2.5V Drive Nch+Pch MOSFET

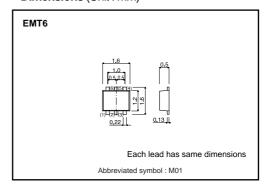
EM6M1

Structure

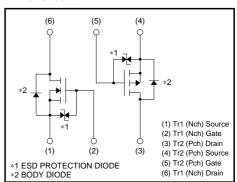
Silicon N-channel MOSFET/ Silicon P-channel MOSFET

● Features

- 1) Nch MOSFET and Pch MOSFET are put in EMT6 package.
- 2) High-speed switching.
- 3) Low voltage drive (2.5V drive).
- 4) Built-in G-S Protection Diode.


Applications

Switching


Packaging specifications

	Package	Taping		
Type	Code	T2R		
	Basic ordering unit (pieces)	8000		
EM6M1		0		

● Dimensions (Unit: mm)

•Inner circuit

● Absolute maximum ratings (Ta=25°C)

Parameter		Cumbal	Lin	Unit	
		Symbol	Tr1 : N-ch	Tr2 : P-ch	- Unit
Drain-source voltage		V _{DSS}	30	-20	V
Gate-source voltage		V _{GSS}	±20	±12	V
Drain current	Continuous	lσ	±0.1	±0.2	Α
	Pulsed	I _{DP} *1	±0.4	±0.4	Α
Power dissipation		P _D *2	150		mW / TOTAL
		Fυ	12	mW / ELEMENT	
Channel temperature		Tch	150		°C
Range of storage temperature		Tstg	-55 to +150		°C

^{*1} Pw ≦10μs, Duty cycle ≦1% *2 Mounted on a ceramic board

●Notice

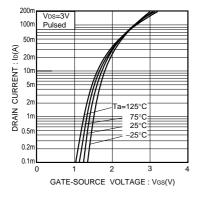
This product might cause chip aging and breakdown under the large electrified environment. Please consider to design ESD protection circuit.

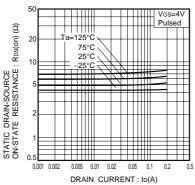
N-ch

●Electrical characteristics (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Gate-source leakage	Igss	-	_	±1	μΑ	V _{GS} = ±20V, V _{DS} =0V
Drain-source breakdown voltage	V _(BR) DSS	30	_	_	V	I _D =10μA, V _{GS} =0V
Zero gate voltage drain current	IDSS	_	_	1	μА	Vps=30V, Vgs=0V
Gate threshold voltage	V _{GS (th)}	0.8	-	1.5	V	V _{DS} =3V, I _D =100μA
Static drain-source on-state resistance	D *	-	5	8	Ω	I _D =10mA, V _{GS} =4V
	R _{DS} (on)	-	7	13	Ω	I _D =1mA, V _{GS} =2.5V
Forward transfer admittance	Y _{fs} *	20	_	_	mS	V _{DS} =3V, I _D =10mA
Input capacitance	Ciss	_	13	_	pF	V _{DS} =5V
Output capacitance	Coss	_	9	_	pF	V _{GS} =0V
Reverse transfer capacitance	Crss	_	4	_	pF	f=1MHz
Turn-on delay time	td (on) *	_	15	_	ns	Vpp≒5V
Rise time	tr *	_	35	_	ns	ID=10mA
Turn-off delay time	t _{d (off)} *	-	80	_	ns	V _{GS} =5V R _L =500Ω
Fall time	t _f *	_	80	_	ns	R _G =10Ω
Total gate charge	Qg *	-	0.9	_	nC	V _{DD} ≒15V, I _D =0.1A
Gate-source charge	Qgs *	_	0.2		nC	Vgs=4.5V
Gate-drain charge	Q _{gd} *	_	0.2	_	nC	R _L =150Ω, R _G =10Ω

^{*}Pulsed


P-ch
●Electrical characteristics (Ta=25°C)


Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Gate-source leakage	Igss	-	_	±10	μΑ	V _{GS} = ±12V, V _{DS} =0V	
Drain-source breakdown voltage	V(BR) DSS	-20	_	_	V	ID= -1mA, VGS=0V	
Zero gate voltage drain current	IDSS	_	-	-1	μΑ	V _{DS} = -20V, V _{GS} =0V	
Gate threshold voltage	V _{GS (th)}	-0.7	_	-2.0	V	$V_{DS}=-10V$, $I_{D}=-1mA$	
	RDS (on)	_	1.0	1.5	Ω	I _D = -0.2A, V _G S= -4.5V	
Static drain-source on-state resistance		_	1.1	1.6	Ω	I _D = -0.2A, V _G s= -4V	
resistance		_	2.0	3.0	Ω	I _D = -0.2A, V _G S= -2.5V	
Forward transfer admittance	Y _{fs} *	0.2	-	_	S	V _{DS} = -10V, I _D = -0.15A	
Input capacitance	Ciss	_	50	_	pF	V _{DS} = -10V	
Output capacitance	Coss	_	5	_	pF	V _{GS} = 0V	
Reverse transfer capacitance	Crss	_	5	_	pF	f=1MHz	
Turn-on delay time	t _{d (on)} *	_	9	_	ns	Vpp≒ –15V	
Rise time	tr *	-	6	_	ns	ID= -0.15A	
Turn-off delay time	t _{d (off)} *	_	35	_	ns	V _{GS} = -4.5V R _L = 100Ω	
Fall time	t _f *	_	45	_	ns	R _G = 10Ω	
Total gate charge	Qg *	_	1.2	_	nC	V _{DD} ≒-15V, I _D =-0.2A	
Gate-source charge	Q _{gs} *	_	0.2	_	nC	V _{GS} = -4.5V	
Gate-drain charge	Q _{gd} *	_	0.2	_	nC	$R_L=75\Omega$, $R_G=10\Omega$	

^{*}Pulsed

N-ch

•Electrical characteristic curve

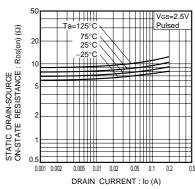


Fig.1 Typical Transfer Characteristics

Fig.2 Static Drain-Source On-State Resistance vs. Drain Current (I)

Fig.3 Static Drain-Source On-State Resistance vs. Drain Current (II)

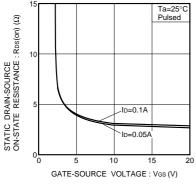


Fig.4 Static Drain-Source On-State Resistance vs. Gate-Source Voltage

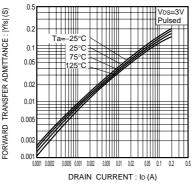


Fig.5 Forward Transfer Admittance vs. Drain Current

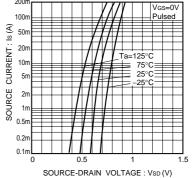


Fig.6 Reverse Drain Current vs. Source-Drain Voltage (I)

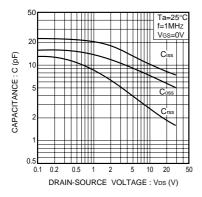


Fig.7 Typical Capacitance vs. Drain-Source Voltage

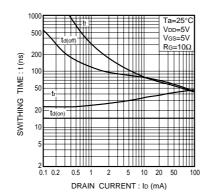
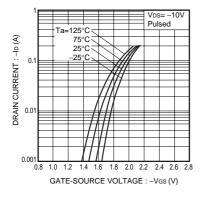
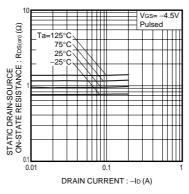




Fig.8 Switching Characteristics

P-ch

•Electrical characteristic curve

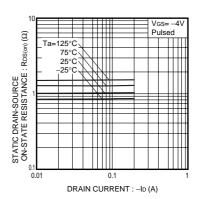
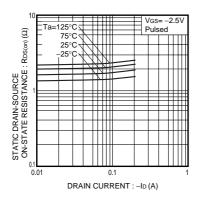
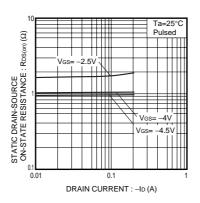




Fig.1 Typical Transfer Characteristics

Fig.2 Static Drain-Source On-State Resistance vs. Drain Current (I)

Fig.3 Static Drain-Source On-State Resistance vs. Drain Current (II)

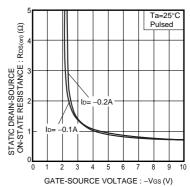
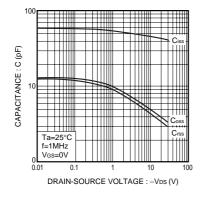
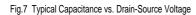




Fig.4 Static Drain-Source On-State Resistance vs. Drain Current (III)

Fig.5 Static Drain-Source On-State Resistance vs. Drain Current (IV)

Fig.6 Static Drain-Source On-State Resistance vs. Gate-Source Voltage

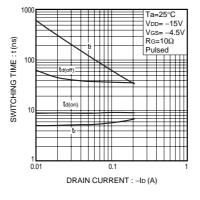


Fig.8 Switching Characteristics

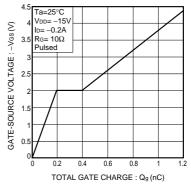


Fig.9 Dynamic Input Characteristics

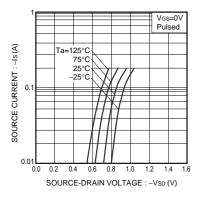


Fig.10 Source Current vs. Source-Drain Voltage

N-ch

●Measurement circuit

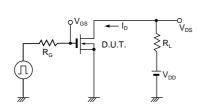


Fig.9 Switching Time Test Circuit

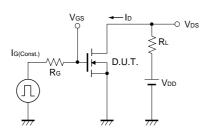


Fig.11 Gate Charge Measurement Circuit

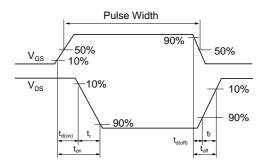


Fig.10 Switching Time Waveforms

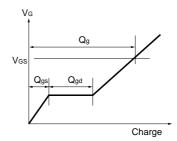


Fig.12 Gate Charge Waveform

P-ch

●Measurement circuit

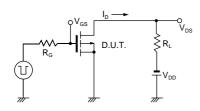


Fig.11 Switching Time Test Circuit

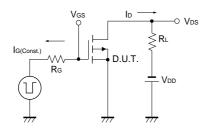


Fig.13 Gate Charge Measurement Circuit

Fig.12 Switching Time Waveforms

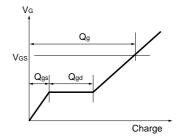


Fig.14 Gate Charge Waveform

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available, please contact your nearest sales office.

ROHM Customer Support System

THE AMERICAS / EUROPE / ASIA / JAPAN

www.rohm.com

Contact us : webmaster@rohm.co.jp

Copyright © 2008 ROHM CO.,LTD.

ROHM CO., LTD. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan

FAX:+81-75-315-0172

TEL:+81-75-311-2121

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ROHM manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B