

Datasheet

SLLIMM[™] nano - 2nd series IPM, 3-phase inverter, 8 A, 600 V, short-circuit rugged IGBTs

N2DIP-26L type Z

Product status link

STGIPQ8C60T-HZ

Product summary				
Order code STGIPQ8C60T-HZ				
Marking GIPQ8C60T-HZ				
Package	N2DIP-26L type Z			
Packing	Tube			

Features

- IPM 8 A, 600 V, 3-phase IGBT inverter bridge including 3 control ICs for gate driving and freewheeling diodes
- 3.3 V, 5 V, 15 V TTL/CMOS input comparators with hysteresis and pull-down/ pull-up resistors
- Internal bootstrap diode
- Optimized for low electromagnetic interference
- Undervoltage lockout
- Short-circuit rugged TFS IGBTs
- Shutdown function
- Interlocking function
- Op-amp for advanced current sensing
- Comparator for fault protection against overcurrent
- Isolation ratings of 1500 V_{rms}/min.
- UL recognition: UL 1557, file E81734
- NTC (UL 1434 CA 2 and 4)

Applications

- 3-phase inverters for motor drives
- Dish washers, refrigerator compressors, heating systems, air-conditioning fans, draining and recirculation pumps

Description

This second series of SLLIMM (small low-loss intelligent molded module)-nano provides a compact, high-performance AC motor drive in a simple, rugged design. It is composed of six improved short-circuit rugged trench gate fieldstop IGBTs with freewheeling diodes and three half-bridge HVICs for gate driving, providing low electromagnetic interference (EMI) characteristics with optimized switching speed. The package is designed to allow a better and more easily screwed-on heatsink, and is optimized for thermal performance and compactness in built-in motor applications or other low power applications where assembly space is limited. This IPM includes a completely uncommitted operational amplifier and a comparator that can be used to design a fast and efficient protection circuit. SLLIMM™ is a trademark of STMicroelectronics.

1

Internal schematic diagram and pin configuration

Figure 1. Internal schematic diagram

GIPG300720141542SMD

STGIPQ8C60T-HZ Internal schematic diagram and pin configuration

Pin	Symbol	Description
1	GND	Ground
2	T/SD/ OD	NTC thermistor terminal/shutdown logic input (active low)/open-drain (comparator output)
3	V _{CC} W	Low-voltage power supply W phase
4	HIN W	High-side logic input for W phase
5	LIN W	Low-side logic input for W phase
6	OP+	Op-amp non-inverting input
7	OP _{OUT}	Op-amp output
8	OP-	Op-amp inverting input
9	V _{CC} V	Low-voltage power supply V phase
10	HIN V	High-side logic input for V phase
11	LIN V	Low-side logic input for V phase
12	CIN	Comparator input
13	V _{CC} U	Low-voltage power supply for V phase
14	HIN U	High-side logic input for V phase
15	T/SD/ OD	NTC thermistor terminal/shutdown logic input (active low)/open-drain (comparator output)
16	LIN U	Low-side logic input for U phase
17	V _{boot} U	Bootstrap voltage for U phase
18	Р	Positive DC input
19	U, OUT _U	U phase output
20	NU	Negative DC input for U phase
21	V _{boot} V	Bootstrap voltage for V phase
22	V, OUT _V	V phase output
23	N _V	Negative DC input for V phase
24	V _{boot} W	Bootstrap voltage for W phase
25	W, OUT _W	W phase output
26	N _W	Negative DC input for W phase

Table 1. Pin description

PIN 16

★ Dummy pins internally connected to P (positive DC input)

0

PIN 1

GADG181220181216IG

connected to GND

2 Electrical ratings

 $T_{\rm J}$ = 25 °C unless otherwise specified

2.1 Absolute maximum ratings

Table 2. Inverter part

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage for each IGBT ($V_{IN}^{(2)} = 0$)	600	V
Ι _C	Continuous collector current for each IGBT (T_C = 25 °C)	8	А
I _{CP} ⁽¹⁾	Peak collector current for each IGBT (less than 1 ms)	16	А
P _{TOT}	Total power dissipation for each IGBT (T _C = 25 $^{\circ}$ C)	19.2	W
t _{SCW}	Short-circuit withstand time (V _{CE} = 300 V, T _J = 125 °C, V _{CC} = V _{boot} = 15 V, V _{IN} ⁽²⁾ = 0 to 5 V)	5	μs

1. Pulse width limited by maximum junction temperature.

2. Applied among HIN_x , LIN_x and GND for x = U, V, W

Table 3. Control part

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Low voltage power supply	-0.3	21	V
V _{boot}	Bootstrap voltage	-0.3	620	V
V _{OUT}	Output voltage applied among OUT_U , OUT_V , OUT_W - GND	V _{boot} - 21	V _{boot} + 0.3	V
V _{CIN}	Comparator input voltage	-0.3	V _{CC} + 0.3	V
V _{op+}	Op-amp non-inverting input	-0.3	V _{CC} + 0.3	V
V _{op-}	Op-amp inverting input	-0.3	V _{CC} + 0.3	V
V _{IN}	Logic input voltage applied among HINx, LINx and GND	-0.3	15	V
V _{T/SD/OD}	Open-drain voltage	-0.3	15	V
dV _{out} /dt	Allowed output slew rate		50	V/ns

Table 4. Total system

Symbol	Parameter	Value	Unit
V _{ISO}	Isolation withstand voltage applied to each pin and heatsink plate (AC voltage, t = 60 s)	1500	V _{rms}
TJ	Power chip operating junction temperature	-40 to 150	°C
T _C	Module case operation temperature	-40 to 125	°C

2.1.1 Thermal data

Table 5. Thermal data

Symbol	Parameter	Value	Unit
Pa a x	Thermal resistance junction-case single IGBT	6.5	°C/W
R _{th(j-c)}	Thermal resistance junction-case single diode	10	C/VV

3 Electrical characteristics

 T_J = 25 °C unless otherwise noted.

3.1 Inverter part

Table 6. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector cut-off current $(V_{IN}^{(1)} = 0 \text{ "logic state"})$	V _{CE} = 550 V, V _{CC} = V _{Boot} = 15 V	-		250	μA
V _{CE(sat)}	Collector-emitter saturation voltage	$V_{CC} = V_{boot} = 15 \text{ V}, V_{IN}^{(1)} = 0 \text{ to } 5 \text{ V},$ $I_C = 8 \text{ A}$	-	2.0	2.4	V
V _F	Diode forward voltage	$V_{IN}^{(1)} = 0$ "logic state", $I_C = 8 A$	-	2.4		V

1. Applied among HIN_x , LIN_x and G_{ND} for x = U, V, W

Table 7. Inductive load switching time and energy

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{on} (1)	Turn-on time		-	290	-	
t _{c(on)} ⁽¹⁾	Crossover time (on)		-	145	-	1
t _{off} ⁽¹⁾	Turn-off time	$V_{DD} = 300 \text{ V}, V_{CC} = V_{boot} = 15 \text{ V},$ $V_{IN}^{(2)} = 0 \text{ to } 5 \text{ V}, I_C = 8 \text{ A}$ (see Figure 4. Switching time definition)	-	515	-	ns
$t_{c(off)}^{(1)}$	Crossover time (off)		-	90	-	
t _{rr}	Reverse recovery time		-	110	-	-
Eon	Turn-on switching energy		-	200	-	
E _{off}	Turn-off switching energy		-	95	-	μJ

1. t_{ON} and t_{OFF} include the propagation delay times of the internal drive. $t_{C(ON)}$ and $t_{C(OFF)}$ are the switching times of IGBT itself under the internally given gate driving conditions.

2. Applied among HIN_x , LIN_x and G_{ND} for x = U, V, W.

(a) turn-on

(b) turn-off

AM09223V1

3.2 Control part

(V_{CC} = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC_hys}	V _{CC} UV hysteresis		1.2	1.5	1.8	V
V _{CC_thON}	V _{CC} UV turn-ON threshold		11.5	12	12.5	V
V _{CC_thOFF}	V _{CC} UV turn-OFF threshold		10	10.5	11	V
I _{qccu}	Undervoltage quiescent supply current	$V_{CC} = 10 \text{ V}, V_{T/SD/OD} = 5 \text{ V},$ LIN = HIN = CIN = 0 V			150	μA
I _{qcc}	Quiescent current	$V_{CC} = 10 \text{ V}, V_{T/SD/OD} = 5 \text{ V},$ LIN = HIN = CIN = 0 V			1	mA
V _{ref}	Internal comparator (CIN) reference voltage		0.51	0.54	0.56	V

Table 8. Low-voltage power supply

Table 9. Bootstrapped voltage

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{BS_hys}	V _{BS} UV hysteresis		1.2	1.5	1.8	V
V_{BS_thON}	V _{BS} UV turn-ON threshold		11.1	11.5	12.1	V
V_{BS_thOFF}	V _{BS} UV turn-OFF threshold		9.8	10	10.6	V
I _{QBSU}	Undervoltage V _{BS} quiescent current	$V_{BS} < 9 V$, $V_{T/SD/OD} = 5 V$, LIN = 0 V and HIN = 5 V, CIN = 0 V		70	110	μA
I _{QBS}	V _{BS} quiescent current	$V_{BS} = 15 \text{ V}, V_{T/SD/OD} = 5 \text{ V},$ LIN = 0 V and HIN = 5 V, CIN = 0 V		150	210	μA
R _{DS(on)}	Bootstrap driver on-resistance	LVG ON		120		Ω

Table 10. Logic inputs

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{il}	Low logic level voltage				0.8	V
V _{ih}	High logic level voltage		2.25			V
I _{HINh}	HIN logic "1" input bias current	HIN = 15 V	20	40	100	μA
I _{HINI}	HIN logic "0" input bias current	HIN = 0 V			1	μA
I _{LINI}	LIN logic "0" input bias current	LIN = 0 V			1	μA
I _{LINh}	LIN logic "1" input bias current	LIN = 15 V	20	40	100	μA
I _{SDh}	SD logic "0" input bias current	<u>SD</u> = 15 V	210	350	477	μA
I _{SDI}	SD logic "1" input bias current	SD = 0 V			3	μA
Dt	Dead time	See Figure 9. Dead time and interlocking waveform definitions		180		ns

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage				6	mV
l _{io}	Input offset current	V _{ic} = 0 V, V _o = 7.5 V		4	40	nA
l _{ib}	Input bias current ⁽¹⁾			100	200	nA
V _{OL}	Low level output voltage	R_L = 10 k Ω to V_{CC}		75	150	mV
V _{OH}	High level output voltage	R_L = 10 k Ω to GND	14	14.7		V
	Output short-circuit current	Source, V_{id} = + 1 V; V_o = 0 V	16	30		mA
Ι _ο		Sink, V_{id} = -1 V; V_o = V_{CC}	50	80		mA
SR	Slew rate	V_i = 1 - 4 V; C_L = 100 pF; unity gain	2.5	3.8		V/µs
GBWP	Gain bandwidth product	V _o = 7.5 V	8	12		MHz
A _{vd}	Large signal voltage gain	$R_L = 2 k\Omega$	70	85		dB
SVR	Supply voltage rejection ratio	vs V _{CC}	60	75		dB
CMRR	Common mode rejection ratio		55	70		dB

Table 11. Op-amp characteristics

1. The direction of input current is out of the IC.

Table 12. Sense comparator characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{ib}	Input bias current	V _{CIN} = 1 V	-		1	μA
V _{od}	Open-drain low level output voltage	I _{od} = 3 mA	-		0.5	V
R _{ON_OD}	Open-drain low level output	I _{od} = 3 mA	-	166		Ω
R _{PD_SD}	SD pull-down resistor ⁽¹⁾		-	125		kΩ
t _{d_comp}	Comparator delay	$V_{T/SD/OD}$ pulled to 5 V through 100 k Ω resistor	-	90	130	ns
SR	Slew rate	C_L = 180 pF, R_{pu} = 5 k Ω	-	60		V/µs
t _{sd}	Shutdown to high-/low-side driver propagation delay	V_{OUT} = 0, V_{boot} = V_{CC} , V_{IN} = 0 to 3.3 V	50	125	200	
t _{isd}	Comparator triggering to high-/ low-side driver turn-off propagation delay	Measured applying a voltage step from 0 V to 3.3 V to pin CIN	50	200	250	ns

1. Equivalent values as a result of the resistances of three drivers in parallel.

Table 13. Truth table

Conditions	Logic input (V _I)			Output		
Conditions	T/SD/OD	LIN	HIN	LVG	HVG	
Shutdown enable half-bridge tri-state	L	X ⁽¹⁾	X ⁽¹⁾	L	L	
Interlocking half-bridge tri-state	Н	Н	Н	L	L	
0 "logic state" half-bridge tri-state	Н	L	L	L	L	
1 "logic state" low-side direct driving	Н	Н	L	Н	L	
1 "logic state" high-side direct driving	Н	L	Н	L	Н	

1. X: don't care.

3.2.1 NTC thermistor

RPD_SD: equivalent value as result of resistances of three drivers in parallel.

Figure 6. Equivalent resistance (NTC//R_{PD_SD})

Figure 7. Equivalent resistance (NTC//R_{PD_SD}) zoom

Figure 8. Voltage of T/SD/OD pin according to NTC temperature

3.3 Waveform definitions

4 Shutdown function

The device is equipped with three half-bridge IC gate drivers and integrates a comparator for fault detection. The comparator has an internal voltage reference V_{REF} connected to the inverting input, while the non-inverting input pin (CIN) can be connected to an external shunt resistor for current monitoring.

Since the comparator is embedded in the U IC gate driver, in case of fault it disables directly the U outputs, whereas the shutdown of V and W IC gate drivers depends on the RC value of the external SD circuitry, which fixes the disabling time.

For an effective design of the shutdown circuit, please refer to Application note AN4966.

 R_{SD} and C_{SD} external circuitry must be designed to ensure $V_{on} < V_{il} \& V_{off} > V_{ih}$ Please refer to AN4966 for further details.

* R_{NTC} to be considered only when the NTC is internally connected to the T/SD/OD pin.

GADG250120171515FSR

5 Application circuit example

57

Figure 11. Application circuit example

Application designers are free to use a different scheme according to the specifications of the device.

GAD250720161156FSR

5.1 Guidelines

- Input signals HIN, LIN are active high logic. A 375 kΩ (typ.) pull-down resistor is built-in for each input. To avoid input signal oscillation, the wiring of each input should be as short as possible, and the use of RC filters (R₁, C₁) on each input signal is suggested. The filters should be with a time constant of about 100 ns and placed as close as possible to the IPM input pins.
- The use of a bypass capacitor C_{VCC} (aluminum or tantalum) can reduce the transient circuit demand on the power supply. Also, to reduce any high-frequency switching noise distributed on the power lines, a decoupling capacitor C₂ (100 to 220 nF, with low ESR and low ESL) should be placed as close as possible to the V_{cc} pin and in parallel with the bypass capacitor.
- The use of an RC filter (R_{SF}, C_{SF}) is recommended to prevent protection circuit malfunction. The time constant (R_{SF} x C_{SF}) should be set to 1 µs and the filter must be placed as close as possible to the C_{IN} pin.
- The \overline{SD} is an input/output pin (open-drain type if it is used as output). A built-in thermistor NTC is internally connected between the \overline{SD} pin and GND. The voltage V_{SD}-GND decreases as the temperature increases, due to the pull-up resistor R_{SD}. In order to keep the voltage always higher than the high-level logic threshold, the pull-up resistor should be set to 1 k Ω or 2.2 k Ω for 3.3 V or 5 V MCU power supply, respectively. The capacitor C_{SD} of the filter on \overline{SD} should be fixed no higher than 3.3 nF in order to assure the \overline{SD} activation time $\tau_A \leq 500$ ns. Besides, the filter should be placed as close as possible to the \overline{SD} pin.
- The decoupling capacitor C₃ (from 100 to 220 nF, ceramic with low ESR and low ESL), in parallel with each C_{boot}, filters high-frequency disturbance. Both C_{boot} and C₃ (if present) should be placed as close as possible to the U, V, W and V_{boot} pins. Bootstrap negative electrodes should be connected to U, V, W terminals directly and separated from the main output wires.
- To avoid overvoltage on the V_{cc} pin, a Zener diode (Dz1) can be used. Similarly on the V_{boot} pin, a Zener diode (Dz2) can be placed in parallel with each C_{boot}.
- The use of the decoupling capacitor C₄ (100 to 220 nF, with low ESR and low ESL) in parallel with the electrolytic capacitor C_{vdc} is useful to prevent surge destruction. Both capacitors C₄ and C_{vdc} should be placed as close as possible to the IPM (C₄ has priority over C_{vdc}).
- By integrating an application-specific type HVIC inside the module, direct coupling to the MCU terminals without an opto-couplers is possible.
- Low-inductance shunt resistors have to be used for phase leg current sensing.
- In order to avoid malfunctions, the wiring on N pins, the shunt resistor and P_{WR_GND} should be as short as possible.
- The connection of SGN_GND to PWR_GND on one point only (close to the shunt resistor terminal) can reduce the impact of power ground fluctuation.

These guidelines ensure the specifications of the device for application designs. For further details, please refer to the relevant application note.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{PN}	Supply voltage	Applied among P-Nu, Nv, Nw		300	500	V
V _{CC}	Control supply voltage	Applied to V _{CC} -GND	13.5	15	18	V
V _{BS}	High-side bias voltage	Applied to V_{BOOTx} -OUT for x = U, V, W	13		18	V
t _{dead}	Blanking time to prevent arm-short	For each input signal	1			μs
f _{PWM}	PWM input signal	-40 °C < T _C < 100 °C -40 °C < T _J < 125 °C			25	kHz
T _C	Case operation temperature				100	°C

Table 14. Recommended operating conditions

6 Electrical characteristics (curves)

Figure 18. Thermal impedance for IGBT

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

7.1 N2DIP-26L type Z package information

Figure 19. N2DIP-26L type Z package outline

8558322_typeZ_rev3

Dim.	mm					
Dim.	Min.	Тур.	Max.			
A	4.80	5.10	5.40			
A1	0.80	1.00	1.20			
A2	4.00	4.10	4.20			
A3	1.70	1.80	1.90			
A4	1.70	1.80	1.90			
A5	8.10	8.40	8.70			
A6	1.75					
b	0.53		0.72			
b2	0.83		1.02			
С	0.46		0.59			
D	32.05	32.15	32.25			
D1	2.10					
D2	1.85					
D3	30.65	30.75	30.85			
E	12.35	12.45	12.55			
е	1.70	1.80	1.90			
e1	2.40	2.50	2.60			
eB1	16.10	16.40	16.70			
eB2	21.18	21.48	21.78			
L	0.85	1.05	1.25			
Dia	3.10	3.20	3.30			

Table 15. N2DIP-26L type Z mechanical data

7.2 N2DIP-26L packing information

Figure 20. N2DIP-26L tube (dimensions are in mm)

Revision history

Table 16. Document revision history

Date	Revision	Changes
22-Jan-2016	1	Initial release.
26-Jul-2016	2	Document status promoted from target to preliminary data. Updated features in cover page, Section 3: Electrical characteristics, Section 3.2: Control part, Section 5: Application circuit example and Section 6: Guidelines. Added Section 7: Electrical characteristics (curves).
16-Dec-2016	3	Document status promoted from preliminary to production data. Updated Figure 12: $V_{CE(sat)}$ vs. collector current.
30-Jan-2019	4	Updated N2DIP-26L type Z cover image silhouette and Section Features. Added Figure 2. Pin layout (top view) - N2DIP-26L type Z and Figure 15. I_C vs case temperature. Updated Section 3.2 Control part and Figure 14. Diode V _F vs forward current. Minor text changes.

Contents

1	Inte	rnal schematic diagram and pin configuration	2			
2	Elec	Electrical ratings				
	2.1	Absolute maximum ratings				
		2.1.1 Thermal data	5			
3	Elec	ctrical characteristics	7			
	3.1	Inverter part	7			
	3.2	Control part	9			
		3.2.1 NTC thermistor	11			
	3.3	Waveform definitions	12			
4	Shu	tdown function	14			
5	Арр	lication circuit example	16			
	5.1	Guidelines				
6	Elec	ctrical characteristics (curves)	18			
7	Pac	kage information				
	7.1	N2DIP-26L type Z package information				
	7.2	N2DIP-26L packing information.				
Rev	vision	history				

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Modules category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below :

F3L400R07ME4_B22 F4-50R07W2H3_B51 FB15R06W1E3 FB20R06W1E3_B11 FD1000R33HE3-K FD400R12KE3 FD400R33KF2C-K FD401R17KF6C_B2 FD-DF80R12W1H3_B52 FF200R06YE3 FF300R12KE4_E FF450R12ME4P FF600R12IP4V FP15R12W2T4 FP20R06W1E3 FP50R12KT3 FP75R07N2E4_B11 FS10R12YE3 FS150R07PE4 FS150R12PT4 FS200R12KT4R FS20R06W1E3_B11 FS50R07N2E4_B11 FZ1000R33HE3 FZ1800R17KF4 DD250S65K3 DF1000R17IE4 DF1000R17IE4D_B2 DF1400R12IP4D DF200R12PT4_B6 DF400R07PE4R_B6 BSM75GB120DN2_E3223c-Se F3L300R12ME4_B22 F3L75R07W2E3_B11 F4-50R12KS4_B11 F475R07W1H3B11ABOMA1 FD1400R12IP4D FD200R12PT4_B6 FD800R33KF2C-K FF150R12ME3G FF300R17KE3_S4 FF300R17ME4_B11 FF401R17KF6C_B2 FF650R17IE4D_B2 FF900R12IP4D FF900R12IP4DV FP50R07N2E4_B11 FS100R07PE4 FS150R07N3E4_B11 FS150R17N3E4