status. In this case, the block will wait for some other block to activate the operation. The soft-step operation of all blocks in wait status will be done together with the block which activates the soft-step. With this mode, all specific blocks can do the soft-step in parallel. This avoids waiting when the soft-step is operated one by one. Please note that if a block is set to 'gain1' with act bit = 1, later this block is set to 'gain2' with act bit = 0, in this case the block will do a soft-step from the currently set gain to 'gain2' but not from the currently set gain to 'gain1' then to 'gain2'.

Chip Addr	Sub Addr	0xxxxxx]			
			← Soft-ste	o start here		
Chip Addr	Sub Addr	1xxxxxxx	1xxxxxxx		0xxxxxxx]
		1	1	1	1	l← Soft-step

start here for all

4.11 DC Offset Detector

Using the DC offset detection circuit (*Figure 19*) an offset voltage difference between the audio power amplifier and the TDA7715's Front and Rear outputs can be detected, preventing serious damage to the loudspeakers. The circuit compares whether the signal crosses the zero level at the loudspeaker output of the audio power amplifier at the same time as at the output of the TDA7715. The output of the zero-window-comparator of the power amplifier must be connected with the WinIn-input of the TDA7715. The WinIn-input has an 50 k Ω internal pull-up resistor connected to 3.3 V. It is recommended to drive this pin with open-collector outputs or equivalent.

To compensate for errors at low frequencies the WinTCL/R-pin is implemented, with external capacitors introducing the same delay = $15k\Omega^*$ Cext as the one caused by the AC-coupling between the TDA7715 and the input of the power amplifier. For the zero window comparators, the time constant for spike rejection as well as the threshold are programmable.

See Electrical characteristics on page 10.

A low-active DC-offset error signal appears at the DCErr output if the next conditions are both true:

- a) Front and rear outputs are inside zero crossing windows.
- b) The Input voltage Vwinin is logic low whenever at least one output of the power amplifier is outside the zero crossing windows.

After power-on, the external attached capacitor is rapidly charged (fast-charge) to overcome a false indication. For normal operation these switches need to be released by any programming of byte_0. After that, the "fast-charge" switches can be turned on/off by setting "fast charge = on/off".

Figure 19. DC offset detection circuit (simplified)

4.12 Spectrum analyzer

A fully integrated nine-band spectrum analyzer is present in the TDA7715 (*Figure 20*). The spectrum analyzer consists of nine band pass filters followed by rectifiers with sample capacitors that store the maximum peak signal level for each band since the last read cycle.

This peak signal level can be read by a microprocessor at the SAout-pin. To allow easy interfacing to an analog input-port of a microprocessor, the output voltage at this pin is referred to device ground. Since the output voltage follows the peak level linearly, the microprocessor should take care of a logarithmic conversion (e.g. logarithmic look-up table).

The spectrum analyzer's input signal is either the mono-sum of main channel output or speaker channel 0. In order to have some influence on the visual behavior in a given application the filter quality for all band-pass filters may be programmed for two different qualities, with the higher filter quality creating a faster, more differentiating optical response. If the spectrum analyzer is disabled, the SAclk-pin and SArst-pin should be tied to ground.

Figure 20. Spectrum analyzer block diagram

The microprocessor starts a read cycle with a negative going clock edge at the SAclk input. On the following positive clock edges, the stored peak signal level of the band pass filters is subsequently switched to SAout. Each analog output value is valid after the time T_{SAdel} .

A reset is generated whenever SAclk remains high for the time T_{intres} . Note that a proper reset requires the clock signal SAclk to be held at high potential and that the reset is not repetitive. Once a reset was triggered, a new read-out cycle should not be initiated before the time T_{repeat} has passed. This allows sufficient settling of the filters. *Figure 21* illustrates the read cycle timing of the spectrum analyzer.

Figure 21. Read cycle timing diagram

4.13 Output stage

The output-section (*Figure 22*) incorporates three independent stereo signal paths, where each one can be connected to three AC-coupled, single-ended inputs and to some dedicated signals originating from the input-section and/or main-signal-path. The input-impedance at each AC-coupled input is 100 k Ω and the attenuation is fixed to -3 dB for incoming signals.

Signal path 0 and 1 (front and rear) may optionally enter high-pass filters whereas signal path 2(other) can be low-pass filtered for subwoofer applications. Anti-radiation filters are integrated for all signal paths. Soft-mute stages and a soft-step volume, that offer fast and click-less muting and/or volume changing follow all three filters.

Five stereo pairs of output buffers finally complete the output-section: Signal-path 2 exclusively feeds a line driver output that is capable of $3.55 V_{RMS}$ output level as required by external (remote) power amplifiers. The signal-paths 0 & 1 feature both, a line driver output

and a dedicated internal (on board) power amplifier output with 3 dB fixed gain. To maximize the line-driver output swing, when the power supply option ($V_{CC} = 11.5$ V) is not needed or available, the line-driver output stages may be programmed for lower gain, still delivering 2.5 V_{RMS} ($V_{CC} = 8.5$ V).

The output gain of line-driver is configurable to fit different applications. A dedicated pin (DCSEL) is used to set the desired configuration during power-on of the Device, thus avoiding the DC voltage step of the speaker output which would occur should the configuration be done run-time. The configuration is made by connecting this pin to ground (AC Gain = 5 dB, DC level = 4 V) or leave it open (AC Gain = 8 dB, DC level = 5.75 V). The output gain can anyway be changed after power-on by DCSEL pin (high or low) with 'pin influence for output DC level select = PIN', or by I^2C bus (Output DC level) with 'pin influence for output DC level select = I^2C' .

A speaker-limiter is integrated to limit the signal level of output driver which feeds the power amplifier (PA0L, PA0R, PA1L and PA1R). The speaker-limiter-threshold can be set as 1.5 Vpp, 3 Vpp, 4 Vpp or turned-off.

Figure 22. Output-section signal flow

4.14 Mixing

In this device, a very flexible mixing function (*Figure 23*) is available to meet all kind of applications. The mixing input is selected by a mixing-multiplexer which is described in *Section 4.1*. After mixing multiplexer and mixing volume, the mixing signal is mixed with speaker0 or speaker1 volume output. The following 0/6 dB mixing gain offers 2 kind of mixing option, -6 dB/-6 dB mixing or 0 dB/0 dB mixing.

An auto-mix-detector is available to detect the mixing signal level and do the mixing and unmixing automatically. The auto-mix procedure is different for speaker0 and speaker1.

The speaker0 auto-mix working procedure is as follows:

- a) Auto-mix-detector detects if the mixing signal amplitude is higher than 'auto-mixdetect-threshold' for 'auto-mix-attach-time'
- b) If a) is positive, speaker0 volume will be attenuated 'auto-mix-programmableattenuation'
- c) Mixing is activated
- d) Auto-mix-detector detects if the mixing signal amplitude is lower than 'auto-mix-detect-threshold' for 'auto-mix-release-time'
- e) If d) is positive, speaker0 volume will return to the old setting
- f) Un-mixing is activated

The speaker1 auto-mix working procedure is as follows:

- a) Auto-mix-detector detects if the mixing signal amplitude is higher than 'auto-mixdetect-threshold' for 'auto-mix-attach-time'
- b) If a) is positive, Mixing is activated
- c) Auto-mix-detector detects if the mixing signal amplitude is lower than 'auto-mixdetect-threshold' for 'auto-mix-release-time'
- d) If c) is positive, Un-mixing is activated

Figure 23. Mixing block diagram

4.15 Audio processor testing

In the test mode, which can be activated by setting bit D7 of the I^2C subaddress byte and bit D0 of the TEST I byte, several internal signals are available at SARST pin.

External clock can be applied to SMUTEMAIN pin by setting bit D2 of the TEST II byte.

4.16 Application note

Figure 24. Application schematic

Figure 24 shows a proposal for a typical application. However, the figure only represents one possible interconnection scheme with other devices (The shaded blocks could represent a complex digital sound reproducing/processing system). All reported capacitor values are indicative, their actual value depending on girdling impedances of the real application. This is especially true for the capacitors located at the WinTC-pins as can be read in *Section 4.11*.

Note:

In case the DC-detector function is not assessed in the application it is recommended to short both the WinTC-pins 63 and 64 to device-ground.

5 I²C bus specification

5.1 Interface protocol

The interface protocol comprises:

- a start condition (S)
- a chip address byte (the LSB determines read/write transmission)
- a subaddress byte
- a sequence of data (N-bytes + acknowledge)
- a stop condition (P)
- the max. clock speed is 400kbits/s
- 3.3 V logic compatible

Figure 25. I²C bus interface protocol

S = Start

ACK = Acknowledge

5.2 I²C bus electrical characteristics

Table 6. I²C bus electrical characteristics

Symbol	Parameter	Min	Мах	Unit
f _{SCL}	SCL clock frequency	-	400	kHz
V _{IH}	High level input voltage	2.4	-	V
V _{IL}	Low level input voltage	-	0.8	V
t _{HD,STA}	Hold time for START	0.6	-	μs
t _{SU,STO}	Setup time for STOP	0.6	-	μs
t _{LOW}	Low period for SCL clock	1.3	-	μs
t _{HIGH}	High period for SCL clock	0.6	-	μs
t _F	Fall time for SCL/SDA	-	300	ns
t _R	Rise time for SCL/SDA	-	300	ns
t _{HD,DAT}	t _{HD,DAT} Data hold time		-	ns
t _{SU,DAT}	Data setup time	100	-	ns

Figure 26. I²C bus data

5.2.1 Receive mode

S = Start

 $R/W = "0" \rightarrow Receive mode (Chip can be programmed by \mu P)$

"1" -> Transmission mode (Data could be received by μP)

ACK = Acknowledge

P = Stop

TS = Testing mode

AI = Auto increment

5.2.2 Transmission mode

S 1 0 0 0 1 0 R/W ACK X BZ MT SMM SMS SM2 SM1 SM0 ACK P

BZ = Soft-step busy ('0' = Busy)
AMT = Auto Mix Detection ('1' = Auto-Mix Detected)
SMM = Soft-mute activated for main channel ('1' = Soft-muted)
SMS = Soft-mute activated for sub channel ('1' = Soft-muted)
SM2 = Soft-mute activated for speaker2 ('1' = Soft-muted)

SM1 = Soft-mute activated for speaker1 ('1' = Soft-muted)

SM0 = Soft-mute activated for speaker0 ('1' = Soft-muted)

X = Not used

The transmitted data is automatically updated after each ACK. Transmission can be repeated without new chip address.

5.2.3 Reset condition

A power-on-reset is invoked if the supply voltage is below than 3.5 V. After that the registers are initialized to the default data written in following tables.

Table 7. Subaddress (received) MSB LSB									
12	11	10	A4	A3	A2	A1	A0	Function	
								Testing mode	
0	-	-	-	-	-	-	-	Off	
1								On	
-	х	-	-	-	-	-	-	Not used	
		_						Auto increment mode	
-	-	0	-	-	-	-	-	Off	
		1	0	0	0	0	0	On Main / Sub selector	
-	-	-	0	0	0	0	1	Mix selector / Anti-alias	
-	-	-	0	0	0	1	0	Volume main	
-		-		0	0	1		Volume main	
-	-		0	0	1	0	1 0	Volume Mix	
-	-	-	0						
-	-	-	0	0	1	0	1	Soft-step	
-	-	-	0	0	1	1	0	Soft-mute I	
-	-	-	0	0	1	1	1	Soft-mute II / Middle	
-	-	-	0	1	0	0	0	Loudness	
-	-	-	0	1	0	0	1	Treble filter	
-	-	-	0	1	0	1	0	Middle filter	
-	-	-	0	1	0	1	1	Bass filter	
-	-	-	0	1	1	0	0	Bass / Low pass filter	
-	-	-	0	1	1	0	1	High pass filter	
-	-	-	0	1	1	1	0	Speaker0/1 source selector	
-	-	-	0	1	1	1	1	Output gain / Speaker2 source selector / Middle	
-	-	-	1	0	0	0	0	Speaker0L attenuation	
-	-	-	1	0	0	0	1	Speaker0R attenuation	
-	-	-	1	0	0	1	0	Speaker1L attenuation	
-	-	-	1	0	0	1	1	Speaker1R attenuation	
-	-	-	1	0	1	0	0	Speaker2L attenuation	
-	-	-	1	0	1	0	1	Speaker2R attenuation	
-	-	-	1	0	1	1	0	Auto-mix I	
-	-	-	1	0	1	1	1	Auto-mix II	
-	-	-	1	1	0	0	0	Auto-mix III	
-	-	-	1	1	0	0	1	DC-detector / Speaker-limiter	
-	-	-	1	1	0	1	0	Spectrum analyzer	
-	-	-	1	1	0	1	1		
-	-	-	1	1	1	0	0	Test II	
-	-	-	1	1	1	0	1	Test III	

Table 7. Subaddress (receive mode)

5.3 Data byte specification

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Main Source Selector
				0	0	0	0	SE0
				0	0	0	1	SE1
				0	0	1	0	SE2
				0	0	1	1	SE3
				0	1	0	0	SE4
				0	1	0	1	QD0
-	-	-	-	0	1	1	0	QD1
				0	1	1	1	QD2
				1	0	0	0	QD3
				1	0	0	1	MUTE
				1	0	1	0	MUTE
				1	0	1	1	MUTE
				1	1	х	х	MUTE
								Sub Source Selector
0	0	0	0					SE0
0	0	0	1					SE1
0	0	1	0					SE2
0	0	1	1					SE3
0	1	0	0					SE4
0	1	0	1					QD0
0	1	1	0	-	-	-	-	QD1
0	1	1	1					QD2
1	0	0	0					QD3
1	0	0	1					MUTE
1	0	1	0					MUTE
1	0	1	1					MUTE
1	1	х	х					<u>MUTE</u>

Table	8.	Main /	sub	selector	(0))
IUNIO	•••	mann,	ous	00100101	(\lor)	,

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Mix Source Selector
				0	0	0	0	SE0
				0	0	0	1	SE1
				0	0	1	0	SE2
				0	0	1	1	SE3
				0	1	0	0	SE4
				0	1	0	1	QD0
-	-	-	-	0	1	1	0	QD1
				0	1	1	1	QD2
				1	0	0	0	QD3
				1	0	0	1	MUTE
				1	0	1	0	MUTE
				1	0	1	1	MUTE
				1	1	х	х	<u>MUTE</u>
								Mix Left channel
-	-	-	0	-	-	-	-	<u>Left</u>
			1					Right
								Mix Right channel
-	-	0		-	-	-	-	Left
		1						Right
								Anti-alias filter
-	0	-	-	-	-	-	-	<u>On</u>
	1							Off
								AC-Coupling / QD selection
0	-	-	-	-	-	-	-	AC
1								QD

Table 9. Mix selector / anti-alias / fast charge (1)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	- Function
								Gain/Attenuation
		0	0	0	0	0	0	+0dB
		0	0	0	0	0	1	+1dB
		:	:	:	:	:	:	:
		0	0	1	1	1	1	+15dB
		0	1	0	0	0	0	+16dB
		:	:	:	:	:	:	:
		0	1	0	1	1	1	+23dB
	_	0	1	1	0	0	0	Not used
-	-	:	:	:	:	:	:	:
		0	1	1	1	1	1	Not used
		1	0	0	0	0	0	-0dB
		:	:	:	:	:	:	:
		1	0	1	1	1	1	-15dB
		:	:	:	:	:	:	:
		1	1	0	1	1	1	- <u>23dB</u>
		:	:	1	:	:	:	:
		1	1	1	1	1	1	Not used
								Volume soft-step
-	0	-	-	-	-	-	-	On
	1							Off
								Soft-step action
0	-	-	-	-	-	-	-	act
1								wait

Table 10. Volume main/sub/mix (2-4)

MSB						. 5011-50	LSB	
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Loudness soft-step
-	-	-	-	-	-	-	0	On
							1	Off
								Treble soft-step
-	-	-	-	-	-	0	-	On
						1		Off
								Middle soft-step
-	-	-	-	-	0	-	-	On
					1			Off
								Bass soft-step
-	-	-	-	0	-	-	-	On
				1				Off
								Speaker0/Mixing soft-step (1)
-	-	-	0	-	-	-	-	On
			1					Off
								Speaker1 soft-step
-	-	0	-	-	-	-	-	On
		1						Off
								Speaker2 soft-step
-	0	-	-	-	-	-	-	On
	1							Off
								Soft-step time
0	-	-	-	-	-	-	-	7.5ms
1								<u>15ms</u>

Table 11. Soft-step (5)

1. Mixing soft-step need to be turned on/off with speaker0 soft-step.

				-				
MSB							LSB	Eurotion
D7	D6	D5	D4	D3	D2	D1	D0	- Function
-	-	-	-	х	х	х	х	Not used
-	-	0 0 1 1	0 1 0 1	-	-	-	-	Soft-mute time (Main/SUB) 0.5ms 4ms 8ms <u>16ms</u>
0 0 1 1	0 1 0 1	-	-	-	-	-	-	Soft-mute time (Speaker0/1/2) 4ms 8ms 32ms <u>64ms</u>

Table 12. Soft-mute I (6)

Table 13	Soft-mute I	۱/	middle	(7))
----------	-------------	----	--------	-----	---

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	-	-	-	-	0 1	Pin influence for mute Pin and IIC IIC
-	-	-	-	-	-	0 1	-	Auto-mute On Off
-	-	-	-	-	0 1	-	-	Soft-mute main On <u>Off</u>
-	-	-	-	0 1	-	-	-	Soft-mute sub On <u>Off</u>
-	-	-	0 1	-	-	-	-	Soft-mute Speaker0 On <u>Off</u>
-	-	0 1	-	-	-	-	-	Soft-mute Speaker1 On <u>Off</u>
-	0 1	-	-	-	-	-	-	Soft-mute Speaker2 On <u>Off</u>
0 1	-	-	-	-	-	-	-	Middle quality factor 1.0 2. <u>0</u>

				-		Louune		
MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	- Function
								Attenuation
				0	0	0	0	0dB
				0	0	0	1	-1dB
-	-	-	-	:	:	:	:	:
				1	1	1	0	<u>-14dB</u>
				1	1	1	1	-15dB
								Center frequency
		0	0					Flat
-	-	0	1	-	-	-	-	400Hz
		1	0					800Hz
		1	1					<u>2400Hz</u>
								High boost
-	0	-	-	-	-	-	-	On
	1							Off
								Soft-step action
0	-	-	-	-	-	-	-	act
1								wait

Table 14. Loudness (8)

Table 15. Treble filter (9)

MSB							LSB	- Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Gain/Attenuation
			0	1	1	1	1	+15dB
			:	;	:	:	:	:
			0	1	0	1	0	+10dB
			:	:	:	:	:	:
			0	0	0	0	1	+1dB
-	-	-	0	0	0	0	0	0dB
			1	0	0	0	0	<u>0dB</u>
			1	0	0	0	1	-1dB
			:	:	:	:	:	:
			1	1	0	1	0	-10dB
			:	:	:	:	:	:
			1	1	1	1	1	-15dB
								Treble center frequency
	0	0						10.0kHz
-	0	1	-	-	-	-	-	12.5kHz
	1	0						15.0kHz
	1	1						<u>17.5kHz</u>
								Soft-step action
0	-	-	-	-	-	-	-	act
1								wait

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	- Function
								Gain/Attenuation
			0	1	1	1	1	+15dB
			:	;	:	:	:	:
			0	1	0	1	0	+10dB
			:	:	:	:	:	:
			0	0	0	0	1	+1dB
-	-	-	0	0	0	0	0	0dB
			1	0	0	0	0	<u>0dB</u>
			1	0	0	0	1	-1dB
			:	:	:	:	:	:
			1	1	0	1	0	-10dB
			:	:	:	:	:	:
			1	1	1	1	1	-15dB
								Middle center frequency
	0	0						500Hz
-	0	1	-	-	-	-	-	1000Hz
	1	0						1500Hz
	1	1						<u>2000Hz</u>
								Soft-step action
0	-	-	-	-	-	-	-	act
1								wait

Table 16. Middle filter (10)

Table 17. Bass filter (11)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Gain/Attenuation
			0	1	1	1	1	+15dB
			0	1	1	1	0	+14dB
			:	:	:	:	:	:
			0	0	0	0	1	+1dB
-	-	-	0	0	0	0	0	0dB
			1	0	0	0	0	<u>0dB</u>
			1	0	0	0	1	-1dB
			:	:	:	:	:	:
			1	1	1	1	0	-14dB
			1	1	1	1	1	-15dB
								Bass quality factor
	0	0						1.0
-	0	1	-	-	-	-	-	1.25
	1	0						1.5
	1	1						2.0
								Soft-step action
0	-	-	-	-	-	-	-	act
1								wait

MSB						-	LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	runction
								Bass center frequency
					0	0	0	60Hz
					0	0	1	70Hz
					0	1	0	80Hz
-	-	-	-	-	0	1	1	100Hz
					1	0	0	110Hz
					1	0	1	120Hz
					1	1	0	<u>130Hz</u>
					1	1	1	150Hz
								Bass DC mode
-	-	-	-	0	-	-	-	On
				1				Off
								Low pass filter corner frequency
	0	0	0					50Hz
	0	0	1					60Hz
-	0	1	0	-	-	-	-	80Hz
	0	1	1					100Hz
	1	х	х					<u>120Hz</u>
								Low pass filter output phase
0	-	-	-	-	-	-	-	180 deg
1								<u>0 deg</u>

Table 18. Bass / low pass filter (12)

MSB					e 13. m	5 1	LSB	
D7	D6	D5	D4	D3	D2	D1	D0	- Function
								HPF output phase Speaker0
-	-	-	-	-	-	-	0	180 deg
							1	<u>0 deg</u>
								HPF corner frequency Speaker0
				0	0	0		50Hz
				0	0	1		60Hz
				0	1	0		80Hz
-	-	-	-	0	1	1	-	100Hz
				1	0	0		120Hz
				1	0	1		150Hz
				1	1	0		180Hz
				1	1	1		<u>220Hz</u>
								HPF phase Speaker1
-	-	-	0	-	-	-		180 deg
			1					<u>0 deg</u>
								HPF corner frequency Speaker1
0	0	0						50Hz
0	0	1						60Hz
0	1	0						80Hz
0	1	1	-	-	-	-	-	100Hz
1	0	0						120Hz
1	0	1						150Hz
1	1	0						180Hz
1	1	1						<u>220Hz</u>

Table 19. High pass filter (13)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	- Function
								Speaker0 source selector
					0	0	0	acin0
_		_	_		0	0	1	acin1
-	-	-	-		0	1	0	acin2
					0	1	1	sub
					1	х	х	main
								High pass filter bypass Speaker0
-	-	-	-	0	-	-		Bypass
				1				High pass filter
								Speaker1 source selector
	0	0	0					acin0
	0	0	1					acin1
-	0	1	0	-	-	-	-	acin2
	0	1	1					sub
	1	х	х					main
								High pass filter bypass Speaker1
0	-	-	-	-	-	-	-	Bypass
1								High pass filter

Table 20. S	peaker0/1	source	selector	(14)
	poundior	00000	00100101	

Table 21. Output gain /	speaker2 source selector (15)
-------------------------	-------------------------------

MSB				-	-	-	LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	- Function
-	-	-	-	-	-	-	0	Pin Influence for output DC level select Pin
							1	IIC
-	-	-	-	-	-	0 1	-	Output DC level 4V (AC Gain = 5dB) 5.75V (AC Gain = 8dB)
-	-	-	0 0 0 1	0 0 1 1 x	0 1 0 1 x	-	-	Speaker2 source selector acin0 acin1 acin2 sub <u>main</u>
	0 0 1	0 1 x						Low pass filter bypass Low pass filter Mono-sum bypass <u>Stereo bypass</u>
х								Not used

MSB				-		-	LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Gain/Attenuation
	0	0	0	0	0	0	0	+0dB
	0	0	0	0	0	0	1	+1dB
	:	:	:	:	:	:	:	:
	0	0	0	1	1	1	1	+15dB
	0	0	1	0	0	0	0	+16dB
	:	:	:	:	:	:	:	:
	0	0	1	0	1	1	1	+23dB
	0	0	1	1	0	0	0	Not used
	:	:	:	:	:	:	:	:
	0	0	1	1	1	1	1	Not used
-	0	1	0	0	0	0	0	-0dB
	:	:	:	:	:	:	:	:
	0	1	0	1	1	1	1	-15dB
	:	:	:	:	:	:	:	:
	0	1	1	0	1	1	1	-23dB
	:	:	:	:	:	:	:	:
	1	0	0	0	0	0	0	-32dB
	:	:	:	:	:	:	:	:
	1	1	0	0	0	0	0	-64dB
	:	:	:	:	:	:	:	:
	1	1	0	1	1	1	1	-79dB
	1	1	1	х	х	х	х	mute
								Soft-step action
0	-	-	-	-	-	-	-	act
1								wait

Table 22. Speaker attenuation (0L/0R/1L/1R/2L/2R) (16-21)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
								Auto mix programmable attenuation
			0	0	0	0	0	<u>0dB</u>
			0	0	0	0	1	-1dB
			:	:	:	:	:	:
			0	1	1	1	0	-14dB
			0	1	1	1	1	-15dB
-	-	-	:	:	:	:	:	:
			1	0	0	1	1	-19dB
			1	0	1	0	0	-20dB
			1	0	1	0	1	Reserved
			1	0	1	1	0	Reserved
			1	0	1	1	1	Reserved
			1	1	х	х	х	Reserved
								Auto mix detect threshold
0	0	0						5mv
0	0	1						10mv
0	1	0						15mv
0	1	1	-	-	-	-		20mv
1	0	0						25mv
1	0	1						50mv
1	1	0						75mv
1	1	1						<u>100mv</u>

Table 23. Auto-mix I (22)

MSB					IDIE 24. /		LSB	
D7	D6	D5	D4	D3	D2	D1	D0	- Function
								Auto mix release time
					0	0	0	125ms
					0	0	1	250ms
					0	1	0	500ms
-	-	-	-	-	0	1	1	1000ms
					1	0	0	2000ms
					1	0	1	4000ms
					1	1	х	<u>4000ms</u>
								Auto mix attach time
		0	0	0				0.5ms
		0	0	1				1ms
		0	1	0				2ms
-	-	0	1	1	-	-	-	4ms
		1	0	0				8ms
		1	0	1				16ms
		1	1	х				<u>16ms</u>
								Mix mode ⁽¹⁾
-	0	-	-	-	-	-	-	Auto mix
	1							IIC
х	-	-	-	-		-	-	Not used

Table 24. Auto-mix II (23)

1. When mix mode is changed, byte 24 need to be sent as well.

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	-	-	-	-	0 1	IIC mix speaker0 <u>Bypass</u> Mix
-	-	-	-	-	-	0 1	-	Mix gain speaker0 0dB (-6dB/-6dB mix) 6dB (0dB/0dB mix)
-	-	-	-	-	0 1	-	-	IIC mix speaker1 <u>Bypass</u> Mix
-	-	-	-	0 1	-	-	-	Mix gain speaker1 0dB (-6dB/-6dB mix) <u>6dB (0dB/0dB mix)</u>
-	-	0 0 1	0 1 x	-	-	-	-	Auto mix detection input Mix left channel Mix right channel <u>Mix mono-sum</u>
-	х	-	-	-	-	-	-	Not used
0 1	-	-	-	-	-	-	-	Soft-step action act <u>wait</u>

Table 25. Auto-mix III (24)

50/58

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Spike rejection time
						0	0	Disable
-	-	-	-	-	-	0	1	<u>11 µs</u>
						1	0	22 µs
						1	1	33 µs
-	-	-	-	0 0 1 1	0 1 0 1	-	-	Zero-comparator Window size ±120mV ±90mV ±60mV ±30mV
-	-	-	0 1	-	-	-	-	DC-detector fast charge On Off
-	0 0 1 1	0 1 0 1	-	-	-	-	-	Speaker-limiter threshold 1.5Vpp 3Vpp 4Vpp <u>Off</u>
х	-	-	-	-	-	-	-	Not used

Table 26. DC-detector/speaker-limiter (25)

MSB							LSB	Eurotien
D7	D6	D5	D4	D3	D2	D1	D0	- Function
-	-	-	-	-	-	-	0 1	Spectrum analyzer source selector Main path Speaker0
-	-	-	-	-	-	0 1	-	Run/Stop Run <u>Stop</u>
-	-	-	-	-	0 1	-	-	Reset mode SARST-pin triggered reset Auto-reset mode
-	-	-	-	0 1	-	-	-	Spectrum analyzer filter quality factor 3.5 <u>1.75</u>
-	-	0 0 1 1	0 1 0 1	-	-	-	-	Spectrum analyzer in-gain OdB 2dB 4dB <u>6dB</u>
х	х	-	-	-	-	-	-	Not used

Table 27. Spectrum analyzer (26)

MSB								
IVISE	LSB							Function
D7	D6	D5	D4	D3	D2	D1	D0	
								Audio processor testing mode
-	-	-	-	-	-	-	0	Off
							1	On
								Test multiplexer ⁽¹⁾
		0	0	0	0	0		SSCLK
		0	0	0	0	1		SMCLK1
		0	0	0	1	0		SMCLK2
-	-	0	0	0	1	1	-	VDDd
		0	0	1	0	0		VDDa
		0	0	1	0	1		Clock200k
		0	0	1	1	0		SDCLK
		0	0	1	1	1		REQ_TEST
								SA / Auto-mix test multiplexer ⁽¹⁾
		0	1	0	0	0		Spec.Anal. AAF
		0	1	0	0	1		Spec.Anal. BPF1
		0	1	0	1	0		Spec.Anal. BPF2
-	-	0	1	0	1	1	-	Spec.Anal. BPF3
		0	1	1	0	0		Auto-mix Rectifier output
		0	1	1	0	1		Auto-mix attach clock
		0	1	1	1	0		Auto-mix release clock
		0	1	1	1	1		Auto-mix Vth
								DCO test multiplexer ⁽¹⁾
		1	0	0	0	0		Vthp Comp. Left
		1	0	0	0	1		Vthn Comp. Left
		1	0	0	1	0		Vthp Comp. Right
-	-	1	0	0	1	1	-	Vthn Comp. Right
		1	0	1	0	0		Vthp reference
		1	0	1	0	1		Vthn reference
		1	0	1	1	0		IntZeroErr
		1	0	1	1	1		Vref
								Auto-mix rectifier bypass ⁽¹⁾
-	0	-	-	-	-	-	-	On
	1							Off
х	-	-	-	-	-	-	-	Not used

Table 28. Test I (27)

1. The control bit needs both I^2C test mode on & sub-address test mode on.

MSB LS								
D7	D6	D5	D4	D3	D2	D1	D0	- Function
								Manual set busy signal ⁽¹⁾
						0	0	Auto
-	-	-	-	-	-	0	1	Auto
						1	0	<u>0</u>
						1	1	1
								Request for clock generator ⁽¹⁾
						0	0	Allow
-	-	-	-	-	-	0	1	Allow
						1	0	Stopped
						1	1	Stopped
								Clock source ⁽²⁾
-	-	-	-	-	0	-	-	External
					1			Internal (200kHz)
								Oscillator clock ⁽²⁾ , ⁽³⁾
-	-	-	-	0	-	-	-	400kHz
				1				<u>800kHz</u>
								Clock fast mode ⁽²⁾
-	-	-	0	-	-	-	-	On
			1					<u>Off</u>
								Soft-step curve ⁽²⁾
-	-	0	-	-	-	-	-	S-Curve (soft step time 7.5ms/15ms)
		1						Linear Curve (soft step time 5ms/10ms)
х	х	-	-	-	-	-	-	Not used

Table 29. Test II (28)

1. The control bit needs sub-address test mode on.

2. The control bit does not depend on test mode.

3. Oscillator clock frequency is not suggested to change, the change will influence auto mix attach time.

	. (20)	. rest n								
	LSB				ISB					
- Function	D1 D0 Function		D2	D3	D4	D5	D6	D7		
Test architecture ⁽¹⁾										
Normal	0	-	-	-	-	-	-	-		
Split	1									
Attenuators gain clock control ⁽²⁾										
On	-	0	-	-	-	-	-	-		
Off		1								
Enable clock for speaker volume										
On	-	-	0	-	-	-	-	-		
Off			1							
Enable clock for volume										
On	-	-	-	0	-	-	-	-		
Off				1						
Enable clock for treble & bass										
On	-	-	-	-	0	-	-	-		
Off					1					
Enable clock for loudness & middle										
On	-	-	-	-	-	0	-	-		
Off						1				
Not used	-	-	-	-	-	-	х	х		

Table 30.	Test III	(29)
	i cot in	(23)

1. The control bit needs sub-address test mode on.

2. The control bit does not depend on test mode.

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>.

 $ECOPACK^{\mathbb{R}}$ is an ST trademark.

DIM.		mm		inch				
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	OUTLINE AND MECHANICAL DAT A	
А			1.60			0.063		
A1	0.05		0.15	0.002		0.006		
A2	1.35	1.40	1.45	0.053	0.055	0.057		
В	0.17	0.22	0.27	0.0066	0.0086	0.0106		
С	0.09		0.20	0.0035		0.0079		
D	11.80	12.00	12.20	0.464	0.472	0.480		
D1	9.80	10.00	10.20	0.386	0.394	0.401		
D3		7.50			0.295			
е		0.50			0.0197		THE REAL PROPERTY OF THE PROPE	
Е	11.80	12.00	12.20	0.464	0.472	0.480		
E1	9.80	10.00	10.20	0.386	0.394	0.401		
E3		7.50			0.295			
L	0.45	0.60	0.75	0.0177	0.0236	0.0295		
L1		1.00			0.0393			
К		0° (mir	n.), 3.5°	(min.), 7	°(max.)		LQFP64 (10 x 10 x 1.4mm)	
CCC			0.080			0.0031		
							A1 A1 A2 A1 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2	

Figure 27. LFQP64 mechanical data and package dimensions

DocID023988 Rev 3

7 Revision history

Date	Revision	Changes			
05-Dec-2012	1	Initial release.			
15-May-2013	2	Updated: Table 5: Electrical characteristics; Section 4.12: Spectrum analyzer on page 29.			
16-Sept-2013	3	Updated Disclaimer			

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID023988 Rev 3

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Audio DSPs category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

E-TDA7377A TDA7716N BR281W31A101V1G LC823425-12G1-LR-H TDA7419N R3910-CFAB-E1B HMC474MP86ETR AMIS30660CANH6G B300W35A102XYG MAX9892ERT+T MAX9892ELTT SB3229-E1 NJW1157BFC2 ZL38060LDG1 SB3231-E1 HMC1022-SX SA3229-E1-T LC75056PE-H TDA7729 NJW1195AV WM5102ECS/R CI1103 WM5102ECS/R 100-CG1820 CS48L10-CNZ CS48L10-CNZR CS47024C-CQZ CS48L10-CWZR CS48L11-CNZ HMC618LP3ETR HMC604LP3ETR HMC5622LS7TR HMC288MS8ETR HMC240A STA323W13TR BU9408KS2 DSPB56725AF TAS3204PAGR ADAU1467WBCPZ300 ADAU1463WBCPZ300 BD37514FS-E2 ADAU1463WBCPZ150 ADAU1466WBCPZ300 NJM2294V-TE1 LC823450TA-2H NJM2537V-TE1 TWL1103TPBSQ1 LC823450XDTBG HMC-AUH312-SX ADAV4622BSTZ