

SCTWA10N120

Silicon carbide Power MOSFET: 12 A, 1200 V, 550 mΩ (typ., T_J=150 °C), N-channel in an HiP247[™] long leads

Datasheet - preliminary data

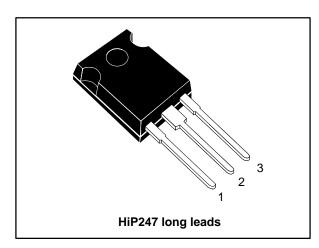
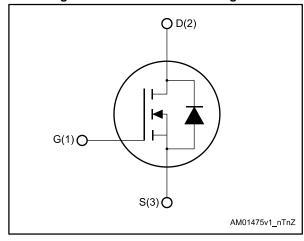



Figure 1: Internal schematic diagram

Features

- Very tight variation of on-resistance vs. temperature
- Slight variation of switching losses vs. temperature
- Very high operating temperature capability (200 °C)
- Very fast and robust intrinsic body diode
- Low capacitance
- Easy to drive

Applications

- Solar inverters, UPS
- Motor drives
- High voltage DC-DC converters
- Switch mode power supplies

Description

This silicon carbide Power MOSFET is produced exploiting the advanced, innovative properties of wide bandgap materials. This results in unsurpassed on-resistance per unit area and very good switching performance almost independent of temperature. The outstanding thermal properties of the SiC material, combined with the device's housing in the proprietary HiP247™ package, allows designers to use an industry-standard outline with significantly improved thermal capability. These features render the device perfectly suitable for higherficiency and high power density applications.

Table 1: Device summary

Order code	Marking	Package	Packaging
SCTWA10N120	SCT10N120	HiP247™ long leads	Tube

The device meets ECOPACK standards, an environmentally-friendly grade of products commonly referred to as "halogen-free". See Section 6: "Package information".

February 2016 DocID029057 Rev 1 1/10

Contents SCTWA10N120

Contents

1	Electrical ratings	3
	Electrical characteristics	
3	Test circuits	6
	Package information	
	4.1 HiP247™ long leads package information	7
5	Revision history	

SCTWA10N120 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	1200	V
V _{GS}	Gate-source voltage	-10/+25	V
I _D	Drain current (continuous) at T _C = 25 °C	12	Α
I _D	Drain current (continuous) at T _C = 100 °C	10	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	24	Α
Ртот	Total dissipation at T _C = 25 °C	110	W
T _{stg}	Storage temperature range	55 to 200	°C
Tj	Operating junction temperature range	-55 to 200	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	1.6	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	40	°C/W

⁽¹⁾Pulse width limited by safe operating area.

Electrical characteristics SCTWA10N120

2 Electrical characteristics

(TCASE = 25 °C unless otherwise specified).

Table 4: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	1200			٧
	Zero gate voltage	V _{DS} = 1200 V, V _{GS} = 0 V			10	μΑ
IDSS	drain current	$V_{DS} = 1200 \text{ V}, V_{GS} = 0 \text{ V},$ $T_{J} = 200 \text{ °C} ^{(1)}$			100	μΑ
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = +22 /-10 V			100	nA
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1.8	3.5		V
		V _{GS} = 20 V, I _D = 6 A		520	690	mΩ
R _{DS(on)}	Static drain-source	$V_{GS} = 20 \text{ V}, I_{D} = 6 \text{ A},$ $T_{J} = 150 ^{\circ}\text{C}$		550		mΩ
	on-resistance	$V_{GS} = 20 \text{ V}, I_D = 6 \text{ A},$ $T_J = 200 \text{ °C}$		600		mΩ

Notes:

Table 5: Dynamic

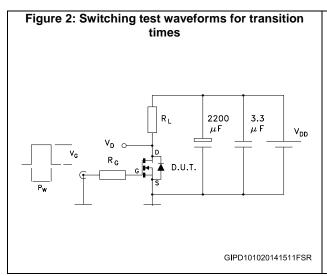
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance	\(\dot{4000\} \dot{6 \dot{4000}	ı	300	•	pF
Coss	Output capacitance	$V_{DS} = 1000 \text{ V}, f = 1 \text{ MHz},$ $V_{GS} = 0 \text{ V}$	-	25	-	pF
Crss	Reverse transfer capacitance	VGS = 0 V	-	9	-	pF
Qg	Total gate charge		-	21	-	nC
Q_gs	Gate-source charge	$V_{DD} = 800 \text{ V}, I_{D} = 6 \text{ A},$ $V_{GS} = 0 / 20 \text{ V}$	-	TBD	-	nC
Q_{gd}	Gate-drain charge	VGS - 0 / 20 V	-	TBD	-	nC
Rg	Gate input resistance	f=1 MHz open drain	1	TBD	-	Ω

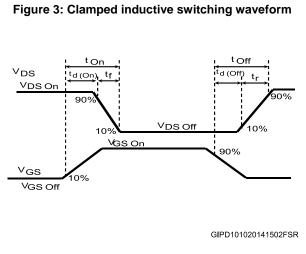
Table 6: Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Eon	Turn-on switching energy	$V_{DD} = 800 \text{ V}, I_{D} = 6 \text{ A}$	ı	TBD	ı	μJ
E _{off}	Turn-off switching energy	R_G = 4.7 Ω , V_{GS} = -2/20 V	-	TBD	-	μJ
Eon	Turn-on switching energy	$V_{DD} = 800 \text{ V}, I_{D} = 6 \text{ A}$	-	TBD	-	μJ
E _{off}	Turn-off switching energy	R_G = 4.7 Ω , V_{GS} = -2/20 V T_J = 150 °C	-	TBD	-	μJ

⁽¹⁾Defined by design, not subject to production test.

Table 7: Switching times


	14400 11 0 11110 11110 11110					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	TBD	1	ns
t _f	Fall time	$V_{DD} = 800 \text{ V}, I_{D} = 6 \text{ A},$	-	TBD	1	ns
t _{d(off)}	Turn-off delay time	$R_G = 4.7 \Omega, V_{GS} = 0/20 V$	-	TBD	-	ns
tr	Rise time		-	TBD	-	ns


Table 8: Reverse SiC diode characteristics

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
V_{SD}	Diode forward voltage	$I_F = 3 A, V_{GS} = 0 V$	-	TBD	-	V
t _{rr}	Reverse recovery time		-	TBD		ns
Qrr	Reverse recovery charge	$I_{SD} = 6 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 800 \text{ V}$	-	TBD	-	nC
I _{RRM}	Reverse recovery current	VDD = 000 V	-	TBD	-	Α

Test circuits SCTWA10N120

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 HiP247™ long leads package information

HEAT-SINK PLANE ÐΊA F2 BACK VIEW 7395426_7.0

Figure 4: HiP247™ long leads package outline

Table 9: HiP247™ long leads package mechanical data

_ ·	able 9. THE 247 TOTIS TEAC	o paokago moonamoa	dutu
Dim.		mm.	
Dim.	Min.	Тур.	Max.
Α	4.90		5.15
D	1.85		2.10
Е	0.55		0.67
F	1.07		1.32
F1	1.90		2.38
F2	2.87		3.38
G		10.90 BSC	
Н	15.77		16.02
L	20.82		21.07
L1	4.16		4.47
L2	5.49		5.74
L3	20.05		20.30
L4	3.68		3.93
L5	6.04		6.29
M	2.25		2.55
V		10°	
V1		3°	
V3		20°	
DIA	3.55		3.66

SCTWA10N120 Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
29-Feb-2016	1	First release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by STMicroelectronics manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B