
Input voltage 8V Current 400mA Voltage Regulator SSP7615

General Description

The SSP7615 is a high accuracy, low noise, high speed CMOS Linear regulator with low power consumption and low dropout voltage, which provide large output currents even when the difference of the input-output voltage is small. The devices offer a new level of cost effective performance in cellular phones, laptop and notebook computers, and other portable devices.

The current limiter's fold-back circuit also operates as a short circuit protection and an output current limiter at the output pin.

The SSP7615 regulators are available in standard SOT23-3, SOT23-5 and DFN1 \times 1-4 packages. Standard products are Pb-free and Halogen-free.

1

Features

Input voltage:1.5V~8VOutput range:1.2V~5.0V

• Maximum output current: 400mA @ VOUT=3.3V

• PSRR: 60dB @1KHz

• Dropout voltage:200mV @ IOUT=100mA

• Quiescent current: 0.5µA Typ.

• Shut-down current: <1µA

• Recommend capacitor:1µF

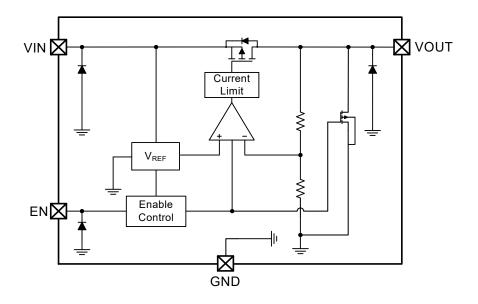
• Built-in Short-Circuit Protection, Current Limiter

Applications

- Radio control systems
- Cellphones, radiophone, digital cameras
- Bluetooth, wireless handsets
- Others portable consumer equipments

Order specification

Part No	Package	Manner of Packing	Devices per bag/reel
SSP7615-XXMR	SOT23-3	Reel	3000PCS/REEL
SSP7615-XXM5R	SOT23-5	Reel	3000PCS/REEL
SSP7615-XXDFR	DFN1×1-4	Reel	10000PCS/REEL

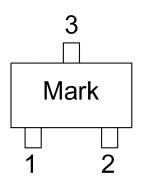

Note: XX indicates 1.2V~5.0V by 0.1V step. For example, 33 means product outputs 3.3V

Type selection guide

SSP7615-(1)(2)(3)(4)(5)

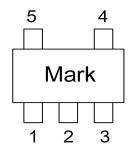
Designator	Symbol	Description
12	Integer	Output Voltage(1.2~5.0V)
	M	Package:SOT23-3
34	M5	Package:SOT23-5
	DF	Package: DFN1×1-4
(E)	R	RoHS / Pb Free
(5)	G	Halogen Free

Block Diagram



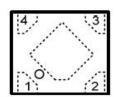
Pin Assignment

SOT23-3 (Top View)


Table 1: SSP7615-XXMR series (SOT23-3 PKG)

PIN NO.	PIN NAME	FUNCTION	
1	GND	GND pin	
2	VOUT	Output voltage pin	
3	VIN	Input voltage pin	

SOT23-5 (Top View)


Table 2: SSP7615-XXM5R series (SOT23-5 PKG)

PIN NO.	PIN NAME	FUNCTION	
1	VIN	Input	
2	GND	Ground	
3	EN	Enable(Active high, not floating)	
4	NC	Not connected	
5	VOUT	Output	

DFN1×1-4 (Top View)

Table 3: SSP7615-XXDFR series (DFN1×1-4 PKG)

PIN NO.	PIN NAME	FUNCTION
1	VOUT	Output
2	GND	Ground
3	EN	Enable(Active high, not floating)
4	VIN	Input

Functional Description

The SSP7615 is a high accuracy, low noise, high speed CMOS Linear regulator with low power consumption and low dropout voltage, which provide large output currents even when the difference of the input-output voltage is small.

Absolute Maximum Ratings

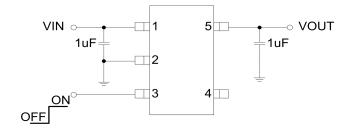
Parameter	Symbol	Value	Unit
Input Voltage	V _{IN}	-0.3~8	V
Max Output Current	I _{OUT}	450	mA
Operating Temperature	Topr	-40~85	°C
Storage Temperature	Tstg	-55~150	°C
Package Lead Soldering Temperature	Tsol	260	°C
Junction Temperature	Tj	-40~125	°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Thermal Information

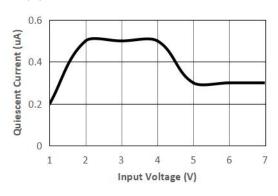
Parameter	Symbol	Package	Max.	Unit
Thermal Resistance (Junction to		SOT23-3	500	°C/W
Ambient) (Assume no ambient	θ ЈА	SOT23-5	500	°C/W
airflow, no heat sink)		DFN1×1-4	200	°C/W
		SOT23-3	0.40	W
Power Dissipation	P _D	SOT23-5	0.40	W
		DFN1×1-4	0.40	W

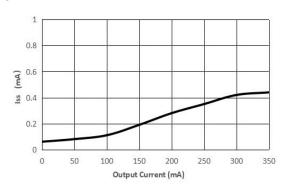
Note: P_{D} is measured at Ta= $25\,^{\circ}\mathrm{C}$


Electrical Characteristics

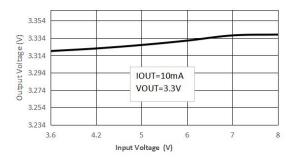
The following specifications apply for VOUT =3.3V, TA=25°C, unless specified otherwise.

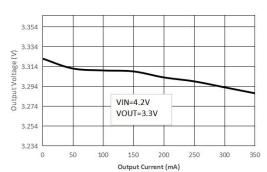
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Input Voltage	V _{IN}		1.5		8	V
Output Range	V _{OUT}	I _{OUT} =1mA	-2	V _{OUT}	2	%
Quiescent Current	IQ	V _{OUT} =3.3V, I _{OUT} =0		0.45		μΑ
Current Limit	I _{LIMIT}	V _{IN} =V _{EN} =4.5V		400		mA
Dropout	\/	V _{OUT} =3.3V, I _{OUT} =100mA		200		mV
Voltage	V _{DROP}	V _{OUT} =3.3V, I _{OUT} =200mA		400		mV
Line Regulation	$\triangle V_{LINE}$	V _{IN} =2.7~5.5V, I _{OUT} =1mA		0.01	0.15	%/V
Load Regulation	$\triangle V$ load	V _{OUT} =3.3V, I _{OUT} =1~300mA		200		mV
Short Current	I _{SHORT}	$V_{EN}=V_{IN},\ V_{OUT}$ Short to GND with 1Ω		35		mA
Shut-down Current	I _{SHDN}	V _{EN} =0V			1	μΑ
Power Supply Rejection Rate	PSRR	$V_{IN}=5V_{DC}+0.5V_{P-P}$ F=1KHz, $I_{OUT}=10$ mA		60		dB
EN logic high voltage	V _{ENH}	V _{IN} =5.5V, I _{OUT} =1mA	1.2		VIN	V
EN logic low voltage	V _{ENL}	V _{IN} =5.5V, V _{OUT} =0V	1		0.4	V
EN Input Current	I _{EN}	V _{EN} = 0 to 5.5V			1	μΑ

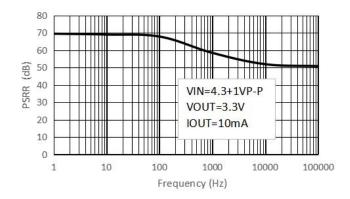

Application Circuits



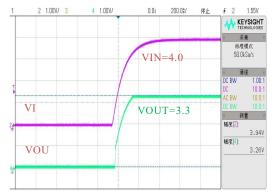
Typical Performance Characteristics

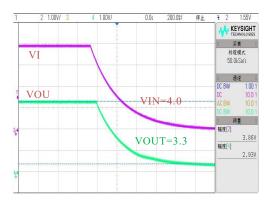

 C_{IN} =1 μ F, C_{OUT} =1 μ F, V_{IN} =4.5V, V_{OUT} =3.3V,SOT23-5, T_A =25 $^{\circ}$ C (unless specified otherwise.Package:SOT23-5L)

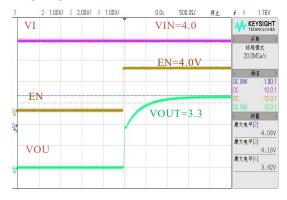

(1) Quiescent current vs Input voltage

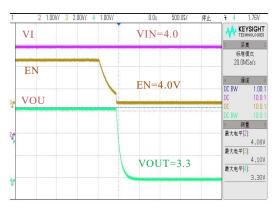


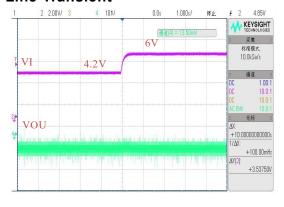
(2) Output Voltage vs Input voltage

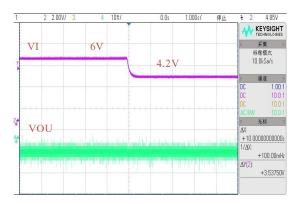


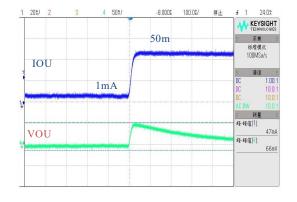

(3) PSRR vs Frequency

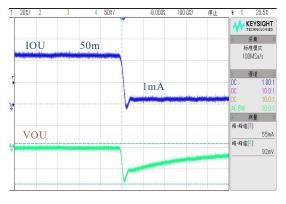



Power ON / OFF




EN ON/OFF



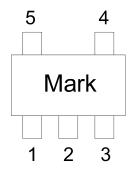

Line Transient

Load Transient

Application Information

In general, all the capacitors need to be low leakage. Any leakage the capacitors have will reduce efficiency, increase the quiescent current.

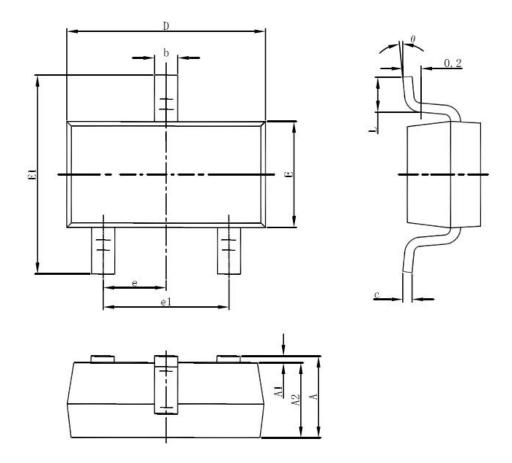
A recent trend in the design of portable devices has been to use ceramic capacitors to filter DC-DC converter inputs. Ceramic capacitors are often chosen because of their small size, low equivalent series resistance (ESR) and high RMS current capability. Also, recently, designers have been looking to ceramic capacitors due to shortages of tantalum capacitors.


Unfortunately, using ceramic capacitors for input filtering can cause problems. Applying a voltage step to a ceramic capacitor causes a large current surge that stores energy in the inductance of the power leads. A large voltage spike is created when the stored energy is transferred from these inductance into the ceramic capacitor. These voltage spikes can easily be twice the amplitude of the input voltage step.

Many types of capacitors can be used for input bypassing, however, caution must be exercised when using multi layer ceramic capacitors (MLCC). Because of the self-resonant be generated under some start-up conditions, such as connecting the LDO input to a live power source.

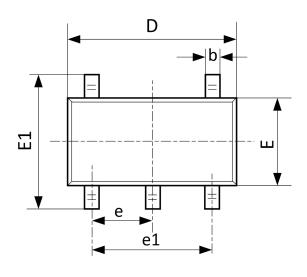
The LDO also requires an output capacitor for loop stability. Connect a 1uF tantalum capacitor from OUT to GND close to the pins. For improved transient response, this output capacitor may be ceramic.

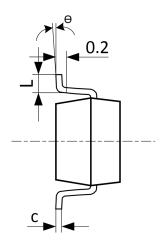
Marking Description

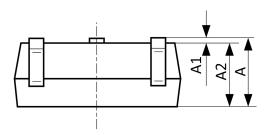

product code: 4
output voltage code:

Symbol	Voltage (V)	Symbol	Voltage (V)	Symbol	Voltage (V)	Symbol	Voltage (V)
а	0.9	А	3.5	n	2.2	N	4.8
b	1.0	В	3.6	0	2.3	0	4.9
С	1.1	С	3.7	Р	2.4	Р	5.0
d	1.2	D	3.8	q	2.5	Q	5.1
е	1.3	Е	3.9	r	2.6	R	5.2
f	1.4	F	4.0	S	2.7	S	5.3
g	1.5	G	4.1	t	2.8	Т	5.4
h	1.6	Н	4.2	u	2.9	U	5.5
i	1.7		4.3	V	3.0	V	5.6
j	1.8	J	4.4	W	3.1	W	5.7
k	1.9	K	4.5	Х	3.2	Х	5.8
I	2.0	L	4.6	у	3.3	Υ	5.9
m	2.1	М	4.7	Z	3.4	Z	6.0

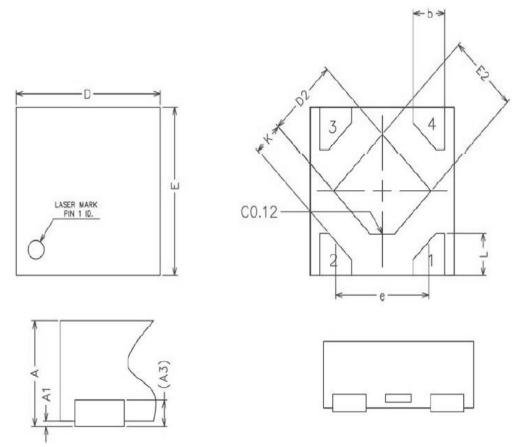
34: The last two of them are based on the time of this product which is the first time into production, the third is the year of this product first time into production, such as expressed in "1" in 2021, in "2" in 2022 and the forth is the mouth of this product first time into production, it can be in 1 ~ 9, which is expressed in "0" in October, in November with an "A", in December with "B"; . For example: 4y16 represents SSP7615-33M5R product is first put into production in June in 2021.


Package Information (SOT23-3)




Symbol	Dimensions	n Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.050	1.250	0.041	0.049
A 1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950	(BSC)	0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

Package Information (SOT23-5)



Cumbal	Dimensions In Millimeters		Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.050	1.250	0.041	0.049
A 1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950	(BSC)	0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

Package Information (DFN1×1-4)

Cymphal		Dimensions In Millimeters				
Symbol	Min.	NOM	Max.			
Α	0.34	0.37	0.40			
A1	0.00	0.02	0.05			
А3		0.100REF				
b	0.17	0.22	0.27			
D	0.95	1.00	1.05			
E	0.95	1.00	1.05			
D2	0.43	0.48	0.53			
E2	0.43	0.48	0.53			
L	0.20	0.25	0.30			
е	-	0.65	-			
K	0.15	-	-			

Special Instructions

The company reserves the right of final interpretation of this specification.

Version Change Description

Version: V1.2 Author: Yangyang Time: 2021.12.9

Modify the record:

1. Re-typesetting the manual and checking some data

Version: V1.3 Author: Yangyang Time: 2022.3.30

Modify the record:

1. Update absolute maximum ratings and electrical characteristics

Statement

The information in the usage specification is correct at the time of publication, Shanghai Siproin Microelectronics Co. has the right to change and interpret the specification, and reserves the right to modify the product without prior notice. Users can obtain the latest version information from our official website or other effective channels before confirmation, and verify whether the relevant information is complete and up to date.

With any semiconductor product, there is a certain possibility of failure or failure under certain conditions. The buyer is responsible for complying with safety standards and taking safety measures when using the product for system design and complete machine manufacturing. The product is not authorized to be used as a critical component in life-saving or life-sustaining products or systems, in order to avoid potential failure risks that may cause personal injury or property loss.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by Siproin manufacturer:

Other Similar products are found below:

LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG PQ3DZ53U LV56801P-E TLE42794G L78L05CZ/1SX L78LR05DL-MA-E 636416C 714954EB ZMR500QFTA LV5680P-E L78M15CV-DG L79M05T-E TLS202A1MBVHTSA1 L78LR05D-MA-E NCV317MBTG NTE7227 MP2018GZD-33-P MP2018GZD-5-P LV5680NPVC-XH LT1054CN8 MP2018GZD-5-Z MP2018GZD-33-Z AT55EL50ESE APL5934DKAI-TRG 78L05U 78L05 CL9193A15L5M CL9036A30F4M CL9036A18F4M CL9036A25F4M CL9036A28F4M CL9036A33F4M CL9906A18F4N CL9906A30F4N CL9908A30F4M CL9908A33F4M CL9908A18F4M CL9908A28F4M TL431ACM/TR TL431AIM/TR LM78L05ACM/TR HT7812ARMZ HT7805ARMZ HT317LRHZ HXY6206I-3.0 HXY6206I-3.3 XC6206P252MR XC6206P282MR