Si823x Data Sheet # 0.5 and 4.0 Amp ISOdrivers (2.5 and 5 kV_{RMS}) The Si823x isolated driver family combines two independent, isolated drivers into a single package. The Si8230/1/3/4 are high-side/low-side drivers, while the Si8232/5/7/8 are dual drivers. Versions with peak output currents of 0.5 A (Si8230/1/2/7) and 4.0 A (Si8233/4/5/8) are available. All drivers operate with a maximum supply voltage of 24 V. The Si823x drivers utilize Silicon Labs' proprietary silicon isolation technology, which provides up to 5 kV_{RMS} withstand voltage per UL1577 and fast 45 ns propagation times. Driver outputs can be grounded to the same or separate grounds or connected to a positive or negative voltage. The TTL level compatible inputs with >400 mV hysteresis are available in individual control input (Si8230/2/3/5/7/8) or PWM input (Si8231/4) configurations. High integration, low propagation delay, small installed size, flexibility, and cost-effectiveness make the Si823x family ideal for a wide range of isolated MOSFET/IGBT gate drive applications. Automotive Grade is available for certain part numbers. These products are built using automotive-specific flows at all steps in the manufacturing process to ensure the robustness and low defectivity required for automotive applications. #### **Industrial Applications** - · Power delivery systems - · Motor control systems - · Isolated dc-dc power supplies - · Lighting control systems - · Plasma displays - · Solar and industrial inverters #### Safety Regulatory Approvals - UL 1577 recognized - Up to 5000 V_{RMS} for 1 minute - · CSA component notice 5A approval - IEC 60950-1, 62368-1, 60601-1 (reinforced insulation) - · VDE certification conformity - VDE 0884-10 - EN60950-1 (reinforced insulation) - · CQC certification approval - GB4943.1 - Automotive ApplicationsOn-board chargers - · Battery management systems - Charging stations - · Traction inverters - · Hybrid Electric Vehicles - · Battery Electric Vehicles #### **KEY FEATURES** - Two completely isolated drivers in one package - Up to 5 kV_{RMS} input-to-output isolation - Up to 1500 V_{DC} peak driver-to-driver differential voltage - · HS/LS and dual driver versions - · Up to 8 MHz switching frequency - 0.5 A peak output (Si8230/1/2/7) - 4.0 A peak output (Si8233/4/5/8) - · High electromagnetic immunity - RoHS-compliant packages: - SOIC-14/16 wide body - · SOIC-16 narrow body - I GA-14 - QFN-14 (pin to pin compatible with LGA-14 packages) - · AEC-Q100 qualification - · Automotive-grade OPNs available - AIAG compliant PPAP documentation support - · IMDS and CAMDS listing support # 1. Ordering Guide Table 1.1. Si823x Ordering Guide ^{1, 2, 3} | Ordering Part
Number (OPN) | Inputs | Configuration | Peak
Current | UVLO
Voltage | Isolation
Rating | Temp Range | Package Type | Legacy
Ordering
Part Number
(OPN)
2.5 kV Only | |-------------------------------|-----------|------------------------|-----------------|-----------------|---------------------|----------------|------------------------|---| | Wide Body (WB) I | Package C | ptions | | | | | | | | Si8230BB-D-IS | VIA, VIB | High Side/
Low Side | | 8 V | Si8230-A-IS | | | | | Si8231BB-D-IS | PWM | High Side/
Low Side | 0.5 A | | | | | Si8231-A-IS | | Si8232BB-D-IS | VIA,VIB | Dual Driver | | | | | | Si8232-A-IS | | Si8234CB-D-IS | PWM | High Side/
Low Side | | 10 V | 2.5 kVrms | –40 to +125 °C | SOIC-16
Wide Body | N/A | | Si8233BB-D-IS | VIA,VIB | High Side/
Low Side | 4.0 A | | | | Si8233-B-IS | | | Si8234BB-D-IS | PWM | High Side/
Low Side | | 8 V | | | | Si8234-B-IS | | Si8235BB-D-IS | VIA,VIB | Dual Driver | | | | | | Si8235-B-IS | | Si8230AB-D-IS | VIA, VIB | High Side/ | | | | | | N/A | | Si8231AB-D-IS | PWM | Low Side | 0.5 A | 5 V | | | | N/A | | Si8232AB-D-IS | VIA,VIB | Dual Driver | | | 2.5 kVrms | -40 to +125 °C | SOIC-16 | N/A | | Si8233AB-D-IS | VIA,VIB | High Side/ | | | 2.5 KVIIIS | -40 to 1125 C | Wide Body | N/A | | Si8234AB-D-IS | PWM | Low Side | 4.0 A | 5 V | | | | N/A | | Si8235AB-D-IS | VIA,VIB | Dual Driver | | | | | | N/A | | Narrow Body (NB |) Package | Options | | | | | | | | Si8230BB-D-IS1 | VIA,VIB | High Side/
Low Side | | | | | | | | Si8231BB-D-IS1 | PWM | High Side/
Low Side | 0.5 A | 8 V | | | | | | Si8232BB-D-IS1 | VIA,VIB | Dual Driver | 1 | | 2.5 k\/rmc | | | | | Si8233BB-D-IS1 | VIA,VIB | High Side/
Low Side | | | 2.5 kVrms | -40 to +125 °C | SOIC-16
Narrow Body | N/A | | Si8234BB-D-IS1 | PWM | High Side/
Low Side | 4.0 A | 8 V | | | | | | Si8235BB-D-IS1 | VIA,VIB | Dual Driver | | | | | | | | Si8235BA-D-IS1 | VIA,VIB | Dual Driver | | | 1.0 kVrms | | | | | Ordering Part
Number (OPN) | Inputs | Configuration | Peak
Current | UVLO
Voltage | Isolation
Rating | Temp Range | Package Type | Legacy
Ordering
Part Number
(OPN)
2.5 kV Only | |-------------------------------|-----------|------------------------|-----------------|-----------------|---------------------|----------------|-----------------------------------|---| | Si8230AB-D-IS1 | VIA,VIB | High Side/ | | | | | | N/A | | Si8231AB-D-IS1 | PWM | Low Side | 0.5 A | 5 V | | | | N/A | | Si8232AB-D-IS1 | VIA,VIB | Dual Driver | | | 2.5 kVrms | –40 to +125 °C | to +125 °C SOIC-16
Narrow Body | N/A | | Si8233AB-D-IS1 | VIA,VIB | High Side/ | | | 2.0 KVIIIIO 10 to 1 | | | N/A | | Si8234AB-D-IS1 | PWM | Low Side | 4.0 A | 5 V | | | | N/A | | Si8235AB-D-IS1 | VIA,VIB | Dual Driver | | | | | | N/A | | LGA Package Opt | tions | | | | | | | | | Si8233CB-D-IM | | | | 10 V | | | | N/A | | Si8233BB-D-IM | VIA,VIB | | | 8 V | | | | Si8233-B-IM | | Si8233AB-D-IM | | High Side/
Low Side | | 5 V | | | | N/A | | Si8234BB-D-IM | D\A/\ 4 | | 4.0 A | 8 V | 2.5 kVrms | –40 to +125 °C | LGA-14 5x5
mm | Si8234-B-IM | | Si8234AB-D-IM | PWM | | | 5 V | | | | N/A | | Si8235BB-D-IM | \/\A\\/\D | Dual Dairea | | 8 V | | | | Si8235-B-IM | | Si8235AB-D-IM | VIA,VIB | Dual Driver | | 5 V | | | | N/A | | QFN Package Opt | ions | | | | 1 | | | | | SI8233AB-D-IM1 | \/\A\\/\D | | | 5 V | | | | N/A | | SI8233BB-D-IM1 | VIA,VIB | High Side/ | | 8 V | | | | N/A | | SI8234AB-D-IM1 | DVA/NA | Low Side | 404 | 5 V | 2 F Is) (**** | 40 to 1405 °C | OFN 44 | N/A | | SI8234BB-D-IM1 | PWM | | 4.0 A | 8 V | 2.5 kVrms | –40 to +125 °C | QFN-14 | N/A | | SI8235AB-D-IM1 | \/\A\\/\D | Dual Driver | | 5 V | | | | N/A | | SI8235BB-D-IM1 | VIA,VIB | Dual Driver | | 8 V | | | | N/A | | 5 kV Ordering Opt | tions | | | | | | | | | Si8230BD-D-IS | VIA, VIB | High Side/
Low Side | | | | | | | | Si8231BD-D-IS | PWM | High Side/
Low Side | 0.5 A | | | | | | | Si8232BD-D-IS | VIA, VIB | Dual Driver | | 0.14 | 50124 | 40.4- : 405.00 | SOIC-16 | N1/A | | Si8233BD-D-IS | VIA, VIB | High Side/
Low Side | | - 8 V | 5.0 kVrms | –40 to +125 °C | Wide Body | N/A | | Si8234BD-D-IS | PWM | High Side/
Low Side | 4.0 A | | | | | | | Si8235BD-D-IS | VIA, VIB | Dual Driver | | | | | | | | Ordering Part
Number (OPN) | Inputs | Configuration | Peak
Current | UVLO
Voltage | Isolation
Rating | Temp Range | Package Type | Legacy Ordering Part Number (OPN) 2.5 kV Only | | |-------------------------------|----------|---------------|-----------------|-----------------|---------------------|----------------|--|---|-----| | Si8230AD-D-IS | VIA, VIB | High Side/ | | | | | | N/A | | | Si8231AD-D-IS | PWM | Low Side | 0.5 A | 5 V | | | | N/A | | | Si8232AD-D-IS | VIA, VIB | Dual Driver | | | | | SOIC-16 | N/A | | | Si8233AD-D-IS | VIA, VIB | High Side/ | | | | | Wide Body | N/A | | | Si8234AD-D-IS | PWM | Low Side | 4.0 A | 5 V | | | SOIC-14 Wide
Body with
increased
creepage | N/A | | | Si8235AD-D-IS | VIA, VIB | Dual Driver | | 5 V | 5.0 kVrms | 40 to 1425 °C | | | N/A | | SI8230AD-D-IS3 | VIA, VIB | High Side/ | 0.5 A | | 5.0 KVIIIIS | –40 to +125 °C | | N/A | | | SI8230BD-D-IS3 | VIA, VIB | Low Side | | 8 V | | | | N/A | | | SI8233AD-D-IS3 | VIA, VIB | | 4.0 A | 5 V | | | | N/A | | | SI8233BD-D-IS3 | VIA, VIB | | | 8 V | | | | N/A | | | SI8235AD-D-IS3 | VIA, VIB | Dual Driver | | 5 V | | | | N/A | | | SI8235BD-D-IS3 | VIA, VIB | | | 8 V | | | | N/A | | | 3 V VDDI Ordering | Options | | 1 | l | | 1 | | | | | Si8237AB-D-IS1 | VIA, VIB | Dual Driver | 0.5.4 | 5 V | | | | | | | Si8237BB-D-IS1 | VIA, VIB | Dual Driver | 0.5 A | 8 V | 0.5.13/2222 | | SOIC-16 | | | | Si8238AB-D-IS1 | VIA, VIB | Dual Driver | 404 | 5 V | 2.5 kVrms | | Narrow Body | | | | Si8238BB-D-IS1 | VIA, VIB | Dual Driver | 4.0 A | 8 V | | | | | | | Si8237AD-D-IS | VIA, VIB | Dual Driver | 0.5.4 | 5 V | | | | | | | Si8237BD-D-IS | VIA, VIB | Dual Driver | 0.5 A | 8 V | | _40 to +125 °C | SOIC-16 | N/A | | | Si8238AD-D-IS | VIA, VIB | Dual Driver | | 5 V | | 10 10 1120 0 | Wide Body | 1 | | | Si8238BD-D-IS | VIA, VIB | Dual Driver | | 8 V | 5.0 kVrms | | | | | | SI8238AD-D-IS3 | VIA, VIB | Dual Driver | 4.0 A | 5 V | | | SOIC-14 Wide | | | | SI8238BD-D-IS3 | VIA, VIB | Dual Driver | | 8 V | | | Body with | | | | | | | | | | | increased | | | | | | | | | | | creepage | | | ^{1.} All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifications and peak solder temperatures. ^{2. &}quot;Si" and "SI" are used interchangeably. ^{3.} An "R" at the end of the part number denotes tape and reel packaging option. ### **Automotive Grade OPNs** Automotive-grade devices are built using automotive-specific flows at all steps in the manufacturing process to ensure robustness and low defectivity. These devices are supported with AIAG-compliant Production Part Approval Process (PPAP) documentation, and feature International Material Data System (IMDS) and China Automotive Material Data System (CAMDS) listing. Qualifications are compliant
with AEC-Q100, and a zero-defect methodology is maintained throughout definition, design, evaluation, qualification, and mass production steps. Table 1.2. Ordering Guide for Automotive Grade OPNs^{1, 2, 4, 5} | Ordering Part Num-
ber (OPN) | Inputs | Configuration | Peak Cur-
rent | UVLO
Voltage | Isolation
Rating | Temp Range | Package Type | |---------------------------------|------------|--------------------|-------------------|-----------------|---------------------|----------------|---| | Wide Body (WB) Pac | kage Optio | ons | | | | | | | Si8233BB-AS | VIA, VIB | High Side/Low Side | 4.0 A | 8 V | 2.5 kVrms | -40 to +125 °C | SOIC-16 Wide
Body | | Narrow Body (NB) P | ackage Op | tions | | | | | | | Si8230BB-AS1 | VIA, VIB | High Side/Low Side | 0.5 A | 8 V | 2.5 kVrms | -40 to +125 °C | SOIC-16 Narrow
Body | | Si8233BB-AS1 | VIA, VIB | High Side/Low Side | 4.0 A | 8 V | 2.5 kVrms | -40 to +125 °C | SOIC-16 Narrow
Body | | Si8235BB-AS1 | VIA, VIB | High Side/Low Side | 4.0 A | 8 V | 2.5 kVrms | -40 to +125 °C | SOIC-16 Narrow
Body | | Si8233AB-AS1 | VIA, VIB | High Side/Low Side | 4.0 A | 5 V | 2.5 kVrms | -40 to +125 °C | SOIC-16 Narrow
Body | | LGA Package Option | ו | | | | | | | | Si8233BB-AM | VIA, VIB | High Side/Low Side | 4.0 A | 8 V | 2.5 kVrms | –40 to +125 °C | LGA-14 | | | | | | | | | 5x5 mm | | Si8234BB-AM | PWM | High Side/Low Side | 4.0 A | 8 V | 2.5 kVrms | –40 to +125 °C | LGA-14 | | | | | | | | | 5x5 mm | | Si8235BB-AM | VIA, VIB | Dual Driver | 4.0 A | 8 V | 2.5 kVrms | –40 to +125 °C | LGA-14 | | | | | | | | | 5x5 mm | | 5 kV Ordering Option | ns | | | | | | | | Si8233BD-AS | VIA, VIB | High Side/Low Side | 4.0 A | 8 V | 5.0 kVrms | -40 to +125 °C | SOIC-16 Wide
Body | | Si8235BD-AS | VIA, VIB | Dual Driver | 4.0 A | 8 V | 5.0 kVrms | -40 to +125 °C | SOIC-16 Wide
Body | | Si8235BD-AS3 | VIA, VIB | Dual Driver | 4.0 A | 8 V | 5.0 kVrms | -40 to +125 °C | SOIC-14 Wide
Body with in-
creased creepage | | 3 V VDDI Ordering O | ptions | | | | 1 | • | | | Si8237BB-AS1 | VIA, VIB | Dual Driver | 0.5 A | 8 V | 2.5 kVrms | -40 to +125 °C | SOIC-16 Narrow
Body | | Si8238BB-AS1 | VIA, VIB | Dual Driver | 4.0 A | 8 V | 2.5 kVrms | -40 to +125 °C | SOIC-16 Narrow
Body | | Si8238BD-AS | VIA, VIB | Dual Driver | 4.0 A | 8 V | 5.0 kVrms | -40 to +125 °C | SOIC-16 Wide
Body | | Ordering Part Number (OPN) Inputs Configuration | Peak Cur- UVLO rent Voltage | | Temp Range | Package Type | |---|-----------------------------|--|------------|--------------| |---|-----------------------------|--|------------|--------------| #### Note: - 1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifica- - 2. "Si" and "SI" are used interchangeably. - 3. An "R" at the end of the part number denotes tape and reel packaging option. - 4. Automotive-Grade devices (with an "-A" suffix) are identical in construction materials, topside marking, and electrical parameters to their Industrial-Grade (with a "-I" suffix) version counterparts. Automotive-Grade products are produced utilizing full automotive process flows and additional statistical process controls throughout the manufacturing flow. The Automotive-Grade part number is included on shipping labels. - 5. Additional Ordering Part Numbers may be available in Automotive-Grade. Please contact your local Silicon Labs sales representative for further information. - 6. In Section 8. Top Markings, the Manufacturing Code represented by either "RTTTTT" or "TTTTTT" contains as its first character a letter in the range N through Z to indicate Automotive-Grade." # **Table of Contents** | 1. | Ordering Guide | . 2 | |----|--|--| | 2. | System Overview | . 9 | | | 2.1 Top Level Block Diagrams | . 9 | | | 2.2 Functional Description | .11 | | | 2.3 Typical Operating Characteristics (0.5 Amp) | .12 | | | 2.4 Typical Operating Characteristics (4.0 Amp) | .15 | | | 2.5 Family Overview and Logic Operation During Startup | | | | 2.5.2 Device Behavior | | | | 2.6 Power Supply Connections | .19 | | | 2.7 Power Dissipation Considerations | .19 | | | 2.8 Layout Considerations | .21 | | | 2.9 Undervoltage Lockout Operation | | | | 2.9.1 Device Startup | | | | 2.9.2 Undervoltage Lockout | | | | 2.9.4 Control Inputs | | | | 2.9.5 Disable Input | .22 | | | 2.10 Programmable Dead Time and Overlap Protection | .23 | | 3. | Electrical Specifications | . 25 | | | 3.1 Test Circuits | .28 | | 4. | Applications | 34 | | | 4.1 High-Side/Low-Side Driver | | | | 4.1 High-Side/Low-Side Differ | .34 | | | 4.1 High-Side/Low-Side Driver | | | 5. | 4.2 Dual Driver | .35 | | | 4.2 Dual Driver | .35
. 36 | | | 4.2 Dual Driver | .35
. 36
42 | | | 4.2 Dual Driver | .35
. 36
.42 | | | 4.2 Dual Driver | .35
. 36
.42
.42 | | | 4.2 Dual Driver Pin Descriptions Package Outlines | .35
. 36
.42
.42
.44 | | | 4.2 Dual Driver Pin Descriptions Package Outlines | .35 .36 .42 .42 .44 .46 .47 | | 6. | 4.2 Dual Driver Pin Descriptions Package Outlines | .35
.36
.42
.42
.44
.46
.47 | | 6. | 4.2 Dual Driver Pin Descriptions Package Outlines. 6.1 Package Outline: 16-Pin Wide Body SOIC. 6.2 Package Outline: 14-Pin Wide Body SOIC. 6.3 Package Outline: 16-Pin Narrow Body SOIC. 6.4 Package Outline: 14 LD LGA (5 x 5 mm) 6.5 Package Outline: 14 LD QFN. | 35
42
42
44
46
47
48
49 | | 6. | 4.2 Dual Driver Pin Descriptions Package Outlines 6.1 Package Outline: 16-Pin Wide Body SOIC 6.2 Package Outline: 14-Pin Wide Body SOIC 6.3 Package Outline: 16-Pin Narrow Body SOIC 6.4 Package Outline: 14 LD LGA (5 x 5 mm) 6.5 Package Outline: 14 LD QFN Land Patterns 7.1 Land Pattern: 16-Pin Wide Body SOIC | . 35
. 36
. 42
. 44
. 46
. 47
. 48
. 49 | | 6. | 4.2 Dual Driver Pin Descriptions Package Outlines. 6.1 Package Outline: 16-Pin Wide Body SOIC. 6.2 Package Outline: 14-Pin Wide Body SOIC. 6.3 Package Outline: 16-Pin Narrow Body SOIC. 6.4 Package Outline: 14 LD LGA (5 x 5 mm) 6.5 Package Outline: 14 LD QFN. | . 35
. 36
. 42
. 44
. 46
. 47
. 48
. 49
. 50 | | 8. | Top Markings | 53 | |----|---|-----| | | 8.1 Si823x Top Marking (14/16-Pin Wide Body SOIC) | .53 | | | 8.2 Si823x Top Marking (16-Pin Narrow Body SOIC) | .54 | | | 8.3 Si823x Top Marking (14 LD LGA/QFN) | .55 | | 9. | Revision History | 56 | # 2. System Overview # 2.1 Top Level Block Diagrams Figure 2.1. Si8230/3 Two-Input High-Side/Low-Side Isolated Drivers Figure 2.2. Si8231/4 Single-Input High-Side/Low-Side Isolated Drivers Figure 2.3. Si8232/5/7/8 Dual Isolated Drivers #### 2.2 Functional Description The operation of an Si823x channel is analogous to that of an optocoupler and gate driver, except an RF carrier is modulated instead of light. This simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified block diagram for a single Si823x channel is shown in the figure below. Figure 2.4. Simplified Channel Diagram A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See the figure below for more details. Figure 2.5. Modulation Scheme # 2.3 Typical Operating Characteristics (0.5 Amp) The typical performance characteristics depicted in Figure 2.6 Rise/Fall Time vs. Supply Voltage on page 12 through Figure 2.15 Output Source Current vs. Temperature on page 13 are for information purposes only. Refer to Table 3.1 Electrical Characteristics¹ on page 25 for actual specification limits. Figure 2.6. Rise/Fall Time vs. Supply Voltage Figure 2.8. Rise/Fall Time vs. Load Figure 2.7. Propagation Delay vs. Supply Voltage Figure 2.9. Propagation Delay vs. Load Figure 2.10. Propagation Delay vs. Temperature Figure 2.12. Supply Current vs. Supply Voltage Figure 2.14. Output Source Current vs. Supply Voltage Figure 2.11. Supply Current vs. Temperature Figure 2.13. Supply Current vs. Supply Voltage Figure 2.15. Output Source Current vs. Temperature Figure 2.17. Output Sink Current vs. Temperature # 2.4 Typical Operating Characteristics (4.0 Amp) The typical performance characteristics depicted in Figure 2.18 Rise/Fall Time vs. Supply Voltage on page 15 through Figure 2.27 Output Source Current vs. Temperature on page 16 are for information purposes only. Refer to Table 3.1 Electrical Characteristics¹ on page 25 for actual specification limits. Figure 2.18. Rise/Fall Time vs. Supply Voltage Figure 2.19. Propagation Delay vs. Supply Voltage Figure 2.20. Rise/Fall Time vs. Load Figure 2.21. Propagation Delay vs. Load Figure 2.22. Propagation Delay vs. Temperature Figure 2.24. Supply Current vs. Supply Voltage Figure 2.26. Output Source Current vs. Supply Voltage Figure 2.23. Supply Current vs. Temperature Figure 2.25. Supply Current vs. Supply Voltage Figure 2.27. Output Source Current vs. Temperature Figure 2.28.
Output Sink Current vs. Supply Voltage Figure 2.29. Output Sink Current vs. Temperature ### 2.5 Family Overview and Logic Operation During Startup The Si823x family of isolated drivers consists of high-side, low-side, and dual driver configurations. # 2.5.1 Products The table below shows the configuration and functional overview for each product in this family. Table 2.1. Si823x Family Overview | Part Number | Configuration | Overlap Protection | Programmable
Dead Time | Inputs | Peak Output Cur-
rent (A) | |-------------|--------------------|--------------------|---------------------------|----------|------------------------------| | Si8230 | High-Side/Low-Side | V | V | VIA, VIB | 0.5 | | Si8231 | High-Side/Low-Side | V | V | PWM | 0.5 | | Si8232/7 | Dual Driver | _ | _ | VIA, VIB | 0.5 | | Si8233 | High-Side/Low-Side | V | V | VIA, VIB | 4.0 | | Si8234 | High-Side/Low-Side | √ | V | PWM | 4.0 | | Si8235/8 | Dual Driver | _ | _ | VIA, VIB | 4.0 | ### 2.5.2 Device Behavior The table below consists of truth tables for the Si8230/3, Si8231/4, and Si8232/5/7/8 families. Table 2.2. Si823x Family Truth Table¹ | | | | Si823 | 30/3 (High | -Side/Lov | w-Side) Truth Table | |----------------|-----------------------|-----------------------|-----------|------------|-----------|---| | Inp | outs | VDDI State | Disable | Out | tput | Notes | | VIA | VIB | | | VOA | VOB | | | L | L | Powered | L | L | L | Output transition occurs after internal dead time expires. | | L | Н | Powered | L | L | Н | Output transition occurs after internal dead time expires. | | Н | L | Powered | L | Н | L | Output transition occurs after internal dead time expires. | | Н | Н | Powered | L | L | L | Invalid state. Output transition occurs after internal dead time expires. | | X ² | X ² | Unpowered | X | L | L | Output returns to input state within 7 µs of VDDI power restoration. | | Х | Х | Powered | Н | L | L | Device is disabled. | | Si8231/4 | (PWM In | out High-Side/ | Low-Side) | Truth Tak | ole | | | PWM | Input | VDDI State Disable Ou | | Out | tput | Notes | | | | | | VOA | VOB | | | l | Н | Powered | L | Н | L | Output transition occurs after internal dead time expires. | | | L | Powered | L | L | Н | Output transition occurs after internal dead time expires. | | > | (² | Unpowered | X | L | L | Output returns to input state within 7 μs of VDDI power restoration. | | | X | Powered | Н | L | L | Device is disabled. | | Si8232/5 | /7/8 (Dual | Driver) Truth | Table | | | | | Inp | outs | VDDI State | Disable | Out | tput | Notes | | VIA | VIB | | | VOA | VOB | | | L | L | Powered | L | L | L | Output transition occurs immediately (no internal dead time). | | L | Н | Powered | L | L | Н | Output transition occurs immediately (no internal dead time). | | Н | L | Powered | L | Н | L | Output transition occurs immediately (no internal dead time). | | Н | Н | Powered | L | Н | Н | Output transition occurs immediately (no internal dead time). | | X ² | X ² | Unpowered | Х | L | L | Output returns to input state within 7 µs of VDDI power restoration. | | Х | Х | Powered | Н | L | L | Device is disabled. | # Notes: - 1. This truth table assumes VDDA and VDDB are powered. If VDDA and VDDB are below UVLO, see 2.9 Undervoltage Lockout Operation for more information. - 2. Note that an input can power the input die through an internal diode if its source has adequate current. #### 2.6 Power Supply Connections Isolation requirements mandate individual supplies for VDDI, VDDA, and VDDB. The decoupling caps for these supplies must be placed as close to the VDD and GND pins of the Si823x as possible. The optimum values for these capacitors depend on load current and the distance between the chip and the regulator that powers it. Low effective series resistance (ESR) capacitors, such as Tantalum, are recommended. #### 2.7 Power Dissipation Considerations Proper system design must assure that the Si823x operates within safe thermal limits across the entire load range. The Si823x total power dissipation is the sum of the power dissipated by bias supply current, internal parasitic switching losses, and power dissipated by the series gate resistor and load. Equation 1 shows total Si823x power dissipation. $$P_{D} = (V_{DDI})(I_{DDI}) + 2(I_{DD2})(V_{DD2}) + (f)(Q_{G})(V_{DD2}) \left[\frac{R_{P}}{R_{P} + R_{G}}\right] + (f)(Q_{G})(V_{DD2}) \left[\frac{R_{N}}{R_{N} + R_{G}}\right] + 2fCintV_{DD2}^{2}$$ where: P_D is the total Si823x device power dissipation (W) I_{DDI} is the input-side maximum bias current (3 mA) I_{DD2} is the driver die maximum bias current (2.5 mA) C_{int} is the internal parasitic capacitance (75 pF for the 0.5 A driver and 370 pF for the 4.0 A driver) VDDI is the input-side VDD supply voltage (2.7 to 5.5 V) V_{DD2} is the driver-side supply voltage (10 to 24 V) f is the switching frequency (Hz) QG is the gate charge of the FET being driven R_G is the external gate resistor R_P is the $R_{DS(ON)}$ of the driver pull-up switch: (Rp = 15 Ω for the 0.5 A driver; Rp = 2.7 Ω for the 4.0 A driver) R_N is the $R_{DS(ON)}$ of the driver pull-down switch: (Rn = 5 Ω for the 0.5 A driver and 1 Ω for the 4.0 A driver) # **Equation 1** Power dissipation example for 0.5 A driver using Equation 1 with the following givens: $$V_{DD1} = 5.0 V$$ $$f = 350 \text{ kHz}$$ $$R_G = 22 \Omega$$ $$Q_G = 25 nC$$ $$Pd = 0.015 + 0.060 + (350 \times 10^{3})(25 \times 10^{-9})(12)(\frac{5}{5 + 22}) + (350 \times 10^{3})(25 \times 10^{-9})(12)(\frac{15}{15 + 22})$$ $$+2[(350 \times 10^{3})(75 \times 10^{-12})(144)] = 145 \text{ mW}$$ From which the driver junction temperature is calculated using Equation 2, where: Pd is the total Si823x device power dissipation (W) θja is the thermal resistance from junction to air (105 °C/W in this example) T_A is the ambient temperature $$T_i = P_d \times \Theta_{ia} \times T_A = (0.145)(105) + 20 = 35.2 \degree \text{C}$$ The maximum power dissipation allowable for the Si823x is a function of the package thermal resistance, ambient temperature, and maximum allowable junction temperature, as shown in Equation 2: $$\mathsf{P}_{\mathsf{Dmax}} \leq \frac{\mathsf{T}_{\mathsf{jmax}} - \mathsf{T}_{\mathsf{A}}}{\Theta \mathsf{ja}}$$ where: P_{Dmax} = Maximum Si823x power dissipation (W) T_{imax} = Si823x maximum junction temperature (150 °C) T_A = Ambient temperature (20 °C) Θja = Si823x junction-to-air thermal resistance (105 °C/W) #### **Equation 2** Substituting values for P_{Dmax} T_{jmax} , T_A , and θ_{ja} into Equation 2 results in a maximum allowable total power dissipation of 1.29 W. Maximum allowable load is found by substituting this limit and the appropriate data sheet values from Table 3.1 Electrical Characteristics on page 25 into Equation 1 and simplifying. The result is Equation 3 (0.5 A driver) and Equation 4 (4.0 A driver), both of which assume VDDI = 5 V and VDDA = VDDB = 18 V. $$Q_{G(MAX)} = \frac{0.164}{f} - 3.05 \times 10^{-9}$$ ### **Equation 3** $$Q_{G(MAX)} = \frac{0.634}{f} - 5.81 \times 10^{-9}$$ ## **Equation 4** Equation 3 and Equation 4 are graphed in the figure below, where the points along the load line represent the package dissipation-limited value of CL for the corresponding switching frequency. #### 2.8 Layout Considerations It is most important to minimize ringing in the drive path and noise on the Si823x VDD lines. Care must be taken to minimize parasitic inductance in these paths by locating the Si823x as close to the device it is driving as possible. In addition, the VDD supply and ground trace paths must be kept short. For this reason, the use of power and ground planes is highly recommended. A split ground plane system having separate ground and VDD planes for power devices and small signal components provides the best overall noise performance. # 2.9 Undervoltage Lockout Operation Device behavior during start-up, normal operation and shutdown is shown in Figure 2.30 Device Behavior during Normal Operation and Shutdown on page 22, where UVLO+ and UVLO- are the positive-going and negative-going thresholds respectively. Note that outputs VOA and VOB default low when input side power supply (VDDI) is not present. ## 2.9.1 Device Startup Outputs VOA and VOB are held low during power-up until VDD is above the UVLO threshold for time period tSTART. Following this, the outputs follow the states of inputs VIA and VIB. #### 2.9.2 Undervoltage Lockout Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when VDD is below its specified operating circuits range. The input (control) side, Driver A and Driver B, each have their own undervoltage lockout monitors. The Si823x input side enters UVLO when VDDI \leq VDDI_{UV}, and exits UVLO when VDDI > VDDI_{UV}. The driver outputs, VOA and VOB, remain low when the input side of the Si823x is in UVLO and their respective VDD supply (VDDA, VDDB) is within tolerance. Each driver output can enter or exit UVLO independently. For example, VOA unconditionally enters UVLO when VDDA falls below VDDA_{UV} and exits UVLO when VDDA rises above VDDA_{UV}. Figure 2.30. Device Behavior during Normal Operation and Shutdown #### 2.9.3 Undervoltage Lockout (UVLO) The UVLO circuit unconditionally drives VO low when VDD is below the lockout threshold. Upon power up, the Si823x is maintained in UVLO until VDD rises above VDD_{UV+}. During power down, the Si823x enters UVLO when VDD falls below the UVLO threshold plus hysteresis (i.e., VDD \leq VDD_{UV+} - VDD_{HYS}). ## 2.9.4 Control Inputs VIA, VIB, and PWM inputs are high-true, TTL level-compatible logic inputs. A logic high signal on VIA or VIB causes the corresponding output to go high. For PWM input versions (Si8231/4), VOA is high and VOB is low when the PWM input is high, and VOA is low and VOB is high when the PWM input is low. ####
2.9.5 Disable Input When brought high, the DISABLE input unconditionally drives VOA and VOB low regardless of the states of VIA and VIB. Device operation terminates within tSD after DISABLE = V_{IL} . The DISABLE input has no effect if VDDI is below its UVLO level (i.e., VOA, VOB remain low). #### 2.10 Programmable Dead Time and Overlap Protection All high-side/low-side drivers (Si8230/1/3/4) include programmable overlap protection to prevent outputs VOA and VOB from being high at the same time. These devices also include programmable dead time, which adds a user-programmable delay between transitions of VOA and VOB. When enabled, dead time is present on all transitions, even after overlap recovery. The amount of dead time delay (DT) is programmed by a single resistor (RDT) connected from the DT input to ground per Equation 5. Note that the dead time pin can be tied to VDDI or left floating to provide a nominal dead time at approximately 400 ps. DT ≈ 10 × RDT where: DT = dead time (ns) and RDT = dead time programing resistor ($k\Omega$) ### **Equation 5** The device driving VIA and VIB should provide a minimum dead time of TDD to avoid activating overlap protection. Input/output timing waveforms for the two-input drivers are shown in Figure 2.31 Input / Output Waveforms for High-Side / Low-Side Two-Input Drivers on page 23, and dead time waveforms are shown in Figure 2.32 Dead Time Waveforms for High-Side / Low-Side Two-input Drivers on page 24. | Ref | Description | |-----|--| | Α | Normal operation: VIA high, VIB low. | | В | Normal operation: VIB high, VIA low. | | С | Contention: VIA = VIB = high. | | D | Recovery from contention: VIA transitions low. | | Е | Normal operation: VIA = VIB = low. | | F | Normal operation: VIA high, VIB low. | | G | Contention: VIA = VIB = high. | | Н | Recovery from contention: VIB transitions low. | | I | Normal operation: VIB transitions high. | Figure 2.31. Input / Output Waveforms for High-Side / Low-Side Two-Input Drivers Figure 2.32. Dead Time Waveforms for High-Side / Low-Side Two-input Drivers # 3. Electrical Specifications Table 3.1. Electrical Characteristics¹ 2.7 V < VDDI < 5.5 V, VDDA = VDDB = 12 V or 15 V, $\text{TA} = -40 \text{ to} +125 ^{\circ}\text{C}$, Typical specs at 25 $^{\circ}\text{C}$, $\text{T}_{\text{J}} = -40 \text{ to} +150 ^{\circ}\text{C}$ | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |---|-----------------------|--|----------------------------|------|-------|-------| | DC Specifications | | | | | | | | Input-side Power Supply | VDDI | Si8230/1/2/3/4/5 | 4.5 | _ | 5.5 | V | | Voltage | | Si8237/8 | 2.7 | _ | 5.5 | | | Driver Supply Voltage | VDDA, VDDB | Voltage between VDDA and
GNDA, and VDDB and GNDB
(See 1. Ordering Guide) | 6.5 | _ | 24 | V | | Input Supply Quiescent | IDDI(Q) | Si8230/2/3/5/7/8 | _ | 2 | 3 | mA | | Current | | Si8231/4 | _ | 3.5 | 5 | mA | | Output Supply Quiescent
Current | IDDA(Q), IDDB(Q) | Current per channel | _ | _ | 3.0 | mA | | Input Supply Active Current | IDDI | Input freq = 500 kHz, no load | _ | 3.5 | _ | mA | | Output Supply Active Current | IDDA | Current per channel with | _ | 6 | _ | mA | | | IDDB | Input freq = 500 kHz, no load | | | | | | Input Pin Leakage Current | IVIA, IVIB, IPWM | | -10 | _ | +10 | μA dc | | Input Pin Leakage Current
(Si8230/1/2/3/4/5) | IDISABLE | | -10 | _ | +10 | μA dc | | Input Pin Leakage Current (Si8237/8) | | | -1000 | _ | +1000 | | | Logic High Input Threshold | VIH | | 2.0 | _ | _ | V | | Logic Low Input Threshold | VIL | | _ | _ | 0.8 | V | | Input Hysteresis | VI _{HYST} | Si8230/1/2/3/4/5/7/8 | 400 | 450 | _ | mV | | Logic High Output Voltage | VOAH, VOBH | IOA, IOB = -1 mA | (VDDA /
VDDB)
— 0.04 | _ | _ | V | | Logic Low Output Voltage | VOAL, VOBL | IOA, IOB = 1 mA | _ | _ | 0.04 | V | | Output Short-Circuit Pulsed
Sink Current | IOA(SCL), IOB(SCL) | Si8230/1/2/7, Figure 3.1 IOL
Sink Current Test Circuit on
page 28 | _ | 0.5 | _ | А | | | | Si8233/4/5/8, Figure 3.1 IOL
Sink Current Test Circuit on
page 28 | _ | 4.0 | _ | А | | Output Short-Circuit Pulsed
Source Current | IOA(SCH),
IOB(SCH) | Si8230/1/2/7, Figure 3.2 IOH
Source Current Test Circuit on
page 28 | _ | 0.25 | _ | А | | | | Si8233/4/5/8, Figure 3.2 IOH
Source Current Test Circuit on
page 28 | _ | 2.0 | _ | А | | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |--------------------------------------|--|--------------------------------|------|------|------|------| | Output Sink Resistance | R _{ON(SINK)} | Si8230/1/2/7 | _ | 5.0 | _ | Ω | | | | Si8233/4/5/8 | _ | 1.0 | _ | Ω | | Output Source Resistance | R _{ON(SOURCE)} | Si8230/1/2/7 | _ | 15 | _ | Ω | | | | Si8233/4/5/8 | _ | 2.7 | _ | Ω | | VDDI Undervoltage Threshold | VDDI _{UV+} | VDDI rising (Si8230/1/2/3/4/5) | 3.60 | 4.0 | 4.45 | V | | VDDI Undervoltage Threshold | VDDI _{UV} | VDDI falling | 3.30 | 3.70 | 4.15 | V | | | | (Si8230/1/2/3/4/5) | | | | | | VDDI Lockout Hysteresis | VDDI _{HYS} | (Si8230/1/2/3/4/5) | _ | 250 | _ | mV | | VDDI Undervoltage Threshold | VDDI _{UV+} | VDDI rising (Si8237/8) | 2.15 | 2.3 | 2.5 | V | | VDDI Undervoltage Threshold | VDDI _{UV} _ | VDDI falling (Si8237/8) | 2.10 | 2.22 | 2.40 | V | | VDDI Lockout Hysteresis | VDDI _{HYS} | (Si8237/8) | _ | 75 | _ | mV | | VDDA, VDDB Undervoltage
Threshold | VDDA _{UV+} , VDDB _{UV+} | VDDA, VDDB rising | | | | | | 5 V Threshold | | | 5.20 | 5.80 | 6.30 | V | | 8 V Threshold | | | 7.50 | 8.60 | 9.40 | V | | 10 V Threshold | | | 9.60 | 11.1 | 12.2 | V | | 12.5 V Threshold | | | 12.4 | 13.8 | 14.8 | V | | VDDA, VDDB Undervoltage
Threshold | VDDA _{UV} , VDDB _{UV} | VDDA, VDDB falling | | | | | | 5 V Threshold | | | 4.90 | 5.52 | 6.0 | V | | 8 V Threshold | | | 7.20 | 8.10 | 8.70 | V | | 10 V Threshold | | | 9.40 | 10.1 | 10.9 | V | | 12.5 V Threshold | | | 11.6 | 12.8 | 13.8 | V | | VDDA, VDDB
Lockout Hysteresis | VDDA _{HYS} ,
VDDB _{HYS} | UVLO voltage = 5 V | _ | 280 | _ | mV | | VDDA, VDDB
Lockout Hysteresis | VDDA _{HYS} ,
VDDB _{HYS} | UVLO voltage = 8 V | _ | 600 | _ | mV | | VDDA, VDDB
Lockout Hysteresis | VDDA _{HYS} ,
VDDB _{HYS} | UVLO voltage = 10 V or 12.5 V | _ | 1000 | _ | mV | | AC Specifications | | | | I | I | - | | Minimum Pulse Width | | | _ | 10 | _ | ns | | Propagation Delay | t _{PHL} , t _{PLH} | CL = 200 pF | _ | 30 | 45 | ns | | Pulse Width Distortion | PWD | | _ | _ | 5.60 | ns | | Minimum Overlap Time ² | TDD | DT = VDDI, No-Connect | _ | 0.4 | _ | ns | | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |------------------------------------|--------------------------------|---|-----|-----|------|-------| | Programmed Dead Time ³ | DT | Figure 2.32 Dead Time Wave-
forms for High-Side / Low-Side
Two-input Drivers on page 24,
RDT = 100 k | 730 | 900 | 1170 | ns | | | | Figure 2.32 Dead Time Wave-
forms for High-Side / Low-Side
Two-input Drivers on page 24,
RDT = 6 k | 55 | 70 | 75 | ns | | Output Rise and Fall Time | t _R ,t _F | C _L = 200 pF (Si8230/1/2/7) | _ | _ | 20 | ns | | | | C _L = 200 pF (Si8233/4/5/8) | _ | _ | 12 | ns | | Shutdown Time from Disable True | t _{SD} | | _ | _ | 60 | ns | | Restart Time from
Disable False | t _{RESTART} | | _ | _ | 60 | ns | | Device Start-up Time | t _{START} | Time from VDD_ = VDD_UV+ to VOA, VOB = VIA, VIB | _ | _ | 40 | μs | | Common Mode | CMTI | VIA, VIB, PWM = VDDI or 0 V | 20 | 45 | _ | kV/µs | | Transient Immunity | | V _{CM} = 1500 V | | | | | | | | (see Figure 3.3 Common Mode
Transient Immunity Test Circuit
on page 29) | | | | | # Notes: - 1. VDDA = VDDB = 12 V for 5, 8, and 10 V UVLO devices; VDDA = VDDB = 15 V for 12.5 V UVLO devices. - 2. TDD is the minimum overlap time without triggering overlap protection (Si8230/1/3/4 only). - 3. The largest RDT resistor that can be used is 220 $k\Omega.$ ### 3.1 Test Circuits Figures Figure 3.1 IOL Sink Current Test Circuit on page 28, Figure 3.2 IOH Source Current Test Circuit on page 28, and Figure 3.3 Common Mode Transient Immunity Test Circuit on page 29 depict sink current, source current, and common-mode transient immunity test circuits, respectively. Figure 3.1. IOL Sink Current Test Circuit Figure 3.2. IOH Source Current Test Circuit Figure 3.3. Common Mode Transient Immunity Test Circuit Table 3.2. Regulatory Information¹ #### **CSA** The Si823x is certified under CSA Component Acceptance Notice 5A. For more details, see Master Contract Number 232873. 60950-1, 62368-1: Up to 600 V_{RMS} reinforced insulation working voltage; up to 1000 V_{RMS} basic insulation working voltage. 60601-1: Up to 250 V_{RMS} working voltage and 2 MOPP (Means of Patient Protection). # VDE The Si823x is certified according to VDE 0884-10 and EN 60950-1. For more details, see certificates 40018443, 40030763. 0884-10: Up to 891 Vpeak for basic insulation working voltage. 60950-1: Up to 600 V_{RMS} reinforced insulation working voltage; up to 1000 V_{RMS} basic insulation working voltage. #### UL The Si823x is certified under UL1577 component recognition program. For more details, see File E257455. Rated up to 5000 V_{RMS} isolation voltage for basic protection. #### CQC The Si823x is certified under GB4943.1-2011. For more details, see certificates CQC13001096106, CQC13001096108, and CQC 17001178087. Rated up to 600 V_{RMS} reinforced insulation working voltage; up to 1000 V_{RMS} basic insulation working voltage. #### Note: 1. Regulatory Certifications apply to 2.5 kV_{RMS} rated devices which are production tested to 3.0 kV_{RMS} for 1 sec. Regulatory Certifications apply to 3.75 kV_{RMS} rated devices which
are production tested to 4.5 kV_{RMS} for 1 sec. Regulatory Certifications apply to 5.0 kV_{RMS} rated devices which are production tested to 6.0 kV_{RMS} for 1 sec. For more information, see 1. Ordering Guide. Table 3.3. Insulation and Safety-Related Specifications | Parameter | arameter Symbol Test Condition Value | | | | Unit | | |---|--------------------------------------|-----------|-------------------------------------|--|--|----| | | | | WBSOIC-14/16
5 kV _{RMS} | WBSOIC-14/16
NBSOIC-16
2.5 kV _{RMS} | 14 LD LGA
/QFN
2.5 kV _{RMS} | | | Nominal External Air
Gap
(Clearance) ¹ | CLR | | 8.0 | 8.0/4.01 | 3.5 | mm | | Nominal External Tracking (Creepage) ¹ | CPG | | 8.0 | 8.0/4.01 | 3.5 | mm | | Minimum Internal Gap (Internal Clearance) | DTI | | 0.014 | 0.014 | 0.014 | mm | | Tracking Resistance | CTI or PTI | IEC60112 | 600 | 600 | 600 | V | | Erosion Depth | ED | | 0.019/0.122 | 0.019/0.122 | 0.021 | mm | | Resistance (Input-Output) ² | R _{IO} | | 10 ¹² | 10 ¹² | 10 ¹² | Ω | | Capacitance
(Input-Output) ² | C _{IO} | f = 1 MHz | 1.4 | 1.4 | 1.4 | pF | | Input Capacitance ³ | C _I | | 4.0 | 4.0 | 4.0 | pF | # Notes: - 1. The values in this table correspond to the nominal creepage and clearance values as detailed in 6.1 Package Outline: 16-Pin Wide Body SOIC, 6.2 Package Outline: 14-Pin Wide Body SOIC, 6.3 Package Outline: 16-Pin Narrow Body SOIC, 6.4 Package Outline: 14 LD LGA (5 x 5 mm), 6.5 Package Outline: 14 LD QFN. VDE certifies the clearance and creepage limits as 4.7 mm minimum for the NB SOIC and 8.5 mm minimum for the WB SOIC package. UL does not impose a clearance and creepage minimum for component level certifications. CSA certifies the clearance and creepage of the WB SOIC package with designation "IS3" as 8 mm minimum. CSA certifies the clearance and creepage limits as 3.9 mm minimum for the NB SOIC and 7.6 mm minimum for the WB SOIC package with package designation "IS" as listed in the data sheet. - 2. To determine resistance and capacitance, the Si823x is converted into a 2-terminal device. Pins 1–8 (1–7, 14 LD LGA/QFN) are shorted together to form the first terminal and pins 9–16 (8–14, 14 LD LGA/QFN) are shorted together to form the second terminal. The parameters are then measured between these two terminals. - 3. Measured from input pin to ground. Table 3.4. IEC 60664-1 Ratings | Parameter | Test Condition | Specification | | | |-----------------------------|---|---------------|------------|------------------| | | | WB SOIC-14/16 | NB SOIC-16 | 14 LD
LGA/QFN | | Basic Isolation Group | Material Group | I | I | I | | Installation Classification | Rated Mains Voltages < 150 V _{RMS} | I-IV | I-IV | I-IV | | | Rated Mains Voltages < 300 V _{RMS} | I-IV | I-III | I-III | | | Rated Mains Voltages < 400 V _{RMS} | I-III | I-II | I-II | | | Rated Mains Voltages < 600 V _{RMS} | 1-111 | I-II | 1-11 | Table 3.5. VDE 0884-10 Insulation Characteristics¹ | | | | Charac | | | |---|-------------------|---|------------------|-----------------------------|--------| | Parameter | Symbol | Test Condition | WB
SOIC-14/16 | NB SOIC-16
14 LD LGA/QFN | Unit | | Maximum Working Insula-
tion Voltage | V_{IORM} | | 891 | 560 | V peak | | Input to Output Test Voltage | V_PR | Method b1 $(V_{IORM} \times 1.875 = V_{PR}, \\ 100\%$ Production Test, $t_m = 1$ sec, Partial Discharge < 5 pC) | 1671 | 1050 | V peak | | Transient Overvoltage | V _{IOTM} | t = 60 s | 6000 | 4000 | V peak | | Surge Voltage | V _{IOSM} | Tested per IEC 60065 with
surge voltage of 1.2 µs/50
µs
Si823xxB/C/D tested with
4000 V | 3077 | 3077 | V peak | | Pollution Degree (DIN VDE 0110, Table 1) | | | 2 | 2 | | | Insulation Resistance at T _S , V _{IO} = 500 V | R _S | | >10 ⁹ | >10 ⁹ | Ω | ### *Note: ^{1.} Maintenance of the safety data is ensured by protective circuits. The Si823x provides a climate classification of 40/125/21. Table 3.6. VDE 0884-10 Safety Limiting Values¹ | Parameter | Symbol | Test
Condition | WB SOIC-14/16 | NB SOIC-16 | 14 LD
LGA/QFN | Unit | |---------------------------------------|----------------|--|---------------|------------|------------------|------| | Case
Temperature | T _S | | 150 | 150 | 150 | °C | | Safety Input Current | I _S | $\theta_{JA} = 100 \text{ °C/W (WB SO-IC-14/16)},$ $105 \text{ °C/W (NB SOIC-16,}$ 14 LD LGA/QFN) $V_{DDI} = 5.5 \text{ V},$ $V_{DDA} = V_{DDB} = 24 \text{ V},$ $T_{J} = 150 \text{ °C}, T_{A} = 25 \text{ °C}$ | 50 | 50 | 50 | mA | | Device Power Dissipation ² | P _D | | 1.2 | 1.2 | 1.2 | W | ### Notes: - 1. Maximum value allowed in the event of a failure. Refer to the thermal derating curve in Figures Figure 3.4 WB SOIC, NB SOIC, 14 LD LGA/QFN Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per VDE 0884-10 on page 32. - 2. The Si82xx is tested with V_{DDI} = 5.5 V, V_{DDA} = V_{DDB} = 24 V, T_{J} = 150 °C, C_{L} = 100 pF, input 2 MHz 50% duty cycle square wave. **Table 3.7. Thermal Characteristics** | Parameter | Symbol | WB
SOIC-14/16 | NB
SOIC-16 | 14 LD LGA/QFN | Unit | |--|-----------------------|------------------|---------------|---------------|------| | IC Junction-to-Air
Thermal Resistance | $\theta_{ extsf{JA}}$ | 100 | 105 | 105 | °C/W | Figure 3.4. WB SOIC, NB SOIC, 14 LD LGA/QFN Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per VDE 0884-10 Table 3.8. Absolute Maximum Ratings¹ | Parameter | Symbol | Min | Max | Unit | |--|-----------------------------|------|--------------|------------------| | Storage Temperature ² | T _{STG} | -65 | +150 | °C | | Ambient Temperature under Bias | T _A | -40 | +125 | °C | | Junction Temperature | TJ | _ | +150 | °C | | Input-side Supply Voltage | VDDI | -0.6 | 6.0 | V | | Driver-side Supply Voltage | VDDA, VDDB | -0.6 | 30 | V | | Voltage on any Pin with respect to Ground | V _{IO} | -0.5 | VDD + 0.5 | V | | Output voltage to GND, repeat spike of –2 V for 200 ns, 200 kHz | VOA to GNDA,
VOB to GNDB | -2 | VDDA/B + 0.5 | V | | Peak Output Current (t _{PW} = 10 μs, duty cycle = 0.2%) (0.5 Amp versions) | I _{OPK} | _ | 0.5 | А | | Peak Output Current (t _{PW} = 10 μs, duty cycle = 0.2%) (4.0 Amp versions) | I _{OPK} | _ | 4.0 | A | | Lead Solder Temperature (10 s) | | | 260 | °C | | Maximum Isolation (Input to Output) (1 s) WB SOIC | | _ | 6500 | V _{RMS} | | Maximum Isolation (Output to Output) (1 s) WB SOIC | | _ | 2500 | V _{RMS} | | Maximum Isolation (Input to Output) (1 s) NB SOIC | | _ | 4500 | V _{RMS} | | Maximum Isolation (Output to Output) (1 s) NB SOIC | | _ | 2500 | V_{RMS} | | Maximum Isolation (Input to Output) (1 s) 14 LD LGA/QFN | | _ | 3850 | V _{RMS} | | Maximum Isolation (Output to Output) (1 s) 14 LD LGA/QFN | | _ | 650 | V _{RMS} | ### Notes: - 1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. - 2. VDE certifies storage temperature from -40 to 150 °C. # 4. Applications The following examples illustrate typical circuit configurations using the Si823x. #### 4.1 High-Side/Low-Side Driver The Figure A in the drawing below shows the Si8230/3 controlled using the VIA and VIB input signals, and Figure B shows the Si8231/4 controlled by a single PWM signal. Figure 4.1. Si823x in Half-Bridge Application For both cases, D1 and CB form a conventional bootstrap circuit that allows VOA to operate as a high-side driver for Q1, which has a maximum drain voltage of 1500 V. The boot-strap start up time will depend on the CB cap chosen. See application note, "AN486: High-Side Bootstrap Design Using Si823x ISODrivers in Power Delivery Systems". VOB is connected as a conventional low-side driver, and, in most cases, VDD2 is the same as VDDB. Note that the input side of the Si823x requires VDD in the range of 4.5 to 5.5 V (2.7 to 5.5 V for Si8237/8), while the VDDA and VDDB output side supplies must be between 6.5 and 24 V with respect to their respective grounds. It is recommended that bypass capacitors of 0.1 and 1 μ F value be used on the Si823x input side and that they be located as close to the chip as possible. Moreover, it is recommended that 0.1 and 10 μ F bypass capacitors, located as close to the chip as possible, be used on the Si823x output side to reduce high-frequency noise and maximize performance. #### 4.2 Dual Driver The figure below shows the Si823x configured as a dual driver. Note that the drain voltages of Q1 and Q2 can be referenced to a common ground or to different grounds with as much as 1500 V dc between them. Figure 4.2. Si8232/5/7/8 in a Dual Driver Application Because each output driver resides on its own die, the relative voltage polarities of VOA and VOB can reverse without damaging the driver. That is, the voltage at VOA can be higher or lower than that of VOB by VDD without damaging the driver. Therefore, a dual driver in a low-side high side/low side drive application can use either VOA or VOB as the high side driver. Similarly, a dual driver can operate as a dual low-side or dual high-side
driver and is unaffected by static or dynamic voltage polarity changes. # 5. Pin Descriptions Table 5.1. Si8230/3 Two-Input HS/LS Isolated Driver (SOIC-16). WB SOIC-14 with IS3 package designation, has pins 12 & 13 missing | Pin | Name | Description | |-----|---------|--| | 1 | VIA | Non-inverting logic input terminal for Driver A. | | 2 | VIB | Non-inverting logic input terminal for Driver B. | | 3 | VDDI | Input-side power supply terminal; connect to a source of 4.5 to 5.5 V. | | 4 | GNDI | Input-side ground terminal. | | 5 | DISABLE | Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW. It is strongly recommended that this input be connected to external logic level to avoid erroneous operation due to capacitive noise coupling. | | 6 | DT | Dead time programming input. The value of the resistor connected from DT to ground sets the dead time between output transitions of VOA and VOB. Defaults to 400 ps dead time when connected to VDDI or left open (see 2.10 Programmable Dead Time and Overlap Protection). If improved noise immunity is desired, a 10 nF capacitor may be added in parallel to the dead time programming resistor (RDT). | | 7 | NC | No connection. | | 8 | VDDI | Input-side power supply terminal; connect to a source of 4.5 to 5.5 V. | | 9 | GNDB | Ground terminal for Driver B. | | 10 | VOB | Driver B output (low-side driver). | | 11 | VDDB | Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V. | | 12 | NC | No connection. | | 13 | NC | No connection. | | 14 | GNDA | Ground terminal for Driver A. | | 15 | VOA | Driver A output (high-side driver). | | 16 | VDDA | Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V. | Table 5.2. Si8231/4 PWM Input HS/LS Isolated Driver (SOIC-16). WB SOIC-14 with IS3 package designation, has pins 12 & 13 missing | Pin | Name | Description | | |-----|---------|--|--| | 1 | PWM | PWM input. | | | 2 | NC | No connection. | | | 3 | VDDI | Input-side power supply terminal; connect to a source of 4.5 to 5.5 V. | | | 4 | GNDI | Input-side ground terminal. | | | 5 | DISABLE | Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW. It is strongly recommended that this input be connected to external logic level to avoid erroneous operation due to capacitive noise coupling. | | | 6 | DT | Dead time programming input. The value of the resistor connected from DT to ground sets the dead time between output transitions of VOA and VOB. Defaults to 400 ps dead time when connected to VDDI or left open (see 2.10 Programmable Dead Time and Overlap Protection). If improved noise immunity is desired, a 10 nF capacitor may be added in parallel to the dead time programming resistor (RDT). | | | 7 | NC | No connection. | | | 8 | VDDI | Input-side power supply terminal; connect to a source of 4.5 to 5.5 V. | | | 9 | GNDB | Ground terminal for Driver B. | | | 10 | VOB | Driver B output (low-side driver). | | | 11 | VDDB | Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V. | | | 12 | NC | No connection. | | | 13 | NC | No connection. | | | 14 | GNDA | Ground terminal for Driver A. | | | 15 | VOA | Driver A output (high-side driver). | | | 16 | VDDA | Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V. | | Table 5.3. Si8232/5/7/8 Dual Isolated Driver (SOIC-16). WB SOIC-14 with IS3 package designation, has pins 12 & 13 missing | Pin | Name | Description | |-----|---------|---| | 1 | VIA | Non-inverting logic input terminal for Driver A. | | 2 | VIB | Non-inverting logic input terminal for Driver B. | | 3 | VDDI | Input-side power supply terminal; connect to a source of 4.5 to 5.5 V, (2.7 to 5.5 V for Si8237/8). | | 4 | GNDI | Input-side ground terminal. | | 5 | DISABLE | Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW. It is strongly recommended that this input be connected to external logic level to avoid erroneous operation due to capacitive noise coupling. | | 6 | NC | No connection. | | 7 | NC | No connection. | | 8 | VDDI | Input-side power supply terminal; connect to a source of 4.5 to 5.5 V, (2.7 to 5.5 V for Si8237/8). | | 9 | GNDB | Ground terminal for Driver B. | | 10 | VOB | Driver B output. | | 11 | VDDB | Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V. | | 12 | NC | No connection. | | 13 | NC | No connection. | | 14 | GNDA | Ground terminal for Driver A. | | 15 | VOA | Driver A output. | | 16 | VDDA | Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V. | ## LGA-14 and QFN-14 (5 x 5 mm) Table 5.4. Si8233 Two-Input HS/LS Isolated Driver (14 LD LGA and QFN) | Pin | Name | Description | | |---------|------|---|--| | GNDI | 1 | Input-side ground terminal. | | | VIA | 2 | Non-inverting logic input terminal for Driver A. | | | VIB | 3 | Non-inverting logic input terminal for Driver B. | | | VDDI | 4 | Input-side power supply terminal; connect to a source of 4.5 to 5.5 V. | | | DISABLE | 5 | Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW. It is strongly recommended that this input be connected to external logic level to avoid erroneous operation due to capacitive noise coupling. | | | DT | 6 | Dead time programming input. The value of the resistor connected from DT to ground sets the dead time between output transitions of VOA and VOB. Defaults to 400 ps dead time when connected to VDDI or left open (see2.10 Programmable Dead Time and Overlap Protection). If improved noise immunity is desired, a 10 nF capacitor may be added in parallel to the dead time programming resistor (RDT). | | | VDDI | 7 | Input-side power supply terminal; connect to a source of 4.5 to 5.5 V. | | | GNDB | 8 | Ground terminal for Driver B. | | | VOB | 9 | Driver B output (low-side driver). | | | VDDB | 10 | Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V. | | | NC | 11 | No connection. | | | GNDA | 12 | Ground terminal for Driver A. | | | VOA | 13 | Driver A output (high-side driver). | | | VDDA | 14 | Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V. | | # LGA-14 and QFN-14 (5 x 5 mm) | GNDI | 1 | | 14 | VDDA | |---------|---|--------|----|------| | PWM | 2 | | 13 | VOA | | NC | 3 | | 12 | GNDA | | VDDI | 4 | Si8234 | 11 | NC | | DISABLE | 5 | | 10 | VDDB | | DT | 6 | | 9 | VOB | | VDDI | 7 | | 8 | GNDB | Table 5.5. Si8234 PWM Input HS/LS Isolated Driver (14 LD LGA and QFN) | Pin | Name | Description | | |---------|------|--|--| | GNDI | 1 | Input-side ground terminal. | | | PWM | 2 | PWM input. | | | NC | 3 | No connection. | | | VDDI | 4 | Input-side power supply terminal; connect to a source of 4.5 to 5.5 V. | | | DISABLE | 5 | Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW. It is strongly recommended that this input be connected to external logic level to avoid erroneous operation due to capacitive noise coupling. | | | DT | 6 | Dead time programming input. The value of the resistor connected from DT to ground sets the dead time between output transitions of VOA and VOB. Defaults to 400 ps dead time when connected to VDDI or left open (see 2.10 Programmable Dead Time and Overlap Protection). If improved noise immunity is desired, a 10 nF capacitor may be added in parallel to the dead time programming resistor (RDT). | | | VDDI | 7 | Input-side power supply terminal; connect to a source of 4.5 to 5.5 V. | | | GNDB | 8 | Ground terminal for Driver B. | | | VOB | 9 | Driver B output (low-side driver). | | | VDDB | 10 | Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V. | | | NC | 11 | No connection. | | | GNDA | 12 | Ground terminal for Driver A. | | | VOA | 13 | Driver A output (high-side driver). | | | VDDA | 14 | Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V. | | # LGA-14 and QFN-14 (5 x 5 mm) Table 5.6. Si8235 Dual Isolated Driver (14 LD LGA and QFN) | Pin | Name | Description | | |---------|------
---|--| | GNDI | 1 | Input-side ground terminal. | | | VIA | 2 | Non-inverting logic input terminal for Driver A. | | | VIB | 3 | Non-inverting logic input terminal for Driver B. | | | VDDI | 4 | Input-side power supply terminal; connect to a source of 4.5 to 5.5 V. | | | DISABLE | 5 | Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW. It is strongly recommended that this input be connected to external logic level to avoid erroneous operation due to capacitive noise coupling. | | | NC | 6 | No connection. | | | VDDI | 7 | Input-side power supply terminal; connect to a source of 4.5 to 5.5 V. | | | GNDB | 8 | Ground terminal for Driver B. | | | VOB | 9 | Driver B output (low-side driver). | | | VDDB | 10 | Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V. | | | NC | 11 | No connection. | | | GNDA | 12 | Ground terminal for Driver A. | | | VOA | 13 | Driver A output (high-side driver). | | | VDDA | 14 | Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V. | | ## 6. Package Outlines ## 6.1 Package Outline: 16-Pin Wide Body SOIC Figure 6.1 16-Pin Wide Body SOIC on page 42 illustrates the package details for the Si823x in a 16-Pin Wide Body SOIC. Table 6.1 Package Diagram Dimensions on page 42 lists the values for the dimensions shown in the illustration. Figure 6.1. 16-Pin Wide Body SOIC **Table 6.1. Package Diagram Dimensions** | Dimension | Min | Max | | |-----------|-----------|------|--| | A | _ | 2.65 | | | A1 | 0.10 | 0.30 | | | A2 | 2.05 | _ | | | b | 0.31 | 0.51 | | | С | 0.20 0.33 | | | | D | 10.30 BSC | | | | E | 10.30 BSC | | | | E1 | 7.50 BSC | | | | е | 1.27 BSC | | | | L | 0.40 | 1.27 | | | h | 0.25 | 0.75 | | | θ | 0° | 8° | | | Dimension | Min | Max | |-----------|--------------|------| | ααα | _ | 0.10 | | bbb | _ | 0.33 | | ccc | _ | 0.10 | | ddd | _ | 0.25 | | eee | _ | 0.10 | | fff | _ | 0.20 | - 1. All dimensions shown are in millimeters (mm) unless otherwise noted. - 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. - 3. This drawing conforms to JEDEC Outline MS-013, Variation AA. - 4. Recommended reflow profile per JEDEC J-STD-020 specification for small body, lead-free components. ## 6.2 Package Outline: 14-Pin Wide Body SOIC Figure 6.2 Si823x 14-pin WB SOIC Outline on page 44 illustrates the package details for the Si823x in a 14-Pin Wide Body SOIC. Table 6.2 Package Diagram Dimensions on page 44 lists the values for the dimensions shown in the illustration. Figure 6.2. Si823x 14-pin WB SOIC Outline Table 6.2. Package Diagram Dimensions | Dimension | MIN | MAX | |-----------|-------|------| | А | _ | 2.65 | | A1 | 0.10 | 0.30 | | A2 | 2.05 | _ | | b | 0.31 | 0.51 | | С | 0.20 | 0.33 | | D | 10.30 | BSC | | E | 10.30 | BSC | | E1 | 7.50 | BSC | | е | 1.27 | BSC | | L | 0.40 | 1.27 | | h | 0.25 | 0.75 | | Θ | O. | 8° | | aaa | _ | 0.10 | | bbb | _ | 0.33 | | ссс | _ | 0.10 | | ddd | _ | 0.25 | | eee | _ | 0.10 | | fff | _ | 0.20 | Dimension MIN MAX - 1. All dimensions shown are in millimeters (mm) unless otherwise noted. - 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. - 3. This drawing conforms to JEDEC Outline MS-013, Variation AA. - 4. Recommended reflow profile per JEDEC J-STD-020 specification for small body, lead-free components. ## 6.3 Package Outline: 16-Pin Narrow Body SOIC Figure 6.3 16-pin Small Outline Integrated Circuit (SOIC) Package on page 46 illustrates the package details for the Si823x in a 16-pin narrow-body SOIC. Table 6.3 Package Diagram Dimensions on page 46 lists the values for the dimensions shown in the illustration. Figure 6.3. 16-pin Small Outline Integrated Circuit (SOIC) Package Table 6.3. Package Diagram Dimensions | Dimension | Min | Max | | Dimension | Min | Max | |-----------|----------|----------|--|-----------|----------|------| | A | _ | 1.75 | | L | 0.40 | 1.27 | | A1 | 0.10 | 0.25 | | L2 | 0.25 BSC | | | A2 | 1.25 | _ | | h | 0.25 | 0.50 | | b | 0.31 | 0.51 | | θ | 0° | 8° | | С | 0.17 | 0.25 | | aaa | 0.10 | | | D | 9.90 BSC | | | bbb | 0.20 | | | E | 6.00 BSC | 6.00 BSC | | ccc | 0.10 | | | E1 | 3.90 BSC | 3.90 BSC | | ddd | 0.25 | | | е | 1.27 BSC | | | | | | - 1. All dimensions shown are in millimeters (mm) unless otherwise noted. - 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. - 3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC. - 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. ## 6.4 Package Outline: 14 LD LGA (5 x 5 mm) Figure 6.4 Si823x LGA Outline on page 47 illustrates the package details for the Si823x in an LGA outline. Table 6.4 Package Diagram Dimensions on page 47 lists the values for the dimensions shown in the illustration. Figure 6.4. Si823x LGA Outline Table 6.4. Package Diagram Dimensions | Dimension | MIN | NOM | MAX | |-----------|----------|----------|------| | А | 0.74 | 0.84 | 0.94 | | b | 0.25 | 0.30 | 0.35 | | D | | 5.00 BSC | | | D1 | | 4.15 BSC | | | е | | 0.65 BSC | | | E | 5.00 BSC | | | | E1 | | 3.90 BSC | | | L | 0.70 | 0.75 | 0.80 | | L1 | 0.05 | 0.10 | 0.15 | | aaa | _ | 0.10 | | | bbb | — | | | | ссс | | | 0.08 | | ddd | _ | _ | 0.15 | | eee | _ | _ | 0.08 | - 1. All dimensions shown are in millimeters (mm) unless otherwise noted. - 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. ## 6.5 Package Outline: 14 LD QFN Figure 6.5 Si823x 14-pin LD QFN Outline on page 48 illustrates the package details for the Si823x in an QFN outline. Table 6.5 Package Diagram Dimensions on page 48 lists the values for the dimensions shown in the illustration. Figure 6.5. Si823x 14-pin LD QFN Outline Table 6.5. Package Diagram Dimensions | Dimension | MIN | NOM | MAX | |-----------------|----------------|----------|------| | А | 0.74 | 0.85 | 0.90 | | A1 | 0 | 0.025 | 0.05 | | b | 0.25 | 0.30 | 0.35 | | D | | 5.00 BSC | | | е | 0.65 BSC | | | | E | 5.00 BSC | | | | E1 | | 3.60 BSC | | | L | 0.50 0.60 0.70 | | | | L1 ³ | — 0.10 BSC — | | | | ссс | _ | _ | 0.08 | | ddd | _ | _ | 0.10 | - 1. All dimensions shown are in millimeters (mm) unless otherwise noted. - 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. - 3. L1 shall not be less than 0.01 mm. ## 7. Land Patterns ## 7.1 Land Pattern: 16-Pin Wide Body SOIC Figure 7.1 16-Pin SOIC Land Pattern on page 49 illustrates the recommended land pattern details for the Si823x in a 16-pin wide-body SOIC. Table 7.1 16-Pin Wide Body SOIC Land Pattern Dimensions on page 49 lists the values for the dimensions shown in the illustration. Figure 7.1. 16-Pin SOIC Land Pattern Table 7.1. 16-Pin Wide Body SOIC Land Pattern Dimensions | Dimension | Feature | (mm) | |-----------|--------------------|------| | C1 | Pad Column Spacing | 9.40 | | E | Pad Row Pitch | 1.27 | | X1 | Pad Width | 0.60 | | Y1 | Pad Length | 1.90 | - 1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN for Density Level B (Median Land Protrusion). - 2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. ## 7.2 Land Pattern: 14-Pin Wide Body SOIC Figure 7.2 14-Pin WB SOIC Land Pattern on page 50 illustrates the recommended land pattern details for the Si823x in a 14-pin Wide Body SOIC. Table 7.2 14-Pin WB SOIC Land Pattern Dimensions on page 50 lists the values for the dimensions shown in the illustration. Figure 7.2. 14-Pin WB SOIC Land Pattern Table 7.2. 14-Pin WB SOIC Land Pattern Dimensions | Dimension | Feature | (mm) | |-----------|--------------------|------| | C1 | Pad Column Spacing | 9.70 | | E | Pad Row Pitch | 1.27 | | X1 | Pad Width | 0.60 | | Y1 | Pad Length | 1.60 | - 1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN for Density Level B (Median Land Protrusion). - 2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. ## 7.3 Land Pattern: 16-Pin Narrow Body SOIC Figure 7.3 16-Pin Narrow Body SOIC PCB Land Pattern on page 51 illustrates the recommended land pattern details for the Si823x in a 16-pin narrow-body SOIC. Table 7.3 16-Pin Narrow Body SOIC Land Pattern Dimensions on page 51 lists the values for the dimensions shown in the illustration. Figure 7.3. 16-Pin Narrow Body SOIC PCB Land Pattern Table 7.3. 16-Pin Narrow Body SOIC Land Pattern Dimensions | Dimension | Feature | (mm) | |-----------|--------------------|------| | C1 | Pad Column Spacing | 5.40 | | E | Pad Row Pitch | 1.27 | | X1 | Pad Width | 0.60 | | Y1 | Pad Length | 1.55 | - 1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N for Density Level B (Median Land Protrusion). - 2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. ### 7.4 Land Pattern: 14 LD LGA/QFN Figure 7.4 14-Pin LGA/QFN Land Pattern on page 52 illustrates the recommended land pattern details for the Si823x in a 14-pin LGA/QFN. Table 7.4 14-Pin LGA/QFN Land Pattern Dimensions on page 52 lists the values for the dimensions shown in the illustration. Figure 7.4. 14-Pin LGA/QFN Land Pattern Table 7.4. 14-Pin LGA/QFN Land Pattern Dimensions | Dimension | (mm) | |-----------|------| | C1 | 4.20 | | E | 0.65 | | X1 | 0.80 | | Y1 | 0.40 | ### Notes: ### General - 1. All dimensions shown are in millimeters (mm). - 2. This Land Pattern Design is based on the IPC-7351 guidelines. - 3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm. ## Solder Mask Design 1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum,
all the way around the pad. ## **Stencil Design** - 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. - 2. The stencil thickness should be 0.125 mm (5 mils). - 3. The ratio of stencil aperture to land pad size should be 1:1. ## **Card Assembly** - 1. A No-Clean, Type-3 solder paste is recommended. - 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. # 8. Top Markings ## 8.1 Si823x Top Marking (14/16-Pin Wide Body SOIC) Table 8.1. Top Marking Explanation (14/16-Pin Wide Body SOIC) | Line 1 Marking: | Base Part Number | Si823 = ISOdriver product series | |-----------------|--|---| | | Ordering Options | Y = Peak output current | | | See Ordering Guide for more information. | 0, 1, 2, 7 = 0.5 A | | | | 3, 4, 5, 8 = 4.0 A | | | | U = UVLO level | | | | A = 5 V; B = 8 V; C = 10 V; D = 12.5 V | | | | V = Isolation rating | | | | B = 2.5 kV; C = 3.75 kV; D = 5.0 kV | | Line 2 Marking: | YY = Year | Assigned by the Assembly House. Corresponds to the year and | | | WW = Workweek | workweek of the mold date. | | | TTTTTT = Mfg Code | Manufacturing Code from Assembly Purchase Order form. | | Line 3 Marking: | Circle = 1.5 mm Diameter | "e4" Pb-Free Symbol | | | (Center Justified) | | | | Country of Origin | TW = Taiwan (as shown), TH = Thailand | | | ISO Code Abbreviation | | ## 8.2 Si823x Top Marking (16-Pin Narrow Body SOIC) | Line 1 Marking: | Base Part Number | Si823 = ISOdriver product series | |-----------------|--|---| | | Ordering Options | Y = Peak output current | | | See Ordering Guide for more information. | 0, 1, 2, 7 = 0.5 A | | | occ ordering dude for more information. | 3, 4, 5, 8 = 4.0 A | | | | U = UVLO level | | | | A = 5 V; B = 8 V; C = 10 V; D = 12.5 V | | | | V = Isolation rating | | | | A = 1.0 kV; B = 2.5 kV; C = 3.75 kV | | Line 2 Marking: | YY = Year | Assigned by the Assembly House. Corresponds to the year and | | | WW = Workweek | workweek of the mold date. | | | TTTTTT = Mfg Code | Manufacturing Code from Assembly Purchase Order form. | ## 8.3 Si823x Top Marking (14 LD LGA/QFN) | Line 1 Marking: | Base Part Number | Si823 = ISOdriver product series | |-----------------|--|--| | | Ordering Options | Y = Peak output current | | | See Ordering Guide for more information. | 0, 1, 2 = 0.5 A | | | | 3, 4, 5 = 4.0 A | | Line 2 Marking: | Ordering options | U = UVLO level | | | | A = 5 V; B = 8 V; C = 10 V; D = 12.5 V | | | | V = Isolation rating | | | | A = 1.0 kV; B = 2.5 kV; C = 3.75 kV | | | | I = –40 to +125 °C ambient temperature range | | | | M = LGA package type | | | | M1 = QFN package type | | Line 3 Marking: | ттттт | Manufacturing Code from Assembly | | Line 4 Marking: | Circle = 1.5 mm diameter | Pin 1 identifier | | | YYWW | Manufacturing date code | ## 9. Revision History ### **Revision 2.13** September, 2018 - Added automotive grade OPNs in Table 1.2 Ordering Guide for Automotive Grade OPNs^{1, 2, 4, 5} on page 5. - Modified power equations in 2.7 Power Dissipation Considerations. - Corrected typo for IDISABLE in Table 3.1 Electrical Characteristics¹ on page 25. - Reformatted Table 3.5 VDE 0884-10 Insulation Characteristics¹ on page 31. - Added Absolute Max rating of –2V/200 ns on output pins in Table 3.8 Absolute Maximum Ratings¹ on page 33. - Updated 7.2 Land Pattern: 14-Pin Wide Body SOIC. #### Revision 2.12 May 2018 Updated the Ordering Guide for Automotive-Grade OPN options. ### Revision 2.1.1 January 2018 · Added new table to Ordering Guide for Automotive-Grade OPN options. ### **Revision 2.1** October 2017 - · Added IS3 and IM1 packaging options - · Added IEC 62368-1 references throughout - Changed max propagation delay spec from 60 ns to 45 ns based on new test limits - Removed references to IEC 61010 - Removed references to IEC 60747, replaced with references to VDE 0884-10 ### Revision 2.0 August 7, 2017 ### **Revision 1.9** July 7, 2017 Updated 1. Ordering Guide to designate tape and reel packaging option. ## **Revision 1.8** May 17, 2016 · Converted document from Framemaker to DITA. ### **Revision 1.7** - Updated 3.1 Test Circuits - · Added CQC certificate numbers. - · Updated Table 3.3 Insulation and Safety-Related Specifications on page 30 - · Updated Erosion Depth. - Updated Table 3.5 VDE 0884-10 Insulation Characteristics¹ on page 31 - Updated V_{PR} for WBSOIC-16. - Updated Table 3.8 Absolute Maximum Ratings¹ on page 33 - · Removed Io and added Peak Output Current specifications. - · Updated Equation 1. - Updated Figure 4.1 Si823x in Half-Bridge Application on page 34. - Updated Figure 4.2 Si8232/5/7/8 in a Dual Driver Application on page 35. - Updated Ordering Guide Table 1.1 Si823x Ordering Guide ^{1, 2, 3} on page 2 ### Revision 1.6 - Updated Table 1.1 Si823x Ordering Guide ^{1, 2, 3} on page 2, Ordering Part Numbers. - · Added Revision D Ordering Part Numbers. - · Removed all Ordering Part Numbers of previous revisions. ### Revision 1.5 - Updated Table 3.1 Electrical Characteristics¹ on page 25, input and output supply current. - · Added references to AEC-Q100 qualified throughout. - · Changed all 60747-5-2 references to 60747-5-5. - · Added references to CQC throughout. - · Updated pin descriptions throughout. - · Corrected dead time default to 400 ps from 1 ns. - Updated Table 1.1 Si823x Ordering Guide ^{1, 2, 3} on page 2, Ordering Part Numbers. - · Removed moisture sensitivity level table notes. ### **Revision 1.4** - · Updated 1. Ordering Guide. - · Updated "3 V VDDI Ordering Options". ### **Revision 1.3** - Added Si8237/8 throughout. - Updated Table 3.1 Electrical Characteristics¹ on page 25. - Updated Figure 3.1 IOL Sink Current Test Circuit on page 28. - UpdatedFigure 3.2 IOH Source Current Test Circuit on page 28. - Added Figure 3.3 Common Mode Transient Immunity Test Circuit on page 29. - Updated Si823x Family Truth Table to include notes 1 and 2. - Updated 2.10 Programmable Dead Time and Overlap Protection. - · Removed references to Figures 26A and 26B. - Updated Table 1.1 Si823x Ordering Guide ^{1, 2, 3} on page 2. - · Added Si8235-BA-C-IS1 ordering part number. - · Added table note. ### Revision 1.2 - Updated 1. Ordering Guide. - · Updated moisture sensitivity level (MSL) for all package types. - Updated Table 3.8 Absolute Maximum Ratings¹ on page 33. - · Added junction temperature spec. - Updated 3.1 Test Circuits with new notes. - Updated Figures Figure 2.16 Output Sink Current vs. Supply Voltage on page 14, Figure 2.14 Output Source Current vs. Supply Voltage on page 13, Figure 2.17 Output Sink Current vs. Temperature on page 14, and Figure 2.15 Output Source Current vs. Temperature on page 13 to reflect correct y-axis scaling. - Updated Figure 4.2 Si8232/5/7/8 in a Dual Driver Application on page 35. - · Updated . - Updated 6.1 Package Outline: 16-Pin Wide Body SOIC. - Updated Table 6.1 Package Diagram Dimensions on page 42. - Change references to 1.5 kV_{RMS} rated devices to 1.0 kV_{RMS} throughout. - · Updated 2.7 Power Dissipation Considerations. ### **Revision 1.1** - · Updated . - · Updated CMTI specification. - Updated Table 3.1 Electrical Characteristics¹ on page 25. - · Updated CMTI specification. - Updated Table 3.5 VDE 0884-10 Insulation Characteristics¹ on page 31. - · Updated 4.2 Dual Driver. - · Updated 1. Ordering Guide. - Replaced pin descriptions on page 1 with chip graphics. ### **Revision 1.0** - Updated Tables 3.1 Test Circuits, Table 3.3 Insulation and Safety-Related Specifications on page 30, Table 3.4 IEC 60664-1 Ratings on page 31, and Table 3.5 VDE 0884-10 Insulation Characteristics¹ on page 31. - · Updated 1. Ordering Guide. - · Added 5 V UVLO ordering options - · Added Device Marking sections. ### Revision 0.3 - · Moved Sections 2, 3, and 4 to after Section 5. - Updated Tables Table 5.4 Si8233 Two-Input HS/LS Isolated Driver (14 LD LGA and QFN) on page 39, Table 5.5 Si8234 PWM Input HS/LS Isolated Driver (14 LD LGA and QFN) on page 40. - Removed Si8230, Si8231, and Si8232 from pinout and from title. - · Updated and added Ordering Guide footnotes. - Updated UVLO specifications in Table 3.1 Electrical Characteristics¹ on page 25. - Added PWD and Output Supply Active Current specifications in Table 3.1 Electrical Characteristics¹ on page 25. - Updated and added typical operating condition graphs in 2.3 Typical Operating Characteristics (0.5 Amp) and 2.4 Typical Operating Characteristics (4.0 Amp). ### Revision 0.2 - · Updated all specs to reflect latest silicon revision. - Updated Table 3.1 Electrical Characteristics¹ on page 25 to include new UVLO options. - Updated Table 3.8 Absolute Maximum Ratings¹ on page 33 to reflect new maximum package isolation ratings - Added Figures 34, 35, and 36. - · Updated Ordering Guide to reflect new package offerings. - · Added "Undervoltage Lockout (UVLO)" section to describe UVLO operation. ## Revision 0.11 · Initial release. Products www.silabs.com/products Quality www.silabs.com/quality Support and Community community.silabs.com ## Disclaimer Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and
descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. ### **Trademark Information** Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, EZRadio®, EZRadio®, Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, Z-Wave and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Gate Drivers category: Click to view products by Silicon Labs manufacturer: Other Similar products are found below: 00028 00053P0231 8967380000 56956 CR7E-30DB-3.96E(72) 57.404.7355.5 LT4936 57.904.0755.0 5801-0903 5803-0901 5811-0902 5813-0901 58410 00576P0030 00581P0070 5882900001 00103P0020 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 01-1003W-10/32-15 LTILA6E-1S-WH-RC-FN12VXCR1 0131700000 00-2240 LTP70N06 LVP640 0158-624-00 5J0-1000LG-SIL 020017-13 LY1D-2-5S-AC120 LY2-0-US-AC120 LY2-US-AC240 LY3-UA-DC24 00-5150 00576P0020 00600P0010 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8609-RDPP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP