Love to C

Written by Jie Qi
Illustrations by K-Fai Steele

Love to Code: Volume 1 Copyright © 2017 by Jie Qi
Some rights reserved.

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License: @ @ @
https://creativecommons.org/licenses/by-sa/4.0/

Publisher: Sutajio Ko-Usagi Pte Ltd

dba Studio Kosagi, in Singapore
infoldchibitronics.com

Illustrator: K-Fai Steele

Editor: Andrew “bunnie” Huang
Technical Editor: Natalie Freed

ISBN: 978-981-11-4688-6 “H HHH H
97789811"146886" >

Prologue

Fern is a really creative frog.

| like to make art
and take photos
4 and write
and dance
and act

and sing
and play music.

&

Basically, I like
to create!

¢

Recently some of Fern’s friends started to make drawings,
paintings and costumes that would light up and were interactive...

“My friends are making
drawings that do things!”

Fern wanted to make drawings
that lit up too.

P-2

Her friend Sami, a seal, noticed that Fern was frustrated.

“Fern, do you want me to show you how to add lights to your
drawings too?”

“Oh ... you don’t have to,” said Fern.

“But | can tell you want to do it. And look, you've already started!”
Sami barked cheerfully.

“Well, um,” Fern shuffled. “It's just hard. There are just so many
things to learn and sometimes it feels like I'll never get there.”
Sami smiled. “Sometimes it's hard. Learning any new thing can be
challenging ... but it can be fun too! Let’s give it a try together!”

@ B

P-4

In this book, Fern gets help from not only Sami, but also from her whole
gang of friends. Fern — and you — will learn how to add lights and
sensors to drawings.

Fern promises that if you tag along and complete the activities in this
book, your drawings will also be able to “do” something too!

Carmen

P-6

LED stickers

These stickers are LED lights!
We’'ll use them to make our
projects glow.

Fabric tape patches
These conductive fabric
patches help us fix broken
circuit connections.

>
&2
>

000

Copper tape
We use copper tape to connect
the different parts of our circuit.

Circuit sticker stencil

Use this stencil to help you
sketch your own circuit designs!

c=

E -+
|¢H+ Dﬂg &Ead
0123945 -+
poooooogen Yoo

We’ll explain how to use all of this stuff in the chapters to come!

iy

P-8

You can do the chapters in this book on your own, but they are also a
lot of fun to do with a friend!

If you need help or get stuck, check out our web tutorials at:
chibitronics.com/lovetocode

Or send a detailed description of your problem to
helpf@chibitronics.com. We’'ll do our best to respond but please be
patient, we're a small team of makers, artists, and dreamers — just
like you!

Ready? Let’s go!

P-10

Chapter I
Light Up an

&

¢

“Let’s start with the basics,” said Sami the seal to Fern the frog.
“We can turn on a light by connecting it to a Chibi Chip!”

1-1

GND +3V

TURN ON A LIGHT!

In this activity we will power up our Chibi Chip and use it to light up an

LED sticker!

We will need: @ ? @

1-2

Chibi Light copper
LED sticker tape

Chibi Chip

1. Stick copper tape over
each of these gray lines.

+

L

2. Stick an LED -
sticker over the ,}

triangle footprint.

3. Plug the Chibi Chip into
a power source, so that the
green PWR light comes on.

4. Align and clip the Chibi
Chip to the page over this
rectangle. Make sure the
metal pads of the clip touch
your circuit.

USB power
(Chibi Book, laptop or
wall plug)

USB cable

< -
- :
F Y
5. Bask in the

soft white glow
of the LED!

“You can see the LED’s light through the paper!” exclaimed Sami. “Fern,
let's draw something around the light.”

What should Fern draw?

|
I

i S

DOWN THE RABBIT HOLE:
LED CIRCUITS

===

Electricity is a form of energy that flows to turn on your light. This flow of
energy is called a current. Like a ball rolling down a hill, a current will only
flow when there is a difference in height, from high to low.

In electronics, the difference
in height is called a voltage.

Voltage is a measurement of
potential energy, just like the
height of a ball on a hill.

&

For an LED to turn on, current must flow through
the LED from a higher voltage on the (+) side to a
lower voltage on the (-] side. Here's what happens
when you connect the (+) and (-] ends of your LED
(represented by Fern and Sami) to different voltages:

OFF @
fol

GND GND ¢
3VOLTS O VOLTS
OR +3V OR GND

+ B

¢,
OFF
[

GND +3V +3V +3V

To summarize: when we connected the (+) side of the LED sticker to 3 volts
and the (-) side to GND (or 0 volts), we provided enough voltage in the right
direction for the LED to turn on!

Don’t worry if you accidentally connect the LED backwards. Nothing bad will
happen, it will just not turn on.

BE CAREFUL NOT TO CONNECT THE +3V PIN TO GND DIRECTLY BY
CROSSING TRACES: THIS CREATES A SHORT CIRCUIT!

Electrons are lazy and will take any shortcut instead of going through your
LED to turn it on, which is why this is called a “short” circuit.

1-8

5\ HOW CAN WE TURN ON A
-2 =~ BUNCH OF LIGHTS?

Here are a couple of ideas:

Parallel Circuits

Parallel circuits are where each LED shares a trace
between +3V and GND. To connect LEDs in parallel,
stick the LEDs next to each other between a (+) and a
(-) track, like rungs on a ladder. You can turn the circuit
on page 1-2 into a parallel circuit by just adding LEDs!

As the illustration above shows, all of the (+)'s go to the +3V pin, and all of
the (-)’s connect to ground. This way the power source provides enough
voltage (“height”) for each LED. Since each LED needs at least 2.5V,
connecting them in parallel to the +3V pin will turn all the LEDs on.

+

2 - =

xxx
10

1-

LET'S PLAYI

It's now time to design your own scene! Before we get started, here
are some tips and tricks on how to use copper tape.

To turn copper tape around corners, try this folding trick:

£, %ﬂ\i\f

First, fold the tape Then, flip and Finally, flatten
back, so the sticky turn the tape. the corner.
side faces up.

&
& If an LED is flickering, the

connection can be improved by

Conductive fabric patches are like
bandages for circuits. Accidentally torn

copper tape can be rejoined by just sticking
a conductive fabric patch over the broken

connection! 2

L R e 7

also handy for
[] e" To cross copper tape without

making your _ o=
causing a short circuit, you can

sticking a fabric patch over the
LED and copper tape!

circuit branch
put a small piece of paperin

out or extend!

D Just tape a between the traces to keep them
conductive fabric separated.
patch over two

D copper tapes to The paper is an insulator,
connect them which is a type of material that

electricity can’t flow through.

Look on the facing page! It's a magical flower pot! What's growing? What's
glowing?

Draw your own creature on page 1-15 and then design a circuit on page 1-17
to light it up!

REMEMBER TO WATCH
OUT FOR SHORT
CIRCUITS!

YAY! NOPE. YAY!

&

1)

“Yay! This feels like magic!” Fern exclaimed.

Fern’s friend Carmen the bird walked past and admired the new creation.
“Adding light to your art really does make it look magical,” she chirped.

Carmen, a clever programmer, thinks for a moment and asks, “Hey, do you
want me to show you both how to make those lights blink?”

“Wow, if those lights could blink, then my drawings would really
come alive!” said Fern enthusiastically. “Can | really do that?”

“We can control lights by writing programs, through a process
called coding,” said Carmen the bird. “Let’s get started!”

2-1

LET'S GET CODING!

In this activity we will upload a program to the Chibi Chip to make a
light blink. The code starts as text in your browser, which then gets
translated by a compiler and finally converted into a song that we play
to the Chibi Chip. When the Chibi Chip hears the song, it decodes the
song back into instructions on how to turn your LED light on and off.

We will need:

Chibi Chip, Programming USB power
mounted in a Clip and power cable [Chlblv?:fil;ltagﬁmpor

A device with a web
browser (phone,

=

[] computer, or tablet):
Internet this is the programming
connection device

1. Make sure we’ve got an Internet connection. Open a web browser

and go to: ltc.chibitronics.com
This brings us to the Love to Code (LTC) text programming editor. This
is where we type the code that will be sent to the Chibi Chip.

2-2

4. Turn the volume up to the max on the programming device and
make sure it's not muted. Since code is uploaded to the Chibi Chip
through the audio cable, we need to turn the volume up to 100% so the
Chibi Chip can hear the code loud and clear!

5. Press and hold the program button on the Chibi Chip until the PROG
light stays red. This lets the Chibi Chip know to listen for new code. Let
go of the button after the light turns red.

Y, Y
\C,- PROG light changes to ﬁ

sl TET gy GeD B4R

® o

Program
Button

6. Click Upload on the browser to upload the code and program the

Chibi Chip.

|
I

Upload

A sound waveform should appear at the bottom of the page. Its
presence means the code is currently being played to the Chibi Chip. If
this bar does not appear, try refreshing the page and uploading again.

2-4

DECODE THE CODE

How does the Chibi Chip blink the LED? It's actually following a set
of instructions generated from our code! Let’s take a look:

//Love to Code The comments are notes to
//Volume 1: Basic Blink us about what the code does.

void setup() { The setup function happens
outputMode(0); once at the beginning, when
} you first turn on the chip.
4
void loop() {
on(0); The loop happens over and
pause(1000); over after setup is done.
off(0);
pause(1000);
}

The comments describe what the code does. The Chibi Chip will
ignore any notes that we leave in the code after a // (double slash).
Adding comments is a good way to record and remember things.

The main code is split into two parts called functions: the “setup”
and the “loop” functions. We label the functions first, using void
setup() and void loop(), and then we put the function’s code
inside squiggly brackets { and }, after each label. The coded
statements inside each function are step-by-step instructions for a
Chibi Chip. Each statement must end with a “;" semicolon.

|
I

void setup() {
// code here is used to setup the Chibi Chip
// it’s run only once at the beginning

void loop() {
// code here is the loop or ‘body’
// and gets run over and over

2-6

In the loop function we have three different kinds of instructions:
on(), pause(), and off(). These three kinds of instructions allow
us to blink a light by turning it on, pausing, then turning it off and
pausing again.

The numbers (0 through 5) on the bottom of a Chibi Chip label the
pins. Our code statements can control these pins.

For example, on() turns a pin on, and off () turns a pin off. The
number inside the () parenthesis is called an argument, and
specifies which pin to turn on or off. So, in our blink example, on(0)
turns on pin 0 and off(@) turns off pin 0. The indicator LED above
pin 0 also turns on and off, helping us confirm that the Chibi Chip
understood our code statements.

&

on(@) Sk off(0) ~

L]
-

Pin 0 OFF l_l'

pause() tells the Chibi Chip to wait and not do anything. The number
inside the () parenthesis tells how long to wait in milliseconds. In
our blink code, pause(1000) instructs the Chibi Chip to wait 1000
milliseconds, or 1 second.

|
I

Remember:
there are 1000
milliseconds in
1 second!

The Chibi Chip goes so quickly from one instruction to the next that
if we don't tell it to pause, everything blurs together! The smaller the
delay, the faster things will go.

2-8

PLAY WITH THE CODE

Let’s try writing our own code! Start by changing the pause times:

void loop() {
on(@);
pause(1000);
off(0);
pause(1000); &

¥ &_ Change this number to 500
in both pauses

Upload this new code to the Chibi Chip using the procedure
starting at step 5 on page 2-4 and see what happens.

REMEMBER TO PRESS THE
PROG BUTTON ON YOUR CHIBI
CHIP BEFORE CLICKING THE
UPLOAD BUTTON, SO IT KNOWS
TO LISTEN FOR CODE!

The light over pin 0 should now be flashing faster! Try some other
numbers for the pause between on and off statements. Can you
make it blink super slow?

GND +3V

5

GND

PROGRAM THIS CIRCUIT

We can use a program to control a circuit of our own design. Try
it with this template!

1. Stick copper tape on the

[— gray lines. Remember to
fold the tape at the turns!

+ &N

2. Stick down a LED.

&

Remember to fold your tape
€\ and not cut or tear at the turns.
Check out the facing page for a

t 3.Clipona tape folding trick to make neat
Chibi Chip. turns!
See how when you connect the LED Try clipping GND and pin 0 to
circuit to pin 0, the LED also blinks the “Turn on a Light” circuit on
just like the indicator light on the page 1-2, and see that blink .
Chibi Chip? That's because the pin too!)

sends power to both the light on
the Chip as well as to any LEDs in a
circuit connected to that pin.

Draw something on page 2-13, to see the shadow of your drawing
appear when the light blinks on!

/

1“&.5& aalda a-.mn‘

2-14

2-16

PLAY WITH THE CODE

Ready to add more pins to our program? Let’s try to make pin 3
blink! First, let's add one more outputMode() statement to the
setup, so the Chip knows how to configure pin 3 before we use it:

void setup() {
outputMode(0);
outputMode(3);

}

Now, add more on() and off() statements to the loop to make our
new pin do stuff, using “3” as the argument inside the parenthesis: *

void loop() {
on(@);
pause(1000) ;
off(09);
pause(1000);
on(3);
pause(1000);
off(3);
pause(1000);

}

Upload this new code and you will see pin 0 and pin 3 both blinking
on and off! To make the lights blink together, try this code:

void loop() {
on(0);
on(3);
pause(1000);
off(0);
off(3);
pause(1000);

}

Even though pin 3 and pin 0 are controlled with statements on
different lines, the Chibi Chip goes from one step to the next so fast
that they seem to happen at the same time! Try adding or modifying
pause() statements to make your own patterns.

|
I

Draw what everyone in the apartment building is doing when they
come home. Their shadows will show up in the windows when the
LED stickers on the facing page turn on!

2-18

DOWN THE RABBIT HOLE:
MICROCONTROLLERS

—

So how does a program actually make lights blink? There’s a little
black diamond on the Chibi Chip called a microcontroller: this is a

tiny computer.

HE ZER e " o0
Pt PROS Il TET sgv GHE ROR
SoET
a0 OF]
el —
P
£ W da,

The microcontroller runs instructions coded by your program. Some of
these instructions change how the pins behave.

Unlike the +3V and GND pads, which are permanently wired to +3V
and GND, all the numbered pins can be programmed by statements
in our code to connect to +3V, GND, or neither. All of this happens

inside the tiny microcontroller!

on(0); off(0);
GND GND
Pine T e .

2-20

GND +3V

5

<l

GND

LET'S PLAY!

Now it's your turn to design your own circuit and light up the night sky
(turn to page 2-24 for a preview).

Above is a Chibi Clip template to help you get started. Use as many
pins, and whatever circuit shape you like! If you're not sure how to
start, take a look back at the circuit on page 2-19 for reference.

Remember: LEDs that are connected to the same pin will come on at
the same time. Since the Chibi Chip has 6 programmable pins, you
can control up to 6 separate groups of lights with one Chibi Chip!

2-22

&

|
I

&

|
I

Edith the beaver overheard her three friends enjoying the light show
and looked out her window.

“How am | missing out on this party?” cried Edith, and she quickly
rushed out to join the fun.

2-24

‘hapter 3:
a switch!

“| love building things! | can build switches out of paper and
copper tape,” Edith the beaver quipped. “If we add a switch to
our circuit, then we can interact with the lights!”

Thwacking her tail enthusiastically, as if smacking a giant
switch, Edith continued,"When someone presses the switch, we
can make something happen, like blinking the lights.”
“Amazing!” exclaimed Fern. “Show us how!”

PROGRAM A SWITCH

In this activity we'll add interactivity to our projects by using a switch to
turn on a light. We can create different types of switches out of paper
and use our switch to trigger light patterns.

We will need:

Chibi Chip cable USB Power N
= E
]
Internet connection copper tape Chibi Light
LED Sticker

Web browser
(phone, computer, or
tablet): this is your

programming device

scissors

1. Turn the page and make the switch circuit template on page 3-4.

2. Upload the Basic Switch example code to the Chibi Chip. Go to
Examples = Love to Code Vol 1 - Basic Switch

o D D D
) tronics

&

PUSHBUTTON SWITCH TEMPLATE

1. Stick copper tape

\[over the gray lines.

>

% Remember &
to fold at the

w|
turns!

<

(3]

N

1

2. Add LED. '_Q/
+

’t_ 3. Clip the
Chibi Chip.

GND 0

5. Cut along the two

4. Cover this solid red lines
gray patch and fold the flap
with copper over to make the
tape. C pushbutton.

ST

What happens when you
press on Edith’s tail?

We start by creating a variable which is a text name that stores a
number. This comes in handy for storing our switch status so we can
use it for controlling our pins later. We create variables like this:

int pressed = 0;

This is the name of _/I' tThis is the initial value we
our variable set our variable to

The int right before our variable stands for integer. On a Chibi Chip,
it means that the variable can be set to a whole number, like -42 or
18000, but not to a decimal like 3.14. The whole number must be no
less than -2147483648 and no greater than 2147483647, and typed
without commas.

We named our variable pressed because it tells us whether the
switch is pressed or not, but we can name a variable any single
word that helps us remember what it’s for!

We set pressed equal to 0 at the beginning as a default, or initial,
value. As long as we don’t change pressed from 0, every time we
write pressed in the code, it is the same as writing the number 0.

-F pressed = [’9]

J- /i

The cool thing about variables is that we can update the stored
number. We do this by setting it to another value with the = equal
sign. For example, pressed = 1 changes pressed to equal 1
instead of 0. We use this technique to update our pressed variable
based on if the button is pressed or not.

We program our lights to turn on or off depending on the switch’s
value. We do this using an if() statement. Here is the general
structure of the if() statement:

if(condition) {
// Option 1 code: runs when
// condition is TRUE
} else {
// Option 2 code: runs when
// condition is FALSE

}

An if () statement allows us to change the behavior of the circuit
based on the answer to a question. This question is called a
condition.

If the condition is TRUE, then the Option 1 code between the first
set of curly braces {} runs. If the condition is not true, or FALSE,
then the Option 2 code between the second set of curly braces {}
runs.

It's like train tracks that split into two paths, and which path the
train takes depends on whether the condition is true or false.

To summarize: if our switch is pressed, then pressed is 1, our
condition is TRUE and we turn ON pin 0. If our switch is not pressed,
then pressed is @, our condition is FALSE, and we turn OFF pin 0.

Switch is pressed - Switch is not pressed -
pressed = 1 - pressed = 0 -
condition is TRUE = condition is FALSE =
turn ON pin 0 turn OFF pin 0

ETWY

For example, try putting this blink sequence inside the if() statement
and see what happens!

pressed = read(5);

if(pressed == 1) {
on(0);
pause(500);
off(0);
pause(500);
on(0); &
pause(500) ;
off(0);
pause(500);

} else {

on(0);

Voila! We've made a trigger button! Now every time we press the
button, it triggers the blink animation inside the if() statement. Try
programming your own patterns for the trigger button!

Comments are also handy for keeping code snippets in a program

that aren’t actually run. This is useful when we're testing out different
options and don’t want to delete the original code. Just put the unneeded
code between the /* and */, like a regular comment. This is called

commenting out code:

Before:
Original code makes
the light blink when the
switch is pressed.

if(pressed == 1) {
on(@);
pause(500);
off(0);
pause(500);

} else {
off(0);

After:

New code comments out
blink code, so the light stays
on when the switch pressed.

if(pressed == 1) {
on(@);

/* pause(500);
off(9);
pause(500);

*/

} else {
off(0);
}

S
€

Another useful tool for cleaning up code is variables. So far we've used
variables to save information from our switches. However, variables are
useful for replacing numbers with more informative text names. Using
variables instead of values help make code easier to understand and

maintain:

Before:

What is connected to
these pins? Nobody
knows!

void setup(){
outputMode(3);
outputMode(4);

}

After:

When the LED pins are

named as variables, b
everyone knows what the

pins are for!

int starLED = 3;
int flowerLED = 4;

void setup(){
outputMode(starLED);
outputMode (flowerLED) ;

}

3-18

PAPERCRAFT SWITCHES

Now that we’'ve cleaned up our code, it's time to get messy with craft
materials! In the next several pages, we’'ll go through step-by-step
instructions on how to build a few types of papercraft switches. But
before we dig in, here is a brief introduction to the ideas we’ll cover.

Paper Clip Switch Holder

Use a paper clip to hold down a switch

that's been built at the edge of a page.

The switch will stay on even when it's &
not being pressed! The switch circuit

we built on page 3-4 is perfect for use

with a paper clip.

Press-the-Flap Switch

Use a flap of paper with copper tape
on it to close a circuit anywhere.
This way, we can make switches
anywhere on the page, not just on
the edge or corner of the paper!

To make sure the switch doesn’t
accidentally press itself and turn on,
insert a bit of paper or foam tape as
a spacer between the flap and the
circuit. { .
We can also use fun shapes for the

flap, like some of the ones below!

“ @

flap down

flap up

3-20

Pocket Character Switch

This switch comes in two parts: a character and a pocket. The

character is a loose piece of paper that has copper tape pasted
on a flap that's been rolled around to the back side. To hold the
character, we place a pocket over the switch gap in our circuit.

Front Back

When the character is placed inside
the pocket, the copper tape on the
character closes the switch gap and
completes the circuit!

A character can work as an ON/OFF switch too! Just flip the
character over so that the copper tape faces away from the circuit.
That way, the switch is off even when the character is in the pocket!

&

+3V

GND

|

3-22

What glows when the pointer reaches the switch? Craft the switch by
following the instructions on page 3-23!

POP-UP SWITCH

Here's what the finished ¢
pop-up switch looks like!

Stretch the pointer finger so
reaches the switch contacts,

and then press to activate

the switch.

When we let go, the pointer
springs back up!

|
I

3-24

3-26

Here's what the finished
press-the-flap switch
looks like! Press the

boot to close the switch.

5 GND +3V

4

3

What glows when we blow on the flower? Craft the flower by following
the instructions on page 3-29!

WIND SENSOR

3-28

Here's what the finished
wind sensor looks like!
Blow on the flower to
activate the switch. Try
adjusting the position
of the flower slightly
to improve the contact
between the copper
tape on the flower and
the paper.

You can also press on
the flower to operate
the switch as well!

|
I

3-30

Here's what the finished
pocket character switch
looks like. When we put
the cat in the pocket, it will
—————————— close the circuit, turning
the switch on. Make sure
to push the cat all the way
into the pocket for a secure

t ———————— j connection.

&

We can turn off the switch
by pulling the cat out of the
pocket, or by flipping the cat
around so that the copper
tape doesn’t touch the
circuit.

3-32

3-34

YOUR SWITCH!

DOWN THE RABBIT HOLE:
INPUT - PROCESS - OUTPUT

So we've played a bunch with switches now, and even designed our
own! But how does the Chibi Chip actually know when to turn things
on and off with the switch?

It works by taking in information from the world through the input
pin. The pin is named “input” because information goes “in” to the
board. What information, you ask? Voltage!

3-36

The code in the microcontroller processes the information from reading
the input voltage to make choices and compute the proper output. We save
the voltage reading in our pressed variable, process it through the if()
statement, and then turn on or off the LED.

S | / .
Process — b —_—

Input Output

It's a bit like how our hands work with our brain to sense the world
around us and to do stuff in response:

Think

Sense /-? »\N Act

|
I

Our brain is like
the Chibi Chip’s
microcontroller: it

processes input and

Fingers are like input makes decisions on Our arms and legs
g P what to do based on 9

pins: they sense things) : are like output pins:
the input signal.
through touch. they can change the
world around us.

3-38

“What else can we do with these lights?” asked Fern.
Everyone sat down and thought for a moment.

“Instead of going directly from off to on, could we make them
transition gradually?” Carmen asked.

&

“You mean like fading them in and out?” said Edith.

“Yeah!” exclaimed Fern. “That would make a really pretty effect

that can go with all kinds of scenes.” &
“| feel like we could figure out how to do that!” Sami said.

“Shall we try?”

©

a

3-40

hapter 4:
Fade in and Out!

“We've figured out how to turn the lights on and off, but how can we
make them fade slowly?” asked Fern the frog.

“I think | can explain!” said Sami the seal as she danced around the
room. “And while we're figuring it out, we can make dance costumes.
We can have a parade later, and if we decorate our costumes with twin-
kling lights we will look even more fabulous!”

SET BRIGHTNESS LEVELS

Rather than turning LEDs fully on or fully off, we can also dim them to inter-
mediate brightness levels! This lets us make fun new lighting effects, such
as fading our lights in and out smoothly, or creating a twinkling effect!

You will need:

Chibi Chip, Programming .
mounted In 2 Lp and power cable A device \[Nith aweb
’H‘ browser (phone,
) u® computer, or tablet):
o this_is the programming
Internet connection USB Power device

Upload the Set Level example code to the Chibi Chip. Go to Examples -
Love to Code Vol 1 - Set Level. When the code is done uploading, the light
on pin 0 will turn on and off by stepping through different brightness levels!

UPLOAD NOT WORKING? TRY THESE DEBUGGING TIPS. IF THESE DON'T
HELP, CHECK OUT THE DEBUGGING SECTION IN THE BACK OF THE BOOKI +

MAKE SURE THE DID THE PROG LIGHT TURN DID THE UPLOAD SOUND
VOLUME IS ALL THE STEADY RED BEFORE WAVEFORM ANIMATION
WAY UP. PROGRAMMING? IF NOT, APPEAR? IF NOT, TRY

PRESS AND HOLD THE PROG REFRESHING THE PAGE AND
BUTTON UNTIL IT TURNS RED ~ CLICKING UPLOAD AGAIN.
4-2 AND TRY UPLOADING AGAIN.

setLevel(pin, level) sets the brightness level of a pin. It’s like
using a dimmer instead of an on/off switch to turn on a lamp. Instead
of all the way on or all the way off, it lets us set in-between brightness
levels. Here's how it works:

setLevel(Q, 25);

This tells the Chibi —T t

This is the brightness level

Chip which pin we are we want. It can be any whole
setting. number, from 0 for all the way
off, to 100 for all the way on.

In our example code, we first used setLevel(LED, 25) to setthe LED

pin, or pin 0, to 25% brightness. We then set pin 0 to varying brightness
levels, anywhere from 0O for all the way off to 100 for full brightness, in &
increments of 25.

® ® ® O O

0 25 50 75 100

| | | |
~ | | T |

brightness

\Z

DECODE THE CODE

Rather than suddenly switching between brightness levels, how do we get
the lights to transition even more smoothly? We want our lights to glide up
and down like a ramp, instead of stepping up and down like a staircase.

Right now, the brightness increments are big, at 25% per step. Perhaps
things would smooth out if we could make the increments smaller?

S W Fan

The smallest brightness increment is 1. So to fade more smoothly from
off (0] to full brightness (100), we could write setLevel(LED, @), then
setLevel(LED, 1), setLevel(LED, 2), setLevel(LED, 3), and soon
all the way to setLevel(LED, 100).

But that would take so many lines of code, and take forever to write!

<&

&

The while() loop lets us repeatedly run a snippet of code without
having to write it over and over. Any code inside the while() loop
runs only if the condition is TRUE:

while(condition) {
// Code here runs over and over
// while condition is TRUE
Update current condition;

}

First the program checks if the condition is true. If so, it will run the
code inside the while() loop. When it's done running the inner code,
it goes back to the top and checks again to see if the condition is still
true. If so, it goes back and runs the while() loop code again. This
loop repeats until the condition is no longer found to be TRUE.

while
| <100

&

To make sure we don’t get stuck forever inside the while() loop, we
must update our current condition somewhere in the while() loop’s
inner code so that at some point in time, the condition statement will
no longer hold true. If we forget to do this, the Chibi Chip gets stuck
inside the while() loop, which is called an infinite loop.

4-8

Putting it all together, here’'s what a map of our example code looks
like for fading in and fading out using two back-to-back while() loops!

setup

while

<1 uufalse

while
>0

ﬁ false

11

DECODE THE CODE

Now that we have one pin doing fun fade effects, how do we get
multiple pins to fade in different patterns? The easiest way is through
multithreading! Multithreading means running multiple pieces of
code at the same time. Each running bit of code is called a thread.

Try loading Examples = Love to Code Vol 1 = Basic Multithreading
onto a Chibi Chip to see multithreading in action! We’ll see each of the
six indicator lights above the pins flashing different effects. Here's the

code:
v Ve have to include these two
#include “ChibiOS.h” special lines of code at the
. — ,, beginning to use
#include “SimpleThreads.h multithreading
//// thread 0o
void setupo() { &
// thread 0°’s setup code here
outputMode(Q);
Thread void loopo() {
) 0:. // thread @’s loop code here
Blink pin 0 on(e);
pause(300);
off(09);
pause(300);
}

Thread
4:
Fade pin 4

Thread
5:
Fade pin 5

int led4 = 4;
void setup4() {)
outputMode(4);)
} 5
void loop4() { /
int brightness4 = 0; A
while(brightness4 < 100) { F
setLevel(led4, brightness4); e
pause(10); #
brightness4 = brightness4 + 1; ’ &
: ‘
while(brightness4 > @) { *

}
/
i
v

}

void loop5() {

//// thread 4 n

setLevel(led4, brightness4);
pause(10);
brightness4 = brightness4 - 1;

}

/// thread 5

nt led5 = 5;

oid setup5() {
outputMode(5);

int brightness5 = 100;
while(brightness5 > @) {
setLevel(led5, brightness5);
pause(10);
brightness5 = brightness5 - 1;

}
while(brightness5 < 100) {

setLevel(led5, brightness5);
pause(10);
brightness5 = brightness5 + 1;

}
}

Just as real trains could collide if we put them on the same track at the
same time, a Chibi Chip could get confused if two threads fight over a
common resource. For example, if loop@() and loop1() both try to control
pin 0, the result would be a confusing mix of commands from loop@() and
loop1(). This kind of collision is called a race condition. In order to keep
things thread-safe, which means preventing collisions, we just have to make
sure that different threads don’t ever try to control the same pin.

Likewise, we should also make sure the names of variables are different
between threads, so the Chibi Chip doesn’t get confused. It's like having
two people with the same name share a mailbox — they’d have no way of
knowing which message was meant for which recipient!

That’s why we've named all the variables with their respective thread
number. We could name variables whatever we want, but naming them
something different for each thread keeps things simple to understand and
thread-safe.

Multithreading is easy, as long as we're careful to keep each thread'’s
resources separate!

GND +3V

5

<t

GND

MAKE A SCENE

You've learned so much! Now use your coding chops to help Fern
and friends design some light-up outfits for the parade.

You can make a scene higger by using conductive fabric patches to
connect between two pages. Try it now!

First, remove pages 4-19 through 4-22 from the binder. Craft your
circuits on this page, 4-18, and on page 4-23, using conductive fabric
patches to bridge between the pages.

Once finished, lay page 4-20 over page 4-18, and page 4-21 over
page 4-23. The lights will shine through the parade!

4-18

4-20

4-22

DOWN THE RABBIT HOLE:
PULSE WIDTH MODULATION

So how does a Chibi Chip fade lights in and out? It may seem like
the Chip is changing the voltage going to the LED to make it brighter
or dimmer, as previously explained in Chapter 1, but it's actually
turning the light on and off very quickly in a process called

pulse width modulation (PWM).

4\{}
The Chibi Chip can only turn a pin fully on or fully off, so it cannot
dim a LED by creating different voltages. Instead, to make the light
look like it’s partially on, the Chibi Chip blinks the light very quickly,
around 400 times a second: so fast that we can’t even notice it
turning on and off!
&

Instead, our eyes blur the rapid blinking so it seems like the LED is
shining at a constant, but dimmer, light level.

4-24

“This is really cool!” exclaimed Fern.

“It's not that cool,” muttered a smug, sarcastic voice. It was George
the flower. “There are way cooler switches you can make using a light
sensor. Haven't you heard of one before?”

Carmen and Edith both rolled their eyes. “This guy,” whispered Sami.

Fern thought for a minute. Maybe George could teach her something &
new she didn’t already know. "Hey George,” she said, “can you show
us?”

George heaved a sigh. "l guess. If you can keep up.”

“I'm pretty sure we can,” said Fern with a smile.

You're amazing! You've finished Love to Code Volume 1. For new
adventures with Fern and friends, like how to use a light sensor,
check out chibitronics.com/lovetocode.

4-26

Stuff isn't working? No matter! That's what debugging is for! Debugging
means looking closely at our project, finding the problems — also known
as bugs — and then fixing them so that our project works as expected.

WELCOME TO MY WORLD!
DON'T WORRY WHEN THINGS
DON'T WORK THE FIRST TIME.
FIGURING OUT WHAT WENT
WRONG IS HOW DISCOVERIES
ARE MADE!

D-1

BREAKING IT DOWN

When a project doesn’t work, it can seem overwhelming. The problem could
be anywhere!

That’s why we break it down into smaller parts and look at them one by one.
Then it's not so scary anymore! It's just like how we take small bites when
we eat, rather than swallowing the whole meal all at once!

POWER

Let’s start by checking the power! If
everything is working properly, the
power (PWR] light on the Chibi Chip
will be green to show that it has
enough power.

PWR light _N

1. Is the PWR light off? If so, it means the Chibi Chip is off because it isn’t
getting enough power! Try plugging the Chibi Chip into a power supply a4
that you've recently used to charge a phone, like a USB wall plug or com-
puter's USB port. Phones take a lot of power to charge, so if the USB port

can charge a phone, it can power a Chibi Chip!

2. Is the PWR light red instead of green? That typically means we have a
short circuit connecting +3V and GND directly to each other, draining pow-
er from the Chibi Chip! If you're powering the Chibi Chip from a computer,
an error message may also pop up on your screen about too much power
or current being drawn.

<.V a
-

If this happens, unplug the Chibi Chip from the power source, find the
connection causing the short circuit, and remove it. To learn more about
short circuits, go to page 1-8.

D-4

CIRCUIT

Is the Chibi Chip powered on, but the LEDs are still not turning on as
expected? There might be a bug in the connections of our circuit! Maybe
the circuit is incomplete because we forgot to make a connection, or the
connection is faulty. Or maybe something is connected that should not be,
causing a short circuit.

LET'S TAKE A LOOK AT SOME COMMON
CIRCUIT BUGS!

1. Are your Chibi Light LEDs installed in the correct direction? Make sure
that the pointy (-] end of every LED is connected to GND, and the wide (+]
side of every LED is connected to a numbered pin or +3V. Otherwise, the
LED is installed backwards, and it won't turn on.

YAY! NOPE.

2. Are any LEDs causing a short circuit? Make sure that the shiny metal -
pads of your LEDs are touching only one strip of copper tape. If one pad of
an LED is touching two different copper wires, then there is a short circuit
and your light will not turn on. In the example below on the right, the wide
(+) side is accidentally touching both GND and +3V, causing a short circuit!

YAY! NOPE.

CIRCUIT (CONT'D)

6. Is the Chibi Chip aligned properly with the circuit? Make sure the shiny

metal pads on your Chibi Chip line up with and touch the copper tape of
your circuit.

YAY! NOPE.

7. Is the copper tape really bumpy or wrinkly? If so, sometimes bumps
and wrinkles can prevent solid connections to your LEDs or Chibi Chip. If

this is the case, try smoothing out the tape by rolling over it with the flat
side of a pen or pencil.

YAY! NOPE.

8. Is the copper tape or LED sticker not sticky anymore? Make sure your ¢
hands are clean and dry before working with the copper tape and stickers.

If the stickers or tape get dirty, they may lose their tack, causing weak
connections in the circuit. If this happens, try patching weak connections

with conductive fabric patches.

CIRCUIT (CONT'D)

11. Are there branches in your circuit, or do you need to extend your cop-
per tape with another piece? Make sure to use a conductive fabric patch to
connect multiple pieces of copper tape. Just sticking two pieces of copper
tape on top of each other will not create a strong or reliable electrical con-
nection. Even if the circuit seems to works at first, over time the connection
will break down.

o
N
& .
YA NOPE.

12. Do you have a moving hinge in your circuit? Make sure to reinforce
it with a conductive fabric patch. Tears are especially common at plac-
es where the copper tape gets folded repeatedly. Copper tape will crack
when folded too many times.

FABRIC PATCHES WON'T DEVELOP CRACKS EVEN WITH
REPEATED FOLDING, SO THEY'RE GREAT FOR REINFORCING
MOVING OR BENDING PARTS OF A CIRCUIT!

UPLOAD

Even if the circuit is done, the Chibi Chip needs to be programmed correctly
for our project to work. Sometimes there are problems when we try to send
code from our programming device to the Chibi Chip. Here’s how to check if
this is an issue!

4

We test the upload process by trying to upload the Blink example program.
Save any code you've written and open up the blink example code by se-
lecting Examples = Love to Code Vol 1 - Basic Blink. We start with this
known code because it's easy to tell if it's working properly. If the upload is
successful, we will see pin 0 blink!

If the Basic Blink didn’t upload, let’s check out some possible reasons why:

1. Is the volume turned up all the way up? Is the sound acccidentally
muted? Make sure to unmute your sound and turn the volume all the way
up so that the Chibi Chip can hear the code. One of the most common
upload problems is that the audio is simply too quiet!

UPLOAD (CONT'D)

4. Is the audio being distorted? Some laptops automatically apply audio
“enhancements” (such as Dolby Audio or bass boost). These enhance-
ments will distort sound in a way that the Chibi Chip may not be able to
understand. If you have a Windows computer, particularly those made by
Lenovo, try following these instructions to disable pre-loaded audio distor-

tions:
Open Dol Ao
2. Select “Turn off Doi-—q Tom O Doty AueSio
io” Laain Wor ! B D o il
by Audio” (you can turn &nh:-‘nﬁ:;:- h:-:-:.m L) 1. Right-click N

it on again using the

. B Sy “Dolby” icon
same menu item) m/

5. Do you hear a static sound while programming the Chibi Chip? That
means your audio cable isn’t plugged all the way in. Make sure to push the
audio cable all the way into your programming device, so that the Chibi
Chip is hearing the code, and not you!

¥

6. Is the Chibi Chip in program mode? Before clicking upload, make sure &
to press and hold the programming (PROG] button on the Chibi Chip until

the PROG LED blinks and stays red. Otherwise the Chibi Chip won't know

to listen for new code.

2. PROG light solid red! Let go of the button now.

b ' -—
S Lo il T e R RO

j “@- e
' oW -y B v
1. Press hard & hold! e . & AW (] *

D-14

CODE

Sometimes there will be errors in our code that makes our circuits do
something other than what we intended. In this case, we have to debug our
code!

DEBUGGING CODE CAN OFTEN BE A LONG AND
FRUSTRATING PROCESS, BUT REST ASSURED, IT'S
REALLY SATISFYING WHEN YOU FINALLY FIGURE OUT
WHAT'S WRONG AND GET YOUR PROJECTS WORKING!

Clicked “Upload” on the browser, but the sound bar doesn’t appear?
There may be formatting errors in your code. If you're able to upload the
blink example code but not your own code, this is likely the case.

The code editor needs your code to be written in exactly the right format,
otherwise it wont understand the code and cannot compile it. Compiling

means translating the text code in your browser into the code song that

a Chibi Chip can understand. <

As a result, little errors in how the code is written, called syntax errors,
will stop an entire program from uploading!

D-16

CODE (CONT'D)

Code uploaded properly, but not behaving as intended? That means that
the code is formatted correctly, so it compiled and uploaded, but there is an
error in what the code tells the circuit to do, causing the program to behave
in an unintended way. This type of error is called a logic error.

Logic errors can be challenging to spot and fix because we have to figure
out our error based on the unexpected behavior of our circuit.

%

CODE (CONT'D

Most logic errors are hard to spot. But don’t worry: finding bugs and fixing
them is all part of learning to code! Here are some tips for finding the
trickier bugs:

/

*

1. Pretend to be the Chibi Chip, and trace through the code line by line.
Tracing through a program slowly can help catch many bugs. For exam-
ple: “turn light on”, “wait 1 second”, “turn light off”, “loop ends, repeat”,
“turn light on” - Aha, | was missing a delay after the “light off!”, so the
light turned off and on so quickly | couldn’t see it!

2. Test one change at a time. If you make several changes at once, you
may not know which change actually fixes the problem. Also, sometimes
changes can introduce new bugs, so even if one change fixed the bug,
the other change could have broken it again!

D-20

CODE (CONT'D)

A useful tool for finding and fixing bugs is to add a little extra code in your
program that helps monitor the Chibi Chip’s progress in running your code.
For example, we could insert a few lines of code that turn an LED on and off
at a specific point in a program.

If the LED blinks, that means the Chibi Chip is able to run up to that part of
the code. Likewise, if the LED doesn’t blink, it means that the code leading
up to the blink isn’t being run. This way, we can use the blinking LED as an
indicator for tracing through our code. If possible, try to use an LED that you
aren’t already using in your project! Below is a starting point for a blinkome-
ter that you might find handy:

// these five lines of code are a blinkometer you can insert
// in your program to see how far it has run!
outputMode(4); // ensure pin 4 can drive an LED
on(4); // blink pin 4 on and off
pause(500);
off(4);
pause(500);

The whole process looks like this:

1) Start from the very beginning and insert the LED blink code to es-
tablish that uploading is working, and that the blink code works.

2) Move the blink code a few lines down and upload the code again.

3) If the blink code didn’t trigger, look before that point for clues on why
it didn’t get there.

4) If the blink code did trigger, move the blink code a little further down
in the program and upload again.

5) Repeat steps 2-4 until you’ve found all your bugs!

D-22

CODE (CONT'D)

Debugging is an important programming skill! Don’t worry if it takes you
a while to solve a problem, you are building useful skills in the process,
while growing to understand coding better!

D-24

D-26

>onclusion

“We've made so much stuff!” said Fern.

“You're the one who did it all,” said Edith.

“We just helped,” said Carmen.

“Even though you thought you couldn’t,” whispered Sami.

Fern smiled.

Together we've learned how to:

Turn on an LED light using
our Chibi Chip

&

Add multiple LEDs to a project
and make them all blink

Control our lights with various
kinds of crafted switches

Fade lights in and out gradually,
and make fun patterns with the
LEDs using multithreading

Debug and fix our projects when
something doesn’t work!

Join the party! Go to chibitronics.com/projects to see community projects
and to share your own!

.

Happy making and see you again soon!

C-4

9"789811"146886" >

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Development Boards & Kits- ARM category:
Click to view products by SparkFun manufacturer:

Other Similar products are found below :

SAFETI-HSK-RM48 PICOHOBBITFL CC-ACC-MMK-2443 TWR-MC-FRDMKEO2Z EVALSPEAR320CPU EVB-SCMIMX6SX
MAX32600-KIT# TMDX570LS04HDK TXSD-SV70 OM13080UL EVAL-ADUC7120QSPZ OM13082UL TXSD-SV71

Y GRPEACHNORMAL OM13076UL PICODWARFFL YR8A77450HA02BG 3580 32F3348DISCOVERY ATTINY 1607 CURIOSITY
NANO PIC16F15376 CURIOSITY NANO BOARD PIC18F47Q10 CURIOSITY NANO VISIONSTK-6ULL V.2.0 80-001428 DEV-17/717
EAKO00360 YROK77210BOOOBE RTK7EKA2L1S00001BE MAX32651-EVKIT# SLN-VIZN-IOT ETTUS USRP B200OMINI USB-202
MULTIFUNCTION DAQ DEVICE USB-205 MULTIFUNCTION DAQ DEVICE ALLTHINGSTALK LTE-M RAPID DEV. KIT LV18F V6
DEVELOPMENT SYSTEM READY FOR AVR BOARD READY FOR PICBOARD READY FOR PIC (DIP28) EVB-VF522R3
AVRPLC16 V6 PLC SYSTEM MIKROLAB FOR AVR XL MIKROLAB FORPICL MINI-AT BOARD -5V MINI-M4 FOR STELLARIS
MOD-09.Z BUGGY + CLICKER 2 FOR PIC32MX + BLUETOOT 1410 LETS MAKE PROJECT PROGRAM. RELAY PIC LETS MAKE -
VOICE CONTROLLED LIGHTS LPC-H2294

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/embedded-development-tools/embedded-processor-development-kits/development-boards-kits-arm
https://www.x-on.com.au/manufacturer/sparkfun
https://www.x-on.com.au/mpn/texasinstruments/safetihskrm48
https://www.x-on.com.au/mpn/technexion/picohobbitfl
https://www.x-on.com.au/mpn/digiinternational/ccaccmmk2443
https://www.x-on.com.au/mpn/nxp/twrmcfrdmke02z
https://www.x-on.com.au/mpn/stmicroelectronics/evalspear320cpu
https://www.x-on.com.au/mpn/nxp/evbscmimx6sx
https://www.x-on.com.au/mpn/maxim/max32600kit
https://www.x-on.com.au/mpn/texasinstruments/tmdx570ls04hdk
https://www.x-on.com.au/mpn/ka-ro/txsdsv70
https://www.x-on.com.au/mpn/nxp/om13080ul
https://www.x-on.com.au/mpn/analogdevices/evaladuc7120qspz
https://www.x-on.com.au/mpn/nxp/om13082ul
https://www.x-on.com.au/mpn/ka-ro/txsdsv71
https://www.x-on.com.au/mpn/renesas/ygrpeachnormal
https://www.x-on.com.au/mpn/nxp/om13076ul
https://www.x-on.com.au/mpn/technexion/picodwarffl
https://www.x-on.com.au/mpn/renesas/yr8a77450ha02bg
https://www.x-on.com.au/mpn/adafruit/3580
https://www.x-on.com.au/mpn/stmicroelectronics/32f3348discovery
https://www.x-on.com.au/mpn/microchip/attiny1607curiositynano
https://www.x-on.com.au/mpn/microchip/attiny1607curiositynano
https://www.x-on.com.au/mpn/microchip/pic16f15376curiositynanoboard
https://www.x-on.com.au/mpn/microchip/pic18f47q10curiositynano
https://www.x-on.com.au/mpn/somlabs/visionstk6ullv20
https://www.x-on.com.au/mpn/criticallink/80001428
https://www.x-on.com.au/mpn/sparkfun/dev17717
https://www.x-on.com.au/mpn/embeddedartists/eak00360
https://www.x-on.com.au/mpn/renesas/yr0k77210b000be
https://www.x-on.com.au/mpn/renesas/rtk7eka2l1s00001be
https://www.x-on.com.au/mpn/maxim/max32651evkit
https://www.x-on.com.au/mpn/nxp/slnvizniot
https://www.x-on.com.au/mpn/digilent/ettususrpb200mini
https://www.x-on.com.au/mpn/digilent/usb202multifunctiondaqdevice
https://www.x-on.com.au/mpn/digilent/usb202multifunctiondaqdevice
https://www.x-on.com.au/mpn/digilent/usb205multifunctiondaqdevice
https://www.x-on.com.au/mpn/alsoholdingag/allthingstalkltemrapiddevkit
https://www.x-on.com.au/mpn/mikroelektronika/lv18fv6developmentsystem
https://www.x-on.com.au/mpn/mikroelektronika/lv18fv6developmentsystem
https://www.x-on.com.au/mpn/mikroelektronika/readyforavrboard
https://www.x-on.com.au/mpn/mikroelektronika/readyforpicboard
https://www.x-on.com.au/mpn/mikroelektronika/readyforpicdip28
https://www.x-on.com.au/mpn/nxp/evbvf522r3
https://www.x-on.com.au/mpn/mikroelektronika/avrplc16v6plcsystem
https://www.x-on.com.au/mpn/mikroelektronika/mikrolabforavrxl
https://www.x-on.com.au/mpn/mikroelektronika/mikrolabforpicl
https://www.x-on.com.au/mpn/mikroelektronika/miniatboard5v
https://www.x-on.com.au/mpn/mikroelektronika/minim4forstellaris
https://www.x-on.com.au/mpn/modulowo/mod09z
https://www.x-on.com.au/mpn/mikroelektronika/buggyclicker2forpic32mxbluetoot
https://www.x-on.com.au/mpn/adafruit/1410
https://www.x-on.com.au/mpn/mikroelektronika/letsmakeprojectprogramrelaypic
https://www.x-on.com.au/mpn/mikroelektronika/letsmakevoicecontrolledlights
https://www.x-on.com.au/mpn/mikroelektronika/letsmakevoicecontrolledlights
https://www.x-on.com.au/mpn/olimex/lpch2294

