

R-IN32M3 Series

R18DS0008EJ0500

Dec. 28, 2018

1. Overview

1.1 Introduction

Ethernet communication continues to spread rapidly in the field of industrial automation as manufacturers seek to improve the capability, efficiency, and flexibility of their organizations. Modern Industrial Ethernet applications require high-speed real-time response, low power consumption, and high performance. These requirements are not necessarily met by traditional methods such as hard-wired Ethernet processors or dedicated high-speed CPUs.

Renesas R-IN32M3 series of large-scale integrated circuits (LSI) are specifically tailored to meet the demands of Industrial Ethernet applications. Key features include:

- High-speed, real-time, deterministic, low-latency, low-jitter response for real-time applications
- Low power consumption
- Integrated Arm[®] Cortex[®]-M3 core for flexibility
- Integrated Real-Time OS Accelerator with support for µITRON version 4.0
- Integrated Gigabit Ethernet MAC (R-IN32M3-CL only)
- Integrated 10/100Mbps EtherPHY (R-IN32M3-EC only)
- Dedicated, DMA controller and buffer for the network processor
- High performance with low CPU usage by offloading functions to Real-Time OS Accelerator
- Multiple timers, serial interfaces, general purpose I/O (GPIO), external memory interfaces

1.2 Product Lineup

Renesas R-IN32M3 series includes the following two devices:

Table1.1 R-IN32M3 Product Lineup

Product name	Feature
R-IN32M3-EC	R-IN32M3 with built-in EtherCAT [®] Slave Controller
R-IN32M3-CL	R-IN32M3 with built-in CC-Link IE Field (intelligent device station)

1.3 Overview

Table 1.2 Overview of R-IN32M3 (1/2)

Product	R-IN32M3							
CPU cores	Arm Cortex-M3 32-bit RISC CPU							
	+ Real-Time OS Accelerator (Hardware Real-Time OS, HW-RTOS)							
Operating frequency	100 MHz							
Instruction set	Fhumb [®] -2 instruction Armv7-M architecture							
Instruction RAM	768 Kbytes (RAM with ECC)							
Data RAM	512 Kbytes (RAM with ECC)							
Buffer RAM	64 Kbytes (RAM with ECC)							
Internal system bus	- 32-bit system bus at 100 MHz							
	- 128-bit communication bus at 100 MHz							
DMA	- 4 channels + 1 channel (for real-time port)							
	- Supports software and various interrupt-triggered DMA							
Boot options	- Serial flash ROM boot							
	- External memory boot							
	- External MPU boot							
External memory support	- 16-bit or 32-bit bus interface							
	- Page ROM / ROM / SRAM interface							
	- Synchronous burst memory interface							
	- Four chip selects for external SRAM							
	- 256-Mbyte (max) external memory space							
	- Programmable wait function							
External MCU Interface	- 16-bit or 32-bit bus interface							
	- General-purpose interface for static memory							
	- Address space:2 Mbytes (instruction RAM, data RAM, register area)							
Serial flash ROM memory controller	- Support serial interface compatible with SPI of the companies							
	- Support direct boot from serial memory device							
	- Support Fast Read, Fast Read Dual Output, Fast Read Dual I/O mode							
	- Direct layout in memory space							
Interrupt	- 29 external interrupt pins							
Internal peripheral circuit								
I/O Ports	CMOS I/O: 96 pins (max.)							
System timers (three systems)	- Internal timer of Hardware RTOS							
	- Internal timer of CPU							
	- 4-channel timer array							
	- 32-bit counter & 32-bit data register							
	- Counter by external signal							
Watchdog timer	- 1 channel							
	- Software-triggered start mode							
	- Selectable operations in response to errors:							
	- Generation of a non-maskable interrupt (NMI)							
	- Generation of a reset							
Watchdog timer	 - 1 channel - Software-triggered start mode - Selectable operations in response to errors: - Generation of a non-maskable interrupt (NMI) 							

Table 1.2	Overview of R-IN32M3 (2/2)
-----------	----------------------------

Product	R-IN32M3					
Item Internal Peripherals (cont.)						
Asynchronous serial interface	- 2 channels					
Asynchronous senar interface	- Full duplex					
	- FIFOs: 10 bits x 16 receive and 8 bits x 16 transmit					
	- Support output of receive errors and status					
	- Character length: 7 or 8 bits					
	- Parity bit options: Odd, even, 0, none					
120 parial interface	- Transmit stop bits: 1 or 2 bits					
I2C serial interface	- 2 channels					
	- Operating modes: Normal or high-speed					
	- Transfer modes: Single-transfer mode or continuous-transfer mode					
	- Transmission data length: 8 bits					
CAN controller	- 2 channels					
	- Conforming to ISO11898					
	- Support to transfer and receive normal frame and expand frame					
	- Transmission speed: 1 Mbps (max)					
Clock synchronous serial interface	- 2 channels					
	- Synchronized serial data transmission by three-wire system					
	- Selectable master mode or slave mode					
	- Built-in baud-rate generator					
	- Transmission data length: 7 bits to 16 bits					
CC-Link	- Intelligent device station Notes3					
	- Remote device station					
10/100/1000Mbps Ether MAC Notes1	- 1 channel					
	- Built-in 2-port switch					
	- GMII / MII interface					
10/100Mbps EtherPHY Notes2	- 2 ports					
	- Support for 10BaseT and 100BaseTX/FX					
CC-Link IE Notes1	CC-Link IE field (Intelligent device station)					
EtherCAT Notes2	EtherCAT slave controller					
On-chip debug function	- Select serial wire or JTAG					
	- Support full trace (Built-in ETM)					
Internal PLL	Generates various clocks from 25-MHz input clock					
Power supply voltage	I/O: VDD33 = 3.3±0.3 V					
	Internal circuit: VDD10 = 1.0±0.1 V					
	Power supply for internal PHY Note 2: VDD15 = 1.5 ± 0.15 V (internal regulator					
	available) <r></r>					

Notes 1. Only applied to R-IN32M3-CL.

- 2. Only applied to R-IN32M3-EC.
- 3. Please contact our sales representative for details.

1.4 Internal Block Diagram

1.4.1 R-IN32M3-EC Block Diagram

1.4.2 R-IN32M3-CL Block Diagram

1.5 Memory Maps

Figure 1.1 Memory Map (ALL) (R-IN32M3-EC)

<R>Note: The addresses of the instruction RAM mirror area (768 Kbytes) where access actually occurs will change according to the selected boot mode. For details, see section 5.3, Memory MAP in Each Boot Mode, in the R-IN32M3 Series User's Manual: Peripheral Modules.

<R>Note: The addresses of the instruction RAM mirror area (768 Kbytes) where access actually occurs will change according to the selected boot mode. For details, see section 5.3, Memory MAP in Each Boot Mode, in the R-IN32M3 Series User's Manual: Peripheral Modules.

Figure 1.3 Memory Map (APB Peripheral Registers Area; Common to R-IN32M3-EC/CL)

Figure 1.4 Memory Map (External Memory Area; Common to R-IN32M3-EC/CL)

Figure 1.5 Memory Map (CC-Link Master Area; Common to R-IN32M3-EC/CL)

Cautions 1. CC-Link master shows the function block of intelligent device station. 2. CC-Link slave shows the function block of the remote device station.

Figure 1.6 External MCU Interface Area (R-IN32M3-EC)

<R>Note: The addresses of the instruction RAM mirror area (768 Kbytes) where access actually occurs will change according to the selected boot mode, as shown in the table below. For details, see section 5.3, Memory MAP in Each Boot Mode, and section 4, Bus Architecture, in the R-IN32M3 Series User's Manual: Peripheral Modules.

BOOT1	BOOT0	Boot Mode	Access Destination Area	Remarks
0	0	External memory boot	-	External MCU interface is disabled
0	1	External serial flash ROM boot	Reserved	Access disabled
1	0	External MCU boot	Instruction RAM area	_
1	1	Instruction RAM boot	Instruction RAM area	Enabled only for debugging

Figure 1.7 External MCU Interface Area (R-IN32M3-CL)

<R>Note: The addresses of the instruction RAM mirror area (768 Kbytes) where access actually occurs will change according to the selected boot mode, as shown in the table below. For details, see section 5.3, Memory MAP in Each Boot Mode, and section 4, Bus Architecture, in the R-IN32M3 Series User's Manual: Peripheral Modules.

BOOT1	BOOT0	Boot Mode	Access Destination Area	Remarks
0	0	External memory boot	-	External MCU interface is disabled
0	1	External serial flash ROM boot	Reserved	Access disabled
1	0	External MCU boot	Instruction RAM area	
1	1	Instruction RAM boot	Instruction RAM area	Enabled only for debugging

2. Pin Information

2.1 Pin Placement (R-IN32M3-EC Top View)

	18	17	16	15	14	13	12	1	10	6	ω	7	9	5	4	ю	2	-	_
>	GND	P53	TRACE CLK	TRACE DATA0	RESETZ	BOOT1	CCM_ CLK80M	VDD33	P1_ RD_N	P1_ SD_N	VDD33	P1_TD_ OUT_N	P1_FX_ EN_OUT	P12	P31	P32	P35	GND	>
О	P56	P55	P54	TRACE DATA2	RST OUTZ	MEM IFSEL	B00T 0	GND	P1_ RD_P	P1_ SD_P	GND	P1_TD_ OUT_P	P14	P13	P30	P33	P37	XT2	∍
Т	P50	P51	P52	TRACE DATA1	JTAG SEL	PONRZ	VDD15	GND	VDD15	VDDQ_ PECL_B1	111	P16	P15	OSCTH	P34	P36	GND	XT1	⊢
R	P1VDD ARXTX	AGND	GND	ZIMN	TRACE DATA3	BUS32 EN	HIF SYNC	HWRZ SEL	VDD33	GND	P17	P10	GND	VDD15	P27	P26	P25	P24	22
٩	P1_ RX_N	P1_ RX_P	VDD15	P57	TMODE 0	TMC2	ADMUX MODE	MEMC SEL	GND	TDI	TMS	PLL_ VDD	PLL_ GND	TDO	P21	P23	P22	P02	٩
z	P1_ TX_N	P1_ TX_P	AGND	P46	TMODE 1	GND	VDD33	GND	VDD33	GND	GND	VDD33	GND	GND	P20	P01	P03	P04	z
Σ	VDD ACB	EXT RES	ATP	P45	TMODE 2	VDD33	GND	VDD10	VDD10	VDD10	VDD10	GND	VDD33	TRSTZ	P00	90d	P05	P07	Σ
Ц	VDD APLL	VSSA PLLCB	AGND	P42	P47	GND	VDD10	GND	GND	GND	GND	VDD10	GND	TCK	P64	P66	P67	VDD15	_
¥	P0_ TX_N	P0_ TX_P	VDD33 ESD	P41	P44	GND	VDD10	GND	GND	GND	GND	VDD10	GND	P65	P63	GND	GND	BVDD	×
ſ	P0_ RX_N	P0_ RX_P	VDD15	RDZ	P40	VDD33	VDD10	GND	GND	GND	GND	VDD10	GND	VDD33	P62	TEST1	GND	ΓX	٦
Т	P0VDD ARXTX	AGND	GND	CSZ0	P43	GND	VDD10	GND	GND	GND	GND	VDD10	GND	VDD33	P60	TEST2	AGND_ REG	BGND	т
G	BUSCLK	WRSTBZ	WRZ0	WRZ1	A14	VDD33	GND	VDD10	VDD10	VDD10	VDD10	GND	VDD33	GND	P73	19d	AVDD_ REG	FB	ი
ш	A2	A3	A4	A5	A15	GND	VDD33	GND	GND	VDD33	GND	VDD33	GND	GND	P72	1/Ld	P70	TEST3	ш
ш	9Y	A7	A8	A9	A16	D8	GND	TMC1	GND	VDD33	GND	GND	GND	VDD33	P77	P76	P75	P74	ш
D	A10	A11	A12	A13	D7	D9	VDD15	D15	RP22	RP26	RP30	RP31	RP06	GND	RP04	RP02	RP01	RP00	Ω
ပ	A17	A18	A19	A20	D10	D11	D14	RP27	VDDQ_ PECL_B0	VDD33	RP20	RP32	RP07	VDD15	RP05	RP03	RP16	RP17	с
В	DO	D1	D3	D5	D12	RP21	RP24	P0_ RD_P	P0_ SD_P	GND	P0_TD_ OUT_P	TEST DOUT5	RP33	RP35	RP10	RP12	RP14	RP15	в
A	GND	D2	D4	D6	D13	RP23	RP25	P0_ RD_N	P0_ SD_N	VDD15	P0_TD_ OUT_N	P0_FX_ EN_OUT	RP34	RP36	RP37	RP11	RP13	GND	A
	18	17	16	15	14	13	12	11	10	0	8	7	9	5	4	З	7	~	-

	18	17	16	15	44	13	12	11	10	, თ	8	2	9	5	4	ю	2	~	
>	GND	TRACE CLK	TRACE DATA2	RESETZ	CCI_CLK 2_097M	CCM_CL K80M	P03	P07	P23	P24	P10	P14	P17	P32	GND	XT2	XT1	GND	>
С	P53	ZIMN	TRACE DATA1	RST OUTZ	HWRZ SEL	BOOTO	P02	P06	P22	P25	P11	P15	P30	P33	P35	P37	ETH1_ RXD7	CLKOUT 25M1	∍
г	P54	P55	TRACE DATA0	JTAG SEL	MEMIF	BOOT1	P01	P05	P21	P26	P12	P16	P31	P34	P36	ETH1_ RXD6	ETH1_ RXD5	ETH1_ RXD4	F
Я	P52	P57	P56	TRACE DATA3	PONRZ	HIF SYNC	P00	P04	P20	P27	P13	TDI	TMS	TDO	ETH1_ RXD3	ETH1_ RXD2	ETH1_ RXD1	ETH1_ RXD0	к
Ч	P66	P67	P50	P51	BUS32 EN	TMC2	ADMUX MODE	MEMC SEL	GND	GND	GND	PLL_ VDD	PLL_ GND	OSCTH	ETH1_ RXDV	ETH1_ RXER	ETH1_ CRS	ETH1_ RXC	٩
z	P62	P63	P64	P65	HOT RESETZ	GND	VDD33	GND	VDD33	GND	GND	VDD33	GND	GND	TRSTZ	ETH1_ COL	ETH1_ GE_INT	ETH1_ TXC	z
Σ	P76	P77	P60	P61	TMODE 0	VDD33	GND	VDD10	VDD10	VDD10	VDD10	GND	VDDQ_ MII	GND	TCK	ETH1_ TXER	ETH1_ TXEN	ETH1_ GTXC	Σ
Ц	GND	P73	P74	P75	TMODE 1	GND	VDD10	GND	GND	GND	GND	VDD10	GND	VDD33	ETH1_ TXD0	ETH1_ TXD1	ETH1_ TXD2	ETH1_ TXD3	_
¥	P47	P70	P71	P72	TMODE 2	GND	VDD10	GND	GND	GND	GND	VDD10	VDDQ_ MII	GND	ETH1_ TXD4	ETH1_ TXD5	ETH1_ TXD6	ETH1_ TXD7	×
ſ	P43	P44	P45	P46	GND	VDD33	VDD10	GND	GND	GND	GND	VDD10	GND	GND	ETH0_ RXD4	ETH0_ RXD5	ETH0_ RXD6	ETH0_ RXD7	٦
т	BUSCLK	P42	P41	P40	GND	GND	VDD10	GND	GND	GND	GND	VDD10	GND	VDD33	ETH0_ RXD0	ETH0_ RXD1	ETH0_ RXD2	ETH0_ RXD3	т
ი	RDZ	CSZ0	WRSTBZ	WRZ0	GND	VDD33	GND	VDD10	VDD10	VDD10	VDD10	GND	VDDQ_ MII	GND	ETH_ MDC	ETH0_ GE_INT	ETH0_ RXER	ETH0_ RXDV	ი
ш	WRZ1	A2	A3	A4	GND	GND	VDD33	GND	GND	VDD33	GND	VDD33	GND	GND	ETH0_ CRS	ETH0_ COL	ETH_ MDIO	ETH0_ TXC	ш
ш	A5	A6	A7	A8	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	ETH0_ TXD0_	ETH0_ TXEN	ETH0_ TXER	ETH0_ RXC	ш
D	A9	A10	A11	A12	D3	D7	D11	TMC1	RP20	RP31	RP35	RP12	RP16	RP06	ETH0_ TXD3	ETH0_ TXD2	ETH0_ TXD1	ETH0_ GTXC	۵
ပ	A13	A14	A15	A16	D4	D8	D12	D15	RP21	RP30	RP34	RP11	RP15	RP07	RP03	ETH0_ TXD6	ETH0_ TXD5	ETH0_ TXD4	ပ
В	A17	A18	A19	D1	D5	D9	D13	RP22	RP24	RP27	RP33	RP37	RP14	RP10	RP04	RP01	ETH0_ TXD7	CLKOUT 25M0	В
A	GND	A20	DO	D2	D6	D10	D14	RP23	RP25	RP26	RP32	RP36	RP13	RP17	RP05	RP02	RP00	GND	A
	18	17	16	15	14	13	12	11	10	თ	ø	7	9	5	4	с	2	-	-

2.2 Pin Placement (R-IN32M3-CL Top View)

2.3 Pin Functions

The meanings of the symbols and abbreviations used in this document are given below.

Item	Meaning
Pin name	Name of the pin shown in the following sections.
	2.1, Pin Placement (R-IN32M3-EC Top View),
	2.2, Pin Placement (R-IN32M3-CL Top View).
I/O	I/O direction of the given pin
Function	Summary of the given pin function
Active	Active level of the given pin
Level during reset	Indicates the pin state while RSTOUTZ = Low.
	For details on the reset specifications, refer to the R-IN32M3 Series User's Manual
	(Peripheral Modules).

Table 2.1 Meanings of the Items in the List of Pins

Table 2.2 Meanings of the Symbols and Abbreviations in the List of Pins

Target	Symbol and Abbreviation	Meaning						
Pin name	- (hyphen)	Indicates that the pin is a dedicated pin and is not multiplexed with a port-pin function.						
I/O	- (hyphen)	Indicates that the pin is a pin such as a power supply or ground pin and so does not have an I/O direction.						
Active	- (hyphen)	Indicates that there is no active level (clock signals, data bus, and address bus).						
	High	The active level is high.						
	Low	The active level is low.						
Level during reset	- (hyphen)	Indicates an input-dedicated pin that has no initial level or state following a reset.						
	High	The pin state during a reset is high.						
	Low	The pin state during a reset is low.						
	Hi-Z (High)	The pin state during a reset is hi-Z (High) with the internal pull-up resistor pulling it to the high level.						
	Hi-Z (Low)	The pin state during a reset is hi-Z (Low) with the internal pull-up resistor pulling it to the low level.						

2.3.1 Ethernet Pins

(1) PHY Interface Pins (R-IN32M3-CL only)

Caution: Only applied to R-IN32M3-CL.

				Level during
Pin Name	I/O	Function	Active	Reset
ETH0_TXC	I	Ethernet 0 10-M/100-M transmit clock (2.5 MHz/25 MHz)	-	-
ETH0_GTXC Note	0	Ethernet 0 1-G transmit clock (125 MHz)	-	High
ETH0_TXEN Note	0	Ethernet 0 transmit enable output	High	Low
ETH0_TXER Note	0	Ethernet 0 transmit error output	High	Low
ETH0_TXD0-	0	Ethernet 0 transmit data output	-	Low
ETH0_TXD7 Note				
ETH0_GE_INT	I	Ethernet 0 PHY interrupt	High/Low	-
ETH0_RXC	I	Ethernet 0 receive clock	-	-
ETH0_RXDV	I	Ethernet 0 receive enable input	High	-
ETH0_RXER	I	Ethernet 0 receive error input	High	-
ETH0_RXD0-	I	Ethernet 0 receive data input	-	-
ETH0_RXD7				
ETH0_CRS	I	Ethernet 0 carrier sense input	High	-
ETH0_COL	I	Ethernet 0 collision input	High	-
ETH1_TXC	I	Ethernet 1 10-M/100-M transmit clock (2.5 MHz/25 MHz)	-	-
ETH1_GTXC Note	0	Ethernet 1 1-G transmit clock (125 MHz)	-	High
ETH1_TXEN Note	0	Ethernet 1 transmit enable output	High	Low
ETH1_TXER Note	0	Ethernet 1 transmit error output	High	Low
ETH1_TXD0-	0	Ethernet 1 transmit data output	-	Low
ETH1_TXD7 Note				
ETH1_GE_INT	I	Ethernet 1 PHY interrupt input	High/Low	-
ETH1_RXC	I	Ethernet 1 receive clock	-	-
ETH1_RXDV	I	Ethernet 1 receive enable input	High	-
ETH1_RXER	I	Ethernet 1 receive error input	High	-
ETH1_RXD0-	I	Ethernet 1 receive data input	-	-
ETH1_RXD7				
ETH1_CRS	I	Ethernet 1 carrier sense input	High	-
ETH1_COL	I	Ethernet 1 collision input	High	-
ETH_MDC	0	Ethernet management interface clock	-	Low
ETH_MDIO	I/O	Ethernet management interface data input/output	-	Hi-Z

Note: The driving ability can be switched by the setting of the ETHDRCTRL register. For details, see the R-IN32M3 Series User's Manual (Peripheral Modules).

(2) Media Interface Pins (R-IN32M3-EC only)

Caution: Only applied to R-IN32M3-EC.

Pin Name	I/O	Function	Active	Level during Reset
P0_RX_P	I	PHY0 receive data input (+)	-	-
P0_RX_N	I	PHY0 receive data input (-)	-	-
P1_RX_P	I	PHY1 receive data input (+)	-	-
P1_RX_N	I	PHY1 receive data input (-)	-	-
P0_TX_P	0	PHY0 transmit data output (+)	-	-
P0_TX_N	0	PHY0 transmit data output (-)	-	-
P1_TX_P	0	PHY1 transmit data output (+)	-	-
P1_TX_N	0	PHY1 transmit data output (-)	-	-
P0_SD_P	I	PHY0 100BASE-FX signal detect input (+)	High	-
P0_SD_N	I	PHY0 100BASE-FX signal detect input (-)	Low	-
P1_SD_P	I	PHY1 100BASE-FX signal detect input (+)	High	-
P1_SD_N	I	PHY1 100BASE-FX signal detect input (-)	Low	-
P0_RD_P	I	PHY0 100BASE-FX receive data input (+)	-	-
P0_RD_N	I	PHY0 100BASE-FX receive data input (-)	-	-
P1_RD_P	1	PHY1 100BASE-FX receive data input (+)	-	-
P1_RD_N	1	PHY1 100BASE-FX receive data input (-)	-	-
P0_TD_OUT_P	0	PHY0 100BASE-FX transmit data output (+)	-	-
P0_TD_OUT_N	0	PHY0 100BASE-FX transmit data output (-)	-	-
P1_TD_OUT_P	0	PHY1 100BASE-FX transmit data output (+)	-	-
P1_TD_OUT_N	0	PHY1 100BASE-FX transmit data output (-)	-	-
P0_FX_EN_OUT	0	PHY0 100BASE-FX FX enable indication output	High	-
		1: 100BASE-FX mode		
P1_FX_EN_OUT	0	PHY1 100BASE-FX FX enable indication output	High	-
		1: 100BASE-FX mode		

Remark: In MDI-X mode, the input and output attributes of TXP/TXN and RXP/RXN are reversed.

(3) Other Pins

Pin Name	I/O	Function	Shared Port	Active	Level during Reset
PHYLINK0, PHYLINK1	1	PHY link input Note1 (for EtherSwitch)	P06-P07	High	Hi-Z (High)
P0LINKLEDZ	0	SIP_PHY0 link status LED output Note2	P06	Low	Hi-Z
P1LINKLEDZ	0	SIP_PHY1 link status LED output Note2	P07	Low	
ETHSWSECOUT	0	EtherSwitch event output par second	P24	High	Note 3
PODUPLEXLEDZ	0	SIP_PHY0 half-duplex transfer status LED output Note2	P70	-	
		0: Full-duplex 1: Half-duplex			
P0SPEED100LEDZ	0	SIP_PHY0 100-BASE status LED output Note2	P72	Low	
P0SPEED10LEDZ	0	SIP_PHY0 10-BASE status LED output Note2	P73	Low	
P1DUPLEXLEDZ	0	SIP_PHY1 half-duplex status LED output ^{Note2} 0: Full-duplex 1: Half-duplex	P74	-	
P1SPEED100LEDZ	0	SIP_PHY1 100-BASE status LED output Note2	P76	Low	
P1SPEED10LEDZ	0	SIP_PHY1 10-BASE status LED output Note2	P77	Low	
P0ACTLEDZ	0	SIP_PHY0 RX status LED output Note2	RP02	Low	Hi-Z (High)
P1ACTLEDZ	0	SIP_PHY1 TX status LED output Note2	RP04	Low	

Notes 1. Only applies to R-IN32M3-CL.

- 2. Only applies to R-IN32M3-EC.
- 3. Hi-Z for R-IN32M3-EC and hi-Z (High) for R-IN32M3-CL.

2.3.2 EtherCAT Slave Controller Pins (R-IN32M3-EC only)

Pin Name	I/O	Function	Shared Port	Active	Level during Reset
CATLEDRUN	0	EtherCAT RUN LED output	P00	High	Hi-Z
CATIRQ	0	EtherCAT IRQ output	P01	High	
CATLEDSTER	0	EtherCAT dual-color state LED output	P02	High	
CATLEDERR	0	EtherCAT error LED output	P03	High	
CATLINKACT0,	0	EtherCAT link / activity LED output	P04-P05	High	
CATLINKACT1					
CATSYNC1	0	EtherCAT SYNC1 output	P10	High	Hi-Z (High)
CATSYNC0	0	EtherCAT SYNC0 output	P11	High	Hi-Z (Low)
CATLATCH1	I	EtherCAT LATCH1 input	P10	High	Hi-Z (High)
CATLATCH0	I	EtherCAT LATCH0 input	P11	High	Hi-Z (Low)
CATI2CCLK	0	EtherCAT EEPROM I2C clock output	P22	-	Hi-Z
CATI2CDATA	I/O	EtherCAT EEPROM I2C data input/output	P23	-	
CATRESTOUT	0	EtherCAT PHY RESETOUT	P56	-	Hi-Z (High)

Caution: Only applies to R-IN32M3-EC.

2.3.3 External Memory Interface Pins

Pin Name	I/O	Function	Shared Signal	Shared Port	Active	Level during Reset
BUSCLK	0	Bus clock output	-	-	-	Clock output
CSZ0	0	Chip select signal output	HCSZ	-	Low	Hi-Z (High)
CSZ1	0		HPGCSZ	P44		
CSZ2	0		-	P51		
CSZ3	0		-	P50		
A1 / MA0 Note4	0	Address output	HA1	P40	-	Hi-Z (High)
A2-A20 /	0		HA2-HA20	-		Hi-Z (Low)
MA1-MA19 Note4						
A21-A27 /	0		-	RP21-		
MA20-MA26 Note4				RP27		
D0-D15 /	I/O	Data bus	HD0-HD15	-		
MD0-MD15 /						
MA0-MA15 Note1, Note4						
D16-D31 /	I/O		HD16-HD31	RP30-	-	Hi-Z (High)
MD16-MD31 /				RP37		
MA16-MA31 ^{Note1, Note4}				RP10-		
				RP17		
RDZ	0	Read strobe output	HRDZ	-	Low	Hi-Z (High)
WRSTBZ	0	Write strobe output	HWRSTBZ	-	Low	
WRZ0, WRZ1/	0	Valid byte lane strobe	HWRZ0, HWRZ1/	-	Low	
BENZ0, BENZ1		output	HBENZ0, HBENZ1			
WRZ2, WRZ3/	0		HWRZ2, HWRZ3/	RP06,	Low	
BENZ2, BENZ3			HBENZ2, HBENZ3	RP07		
WAITZ	1	Wait signal input	HWAITZ	P41	Low	Hi-Z (High)
WAITZ1-WAITZ3 Note2	1	Wait signal input	-	P45-P47	Low	
BCYSTZ / ADVZ Note3	0	Address valid output	HBCYSTZ	RP20	Low	Hi-Z (High)

Remark: Pins of the external memory interface other than BUSCLK are input pins while the internal reset signal (HRESETZ) is at its active level.

- Notes 1. While the synchronous burst access memory controller is in use, these signals are multiplexed with the address signals if the ADMUXMODE pin is driven high. ADMUXMODE = 0: MD0-MD31 (Separate address and data lines) ADMUXMODE = 1: MD0-MD31/MA0-MA31 (Multiplexed address and data lines)
 - 2. These pins are only available when the synchronous burst access memory controller is in use.
 - 3. This pin functions as BCYSTZ when the asynchronous SRAM memory controller is in use and as ADVZ when the synchronous burst access memory controller is in use.
 - 4. This pin functions as A1-A27 and D0-D31 functions when the asynchronous SRAM memory controller is in use and as MA0-MA26 and MD0-MD31 functions when the synchronous burst access memory controller is in use.

2.3.4 External MCU Interface Pins

Pin Name	I/O	Function	Shared Pin	Shared Port	Active	Level during Reset
HBUSCLK	I	Bus clock input for host	INTPZ11	P43	-	Hi-Z (High)
HCSZ	I	Chip select signal input	CSZ0	-	Low	
HPGCSZ	I	PageRom mode chip select input	CSZ1	P44	Low	
HWAITZ	0	Wait signal output	WAITZ	P41	Low	
HA1	I	Address signal input	A1	P40	-	Hi-Z (High)
HA2-HA20	I		A2-A20	-		Hi-Z (Low)
HD0-HD15	I/O	Data bus	D0-D15	-	-	
HD16-HD31	I/O		D16-D31	RP30-		Hi-Z (High)
				RP37		
				RP10-		
				RP17		
HRDZ	I	Read strobe input	RDZ	-	Low	Hi-Z (High)
HWRSTBZ	I	Write strobe output	WRSTBZ	-	Low	
HWRZ0, HWRZ1/	I	Valid byte lane strobe	WRZ0, WRZ1/	-	Low	
HBENZ0, HBENZ1		input	BENZ0, BENZ1			
HWRZ2, HWRZ3/	I		WRZ2, WRZ3/	RP06,		
HBENZ2, HBENZ3			BENZ2, BENZ3	RP07		
HERROUTZ	0	Error interrupt output	SLEEPING	P42	Low	High
HBCYSTZ	I	Bus cycle input	BCYSTZ / ADVZ	RP20	Low	Hi-Z (High)

Caution: Input the low level to the HBUSCLK pin while asynchronous mode is in use.

Remark: The external MCU interface pins continue to operate during a reset.

2.3.5 Port Pins and Real-time Port Pins

The port and pins are configured as 12 sets of 8-bit ports.

They are accessible in 32-bit units by grouping sets of 4 ports; i.e. ports 0 to 3, 4 to 7, and real-time ports 0 to 3.

						(1/4)
	Pin Name	Mode 1	Mode 2	Mode 3	Mode 4	Level during Reset
P0	P00	INTPZ0	CATLEDRUN Note1	CCI_RUNLEDZ Note2	-	Note 3
	P01	INTPZ1	CATIRQ Note1	-	-	
	P02	INTPZ2	CATLEDSTER Note1	CCI_DLINKLEDZ Note2	-	
	P03	INTPZ3	CATLEDERR Note1	CCI_ERRLEDZ Note2	CCS_MON5	
	P04	INTPZ4	CATLINKACT0 Note1	CCI_LERR1LEDZ ^{Note2}	CCS_MON6	
	P05	INTPZ5	CATLINKACT1 Note1	CCI_LERR2LEDZ ^{Note2}	CCS_MON7	
	P06	PHYLINK0 Note2	P0LINKLEDZ Note1	CCI_SDLEDZ Note2	CCS_MON0	
	P07	PHYLINK1 Note2	P1LINKLEDZ Note1	CCI_RDLEDZ Note2	CCS_RESOUT	
P1	P10	CATLATCH1 Note1	CATSYNC1 Note1	-	CCS_REFSTB	Hi-Z (High)
	P11	CATLATCH0 Note1	CATSYNC0 Note1	-	CCS_MON4	Hi-Z (Low)
	P12	INTPZ6	-	CCI_NMIZ ^{Note2}	-	Hi-Z (High)
	P13	INTPZ7	-	CCI_WDTIZ ^{Note2} /	-	
				CCS_WDTZ /		
				CCM_WDTENZ		
	P14	SMSCK	-	-	-	
	P15	SMSI	-	-	-	
	P16	SMSO	-	-	-	
	P17	SMCSZ	-	-	-	
P2	P20	RXD0	-	CCM_LINKERRZ	-	Note3
	P21	TXD0	-	CCM_ERRZ	-	
	P22	INTPZ8	CATI2CCLK Note1	CCS_IOTENSU	-	
	P23	INTPZ9	CATI2CDATA Note1	CCS_SENYU0	-]
	P24	INTPZ10	ETHSWSECOUT	CCS_SENYU1	-	
	P25	WDTOUTZ	-	CCS_ERRZ	-]
	P26	TIN1	TOUT1	CCM_RUNZ / CCS_RUNZ	-	
	P27	TINO	ΤΟυΤΟ	- -	-	1

Notes 1. Only applies to R-IN32M3-EC.

- 2. Only applies to R-IN32M3-CL.
- 3. Hi-Z for R-IN32M3-EC and hi-Z (High) for R-IN32M3-CL

	Port Name	Mode 1	Mode 2	Mode 3	Mode 4	Level during Reset
P3	P30	RXD1	-	-	-	Hi-Z (High)
	P31	TXD1	-	-	-	
	P32	DMAREQZ1	-	-	CCS_MON1	
	P33	DMAACKZ1	CCI_WAITEDGEH	-	CCS_MON2	
	P34	DMATCZ1	CCI_WRLENH Note2	-	CCS_MON3	
	P35	CSISCK1	INTPZ22	CCM_IRLZ <r></r>	-	
	P36	CSISI1	INTPZ23	CCS_FUSEZ	-	
	P37	CSISO1	INTPZ24	CCM_MSTZ	-	
P4	P40	A1 / MA0	HA1	-	-	Hi-Z (High)
	P41	WAITZ	HWAITZ	-	-	
	P42	SLEEPING	HERROUTZ	CCM_SDGCZ	-	
	P43	INTPZ11	HBUSCLK	-	-	
	P44	CSZ1	HPGCSZ	-	-	
	P45	CSISCK0	WAITZ1	-	-	
	P46	CSISI0	WAITZ2	-	-	
	P47	CSISO0	WAITZ3	-	-	
P5	P50	CSZ3	-	CCM_LNKRUNZ /	-	
				CCS_LNKRUNZ		
	P51	CSZ2	-	CCM_RDLEDZ /	-	
				CCS_RDLEDZ		
	P52	TIN3	TOUT3	CCS_SDGATEON	-	Hi-Z (Low)
	P53	CRXD0	CCS_RD	CCM_RD	-	Hi-Z (High)
	P54	CTXD0	CCS_SD	CCM_SD	-	
	P55	CRXD1	-	-	-	
	P56	CTXD1	CATRESTOUT Notes1	CCI_PHYREZ1 Notes2	-	
	P57	TIN2	TOUT2	CCI_PHYREZ0 Notes2	-	

(2/4)

Notes 1. Only applies to R-IN32M3-EC.

2. Only applies to R-IN32M3-CL.

	Port Name	Mode 1	Mode 2	Mode 3	Mode 4	Level during reset
P6	P60	SCL0	-	-	-	Note3
	P61	SDA0	-	-	-	
	P62	RTDMAREQZ	-	CCM_MDIN0	-	
	P63	RTDMAACKZ	-	CCM_MDIN1	-	
	P64	RTDMATCZ	-	CCM_MDIN2	-	
	P65	DMAREQZ0	-	CCM_MDIN3	-	
	P66	DMAACKZ0	-	CCI_INTZ Note2	-	
	P67	DMATCZ0	-	-	_	
P7	P70	CSICS00	PODUPLEXLEDZ	CCS_STATION_NO_0 /	-	
			Note1	CCM_SNIN0		
	P71	CSICS01	-	CCS_STATION_NO_1 /	-	
				CCM_SNIN1		
	P72	CSICS10	P0SPEED100LEDZ	CCS_STATION_NO_2 /	-	
			Note1	CCM_SNIN2		
	P73	CSICS11	P0SPEED10LEDZ	CCS_STATION_NO_3 /	-	
			Note1	CCM_SNIN3		
	P74	INTPZ12	P1DUPLEXLEDZ	CCS_STATION_NO_4 /	-	
			Note1	CCM_SNIN4		
	P75	INTPZ13	-	CCS_STATION_NO_5 /	-	
				CCM_SNIN5		
	P76	INTPZ14	P1SPEED100LEDZ	CCS_STATION_NO_6 /	-	
			Note1	CCM_SNIN6		
	P77	INTPZ15	P1SPEED10LEDZ	CCS_STATION_NO_7 /	-	
			Note1	CCM_SNIN7		

(3/4)

Notes 1. Only applies to R-IN32M3-EC.

- 2. Only applies to R-IN32M3-CL.
- 3. Hi-Z for R-IN32M3-EC and hi-Z (High) for R-IN32M3-CL

	Port Name	Mode 1	Mode 2	Mode 3	Mode 4	Level during Reset
RP0	RP00	INTPZ16	SCL1	CCM_SDLEDZ /	_	Hi-Z (High)
				CCS_SDLEDZ		
	RP01	INTPZ17	SDA1	CCM_SMSTZ	-	
	RP02	INTPZ18	P0ACTLEDZ Note	CCS_BS1	-	
	RP03	INTPZ19	-	CCS_BS2	-	
	RP04	INTPZ20	P1ACTLEDZ Note	CCS_BS4	-	
	RP05	INTPZ21	-	CCS_BS8	-	
	RP06	WRZ2/BENZ2	HWRZ2/HBENZ2	-	-	
	RP07	WRZ3/BENZ3	HWRZ3/HBENZ3	-	-	
RP1	RP10	D24/MD24/HD24	-	-	-	Hi-Z (High)
	RP11	D25/MD25/HD25	-	-	-	
	RP12	D26/MD26/HD26	-	-	-	
	RP13	D27/MD27/HD27	-	_	-	
	RP14	D28/MD28/HD28	-	-	-	
	RP15	D29/MD29/HD29	-			
	RP16	D30/MD30/HD30	-	-	-	
	RP17	D31/MD31/HD31	-	-	-	
RP2	RP20	BCYSTZ / ADVZ	HBCYSTZ	-	-	Hi-Z (High)
	RP21	A21/MA20	-	-	-	Hi-Z (Low)
	RP22	A22/MA21	-	-	-	
	RP23	A23/MA22	-	-	-	
	RP24	A24/MA23	INTPZ25	-	-	
	RP25	A25/MA24	INTPZ26	-	-	
	RP26	A26/MA25	INTPZ27	-	-	
	RP27	A27/MA26	INTPZ28	-	-	
RP3	RP30	D16/MD16/HD16	-	_	-	Hi-Z (High)
	RP31	D17/MD17/HD17	-	-	-	
	RP32	D18/MD18/HD18	-	-	-	
	RP33	D19/MD19/HD19	_	-	-	
	RP34	D20/MD20/HD20	-	_	-	
	RP35	D21/MD21/HD21	-	-	-	
	RP36	D22/MD22/HD22	-	-	-	
	RP37	D23/MD23/HD23	_	_	-	

RP0x to RP3x functions as real-time ports which can transfer data via a dedicated DMA controller. They are able to input and output data in 32-bit units in synchronization with the DMA transfer trigger.

Note: Only applies to R-IN32M3-EC.

2.3.6 Serial Flash ROM Interface Pins

The serial flash ROM interface pins are pins of the serial flash ROM memory controller.

They support fast read, fast read dual output and fast read dual I/O modes.

Pin Name	I/O	Function	Shared Port	Active	Level during Reset
SMSCK	0	Serial clock output signal for serial flash ROM	P14	-	Hi-Z (High)
SMSI	I/O	Serial data I/O signal for serial flash ROM (connected to the SO pin of serial flash ROM)	P15	High	
SMSO	I/O	Serial data I/O signal for serial flash ROM (connected to the SI pin of serial flash ROM)	P16	High	
SMCSZ	0	Chip select output signal for serial flash ROM	P17	Low	

2.3.7 DMA Interface Pins

The DMA interface pins are interface pins of the DMA controllers for the internal AHB bus. There are two DMA controllers: one with four internal channels but only two external interfaces, and one with one internal channel and one external interface.

Pin Name	I/O	Function	Shared Port	Active	Level during Reset
RTDMAREQZ	1	RTDMAC DMA transfer request input	P62	Low	Note
RTDMAACKZ	0	RTDMAC DMA acknowledge output	P63	Low	
RTDMATCZ	0	RTDMAC terminal count output	P64	Low	
DMAREQZ0	1	DMA transfer request input 0	P65	Low	
DMAACKZ0	0	DMA acknowledge output 0	P66	Low	
DMATCZ0	0	DMA terminal count output 0	P67	Low	
DMAREQZ1	1	DMA transfer request input 1	P32	Low	Hi-Z (High)
DMAACKZ1	0	DMA acknowledge output 1	P33	Low	
DMATCZ1	0	Terminal count output 1	P34	Low	

Caution: Each DMA interface is assigned to a specific DMA channel.

Note: Hi-Z for R-IN32M3-EC and hi-Z (High) for R-IN32M3-CL.

2.3.8 External Interrupt Input Pins

The chip has one non-maskable interrupt and 29 maskable interrupt input pins.

Pin Name	I/O	Function	Shared Port	Active	Level during Reset
NMIZ	I	Non-maskable external interrupt input	-	Low	Hi-Z (High)
INTPZ0-INTPZ5	I	External interrupt input	P00-P05	Low	Note
INTPZ6, INTPZ7			P12, P13	Low	Hi-Z (High)
INTPZ8-INTPZ10			P22-P24	Low	Note
INTPZ11			P43	Low	Hi-Z (High)
INTPZ12-INTPZ15			P74-P77	Low	Note
INTPZ16-INTPZ21			RP00-RP05	Low	Hi-Z (High)
INTPZ22-INTPZ24			P35-P37		
INTPZ25-INTPZ28			RP24-RP27		Hi-Z (Low)

Note: Hi-Z for R-IN32M3-EC and hi-Z (High) for R-IN32M3-CL.

2.3.9 Timer I/O Pins

Pin Name	I/O	Function	Shared Port	Active	Level during Reset
TIN0 / TOUT0	I/O	Timer TAUJ0 input/output	P27	-	Note
TIN1 / TOUT1	I/O	Timer TAUJ1 input/output	P26	-	
TIN2 / TOUT2	I/O	Timer TAUJ2 input/output	P57	-	Hi-Z (High)
TIN3 / TOUT3	I/O	Timer TAUJ3 input/output	P52	-	Hi-Z (Low)

Note: Hi-Z for R-IN32M3-EC and hi-Z (High) for R-IN32M3-CL.

2.3.10 Watchdog Timer Output Pin

Pin Name	I/O	Function	Shared Port	Active	Level during Reset
WDTOUTZ	0	Watchdog timer output	P25	Low	Note

Note: Hi-Z for R-IN32M3-EC and hi-Z (High) for R-IN32M3-CL.

2.3.11 Trace Pins

Pin Name	I/O	Function	Active	Level during Reset
TRACECLK	0	Trace port clock output	-	Clock output
TRACEDATA3-	0	Trace port data output	-	Low
TRACEDATA0				Low

2.3.12 CPU Power Control Pin

Pin Name	I/O	Function	Shared Port	Active	Level during Reset
SLEEPING	0	CPU SLEEP mode output	P42	High	Hi-Z (High)

2.3.13 Serial Interface Pins

Pin Name	I/O	Function	Shared Port	Active	Level during Reset
TXD0	0	UART0 serial data output	P21	-	Note
RXD0	1	UART0 serial data input	P20	-	
TXD1	0	UART1 serial data output	P31	-	Hi-Z (High)
RXD1	I	UART1 serial data input	P30	-	
CSISCK0	I/O	CSI0 serial clock input/output	P45	-	
CSISI0	I	CSI0 serial data input	P46	-	
CSISO0	0	CSI0 serial data output	P47	-	
CSICS00, CSICS01	0	CSI0 chip select output 0,1	P70, P71	Low	Note
CSISCK1	I/O	CSI1 serial clock input/output	P35	-	Hi-Z (High)
CSISI1	I	CSI1 serial data input	P36	-	
CSISO1	0	CSI1 serial data output	P37	-	
CSICS10, CSICS11	0	CSI1 chip select output 0,1	P72, P73	Low	Note
SCL0	I/O	I2C0 serial clock input/output	P60	-	
SDA0	I/O	I2C0 serial data input/output	P61	-	
SCL1	I/O	I2C1 serial clock input/output	RP00	-	Hi-Z (High)
SDA1	I/O	I2C1 serial data input/output	RP01	-	
CRXD0	I	CAN0 receive data input	P53	-	
		(5V-tolerant buffer)			
CTXD0	0	CAN0 transfer data output	P54	-	
CRXD1	1	CAN1 receive data input	P55	-	
		(5V-tolerant buffer)			
CTXD1	0	CAN1 transfer data output	P56	-	

Note: Hi-Z for R-IN32M3-EC and hi-Z (High) for R-IN32M3-CL.

Pin Name	I/O	Function	Shared Port	Active	Level during Reset
CCI_RUNLEDZ	0	RUN status output	P00	Low	Hi-Z (High)
CCI_DLINKLEDZ	0	Cyclic communication status output	P02	Low	
CCI_ERRLEDZ	0	Field network error status output	P03	Low	
CCI_LERR1LEDZ	0	Link error status output 1	P04	Low	
CCI_LERR2LEDZ	0	Link error status output 2	P05	Low	
CCI_SDLEDZ	0	Transmission state output	P06	Low	
CCI_RDLEDZ	0	Port reception state output	P07	Low	
CCI_NMIZ	0	Output NMI interrupt to MCU	P12	Low	Hi-Z (High)
CCI_WDTIZ	1	Input from external watchdog timer	P13	Low	
CCI_WAITEDGEH	I/O	Wait synchronized edge setting	P33	-	
Note		0: Fall edge mode			
		1: Rise edge mode			
CCI_WRLENH	I/O	WRL signal enable setting	P34	-	
Note		0: Write byte enable mode			
		1: Normal byte enable mode			
CCI_PHYREZ1	0	PHY reset output 1	P56	Low	
CCI_PHYREZ0	0	PHY reset output 0	P57	Low]
CCI_INTZ	0	Output Interrupt to MCU	P66	Low	
CCI_CLK2_097M	1	2.097152-MHz clock (crystal oscillator)	-	-	-

Note: When user does boot with the external memory boot mode, external serial flash ROM boot mode, or instruction RAM boot mode, be sure not to input the low level to P33 (multiplexed with CCI_WAITEDGEH) and P34 (multiplexed with CCI_WRLENH) pins during a reset. P33 and P34 pins should be left open circuit or the high level should be input to the pins during a reset. If you input the low level to P33 and P34 pins during a reset, you cannot access the CC-Link IE field from the CPU of the R-IN32M3.

2.3.15 CC-Link Pins (Intelligent Device Station)

Pin Name	I/O	Function	Shared	Active	Level during
			Port		Reset
CCM_LINKERRZ	0	Link error LED control output	P20	Low	Note
CCM_ERRZ	0	Not used <r></r>	P21	Low	
CCM_RUNZ	0	Run LED control output	P26	Low	
CCM_MDIN0-	1	Transfer rate setting input <r></r>	P62-P65	-	
CCM_MDIN3					
CCM_SNIN0-	I	Station no. setting switch input	P70-P77	-	
CCM_SNIN7					
CCM_LNKRUNZ	0	Link run LED control output	P50	Low	Hi-Z (High)
CCM_RDLEDZ	0	Receive data LED control output	P51	Low	
CCM_SDLEDZ	0	Transfer data LED control output	RP00	Low	
CCM_IRLZ <r></r>	0	Interrupt signal output from communications circuit <r></r>	P35	Low	
CCM_WDTENZ	I	Watchdog timer error input	P13	Low	
CCM_MSTZ	0	Not used <r></r>	P37	Low	
CCM_SMSTZ	0	Not used <r></r>	RP01	Low	
CCM_RD	I	Communications circuit data reception	P53	-	
CCM_SD	0	Communications circuit data transmission pin	P54	-	
CCM_SDGCZ	0	Communications circuit transmit data & gate control pin	P42	Low	
CCM_CLK80M	I	CC-Link clock input (80 MHz)	-	-	-

Note: Hi-Z for R-IN32M3-EC and hi-Z (High) for R-IN32M3-CL.

2.3.16 CC-Link Pins (Remote Device Station)

Caution: To use a remote device station, it is necessary to connect a CCS_REFSTB pin (P10) to a port pin with the external interrupt function (INTPZ).

Pin Name	I/O	Function	Shared Port	Active	Level during Reset
CCS_MON1-	0	Monitor signal output	P32-P34	-	Hi-Z (High)
CCS_MON3					
CCS_MON4	0	Monitor signal output	P11	-	Hi-Z (Low)
CCS_MON0	0	Monitor signal output	P06	-	Note 1
CCS_MON5-	0	Monitor signal output	P03-P05	-	
CCS_MON7					
CCS_RESOUT	0	Reset output signal	P07	High	
CCS_IOTENSU	I	Initial setting pin	P22	-	
CCS_SENYU0	I	Initial setting pin	P23	-	
CCS_SENYU1	1	Initial setting pin	P24	-	
CCS_ERRZ	0	Operation check LED	P25	Low	
CCS_RUNZ	0	Operation check LED	P26	Low	
CCS_STATION_NO_0-	I	Station no. setting switch input	P70-P77	-	
CCS_STATION_NO_7					
CCS_LNKRUNZ	0	Link run LED control output	P50	Low	Hi-Z (High)
CCS_REFSTB	0	Interrupt signal	P10	High	
CCS_WDTZ	I	Watchdog timer input	P13	Low	
CCS_RDLEDZ	0	Receive data LED control output	P51	Low	
CCS_RD	I	Communications circuit data reception	P53	-	
		pin			
CCS_SD	0	Communications circuit data	P54	-	
		transmission pin			
CCS_SDLEDZ	0	Operation check LED	RP00	Low	
CCS_SDGATEON	0	Communication circuit transmit data &	P52	High	Hi-Z (Low)
		gate control pin			
CCS_BS1	I	Baud rate setting switch input	RP02	-	Hi-Z (High)
CCS_BS2	I	Baud rate setting switch input	RP03	-	
CCS_BS4	I	Baud rate setting switch input	RP04	-	
CCS_BS8	I	Baud rate setting switch input	RP05	-	
CCS_FUSEZ	1	Fuse cutting input signal	P36	Low	
CCM_CLK80M ^{Note2}	1	CC-Link clock input port (80 MHz)	-	-	-

Notes 1. Hi-Z for R-IN32M3-EC and hi-Z (High) for R-IN32M3-CL.

2. This pin is shared with the pin for CC-Link intelligent device station.

2.3.17 System Pins

				(1/2)
Pin Name	I/O	Function	Active	Level during Reset
XT1	1	Clock input pins	-	-
XT2	I/O	OSCTH = 1: Oscillator is in use.	-	-
		XT1 and XT2 are respectively connected to		
		GND and oscillator.		
		OSCTH = 0: Resonator is in use.		
		XT1 and XT2 are connected to resonator.		
RESETZ	I	Reset input	Low	-
HOTRESETZ Note1	I	Hot reset input	Low	-
PONRZ	I	Internal RAM power-on reset input	Low	-
OSCTH	1	External clock input mode setting	High	-
		0: Resonator using mode		
		1: External clock input mode		
JTAGSEL	I	JTAG pin operating mode setting	-	-
		0: Cortex-M3 JTAG mode		
		1: B-SCAN JTAG mode		
RSTOUTZ	0	External reset output	Low	Low
CLKOUT25M0 Note1	0	PHY clock output	-	Oscillation source
CLKOUT25M1 Note1	0	PHY clock output	-	is passed through
				these pins
PLL_VDD	-	PLL power supply (1.0 V)	-	-
PLL_GND	-	PLL ground level (GND)	-	-
VDD33	-	I/O power supply (3.3 V)	-	-
VDD10	-	Internal power supply (1.0 V)	-	-
GND	-	Power supply ground level (GND)	-	-
VDDQ_MII Note1	-	Ethernet I/O power supply (3.3 V)	-	-

				(2/2)
Pin Name	I/O	Function	Active	Level during Reset
LX Note2	0	1.5-V output for on-chip regulator	-	-
EXTRES Note2	-	Reference resistor connecting pin for on-chip PHY	-	-
P0VDDARXTX Note2	-	Analog power supply for Rx/Tx pin (1.5 V) - port 0	-	-
P1VDDARXTX Note2	-	Analog power supply for Rx/Tx pin (1.5 V) - port 1	-	-
VDDACB Note2	-	Analog power supply for on-chip PHY (3.3 V)	-	-
AGND Note2	-	Analog ground level for on-chip PHY (GND)	-	-
VDD15 Note2	-	Power supply for on-chip PHY (1.5V)	-	-
VDDAPLL Note2	-	Analog core power supply for on-chip PHY (1.5V)	-	-
VSSAPLLCB Note2	-	Analog core ground level for on-chip PHY (GND)	-	-
VDD33ESD Note2	-	Analog test power supply for on-chip PHY (3.3 V)	-	-
AVDD_REG Note2	-	Analog power supply for on-chip regulator (3.3 V)	-	-
AGND_REG Note2	-	Analog ground level for on-chip regulator (GND)	-	-
BVDD Note2	-	Power supply for on-chip regulator (3.3 V)	-	-
BGND Note2	-	Ground level for on-chip regulator (GND)	-	-
FB Note2	I	Feedback input for on-chip regulator	-	-
VDDQ_PECL_B0 Note2	-	PECL buffer power supply (3.3 V)	-	-
VDDQ_PECL_B1 Note2	-	PECL buffer power supply (3.3 V)	-	-

Notes 1. Only applies to R-IN32M3-CL.

2. Only applies to R-IN32M3-EC.

2.3.18 Test Pins

Pin Name	I/O	Function	Active	Level during Reset
TMODE0-TMODE2	1	Test mode select pin	-	-
TMS	I/O	Mode select signal	-	-
TDI	I	Serial data input	-	-
TDO	0	Serial data output	-	-
TRSTZ	I	Reset signal	Low	-
ТСК	I	Clock signal (JTAG clock)	-	-
TMC1	I	Renesas test pins	-	-
TMC2	I		-	-
ATP Note	1			
TEST1 Note	1		-	-
TEST2 Note	1		-	-
TEST3 Note	1		-	-
TESTOUT5 Note	0		-	-

Note: Only applies to R-IN32M3-EC.

Pin Name	I/O	Function	Active	Level during Reset
BOOT1-BOOT0	Ι	Boot mode select	-	-
		00: External memory boot		
		01: External serial flash ROM boot		
		10: External MCU boot		
		11: Instruction RAM boot (only available for debugging)		
MEMIFSEL	I	External memory interface select	-	-
		0: Slave memory interface		
		1: External MCU interface		
BUS32EN	1 I	External memory interface bus width select	-	-
		0: 16-bit bus		
		1: 32-bit bus		
HIFSYNC	1 I	External MCU interface operation mode select	-	-
		0: Asynchronous SRAM interface		
		1: Synchronous SRAM interface		
HWRZSEL	1 I	External MCU interface HWRZ/HBENZ select	-	-
		0: Used as HBENZ		
		1: Used as HWRZ		
MEMCSEL	1	Internal memory controller select port	-	-
		0: Asynchronous SRAM memory controller		
		1: Synchronous burst access memory controller		
ADMUXMODE	I	Multiplexing of address and data lines	-	-
		0: Separated address and data lines		
		1: Multiplexed address and data lines		

2.3.19 Operating Mode Setting Pins

R-IN32M3 Series Data Sheet

Boot Mode	External Memory Boot			External MCU Boot			External Serial Flash ROM Boot									
External Memory	S	Slave N	<i>A</i> emor	y	External MCU Interface		Slave	Slave Memory Interface		External MCU Interface						
Interface		Inter	face													
MEMC Type	Asynch	ironous	Synch	ronous	Asynch	ironous	Synch	ronous	Asynch	ironous	Synch	ronous	Asynch	ironous	Synch	ronous
External Bus Width	16-bit	32-bit	16-bit	32-bit	16-bit	32-bit	16-bit	32-bit	16-bit	32-bit	16-bit	32-bit	16-bit	32-bit	16-bit	32-bit
BOOT1-0	00	00	00	00	10	10	10	10	01	01	01	01	01	01	01	01
MEMIFSEL	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
MEMCSEL	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
BUS32EN	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
HIFSYNC	0	0	0	0	Note1	Note1	1	1	0	0	0	0	Note1	Note1	1	1
HWRZSEL	0	0	0	0	Note2	Note2	0	0	0	0	0	0	Note2	Note2	0	0
ADMUXMODE	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1

The combinations of available operating mode setting pins in this product are as follows.

Caution: Any combination of operating mode setting pins other than the above is prohibited.

Notes 1. The mode of the external MCU interface is selectable by the level on the HIFSYNC pin. HIFSYNC = 0: Asynchronous SRAM interface mode HIFSYNC = 1: Synchronous SRAM interface mode

The Street and Street

For details, see section 11, External MCU Interface, in the R-IN32M3 Series User's Manual (Peripheral Modules).

- 2. The external MCU interface HWRZ or HBENZ is selectable by the level on the HWRZSEL pin. For details, see section 2.3.3, External Memory Interface Pins.
- Remarks 1. The combination of operating-mode setting pins used to select booting for instruction RAM (BOOT1-0 = 11) is the same as that for booting from external memory (BOOT1-0 = 00).
 - 2. Asynchronous: Asynchronous SRAM memory controller (MEMCSEL = 0) Synchronous: Synchronous burst access memory controller (MEMCSEL = 1)

- 2.4 Buffer Types and Recommended Connections for Unused Pins
- 2.4.1 Ethernet Pins
- (1) PHY Interface Pins

Caution: Only applies to R-IN32M3-CL.

Pin Name	I/O	Interface	Recommended Connection when Not in Use
ETH0_TXC	1	Input buffer (3.3 V)	Connect to GND
ETH0_GTXC	0	BID_BUF (3.3 V_GMII_MII)_with_IOLH_Control	Open
ETH0_TXEN			
ETH0_TXER			
ETH0_TXD0-			
ETH0_TXD7			
ETH0_GE_INT	I	Input buffer (3.3 V)	Connect to GND
ETH0_RXC	1	BID_BUF (3.3 V_GMII_MII)_with_IOLH_Control	Connect to GND
ETH0_RXDV			
ETH0_RXER			
ETH0_RXD0-			
ETH0_RXD7			
ETH0_CRS	1	Input buffer (3.3 V)	Connect to GND
ETH0_COL			
ETH1_TXC			
ETH1_GTXC	0	BID_BUF (3.3 V_GMII_MII)_with_IOLH_Control	Open
ETH1_TXEN			
ETH1_TXER			
ETH1_TXD0-			
ETH1_TXD7			
ETH1_GE_INT	I	Input buffer (3.3 V)	Connect to GND
ETH1_RXC	1	BID_BUF (3.3 V_GMII_MII)_with_IOLH_Control	Connect to GND
ETH1_RXDV			
ETH1_RXER			
ETH1_RXD0-]		
ETH1_RXD7			
ETH1_CRS	1	Input buffer (3.3 V)	Connect to GND
ETH1_COL]		
ETH_MDC	0	Output buffer (3.3 V) 6 mA	Open
ETH_MDIO	I/O	I/O buffer (3.3 V) 6 mA	Connect to GND

(2) Media Interface Pins

Caution: Only applies to R-IN32M3-EC.

Pin Name	I/O	Interface	Recommended Connection when Not in Use
P0_RX_P	1	Management data interface (analog)	Open
P0_RX_N	I		
P1_RX_P	I		
P1_RX_N	I		
P0_TX_P	0	Management data interface (analog)	Open
P0_TX_N	0		
P1_TX_P	0		
P1_TX_N	0		
P0_SD_P	1	3.3 -V PECL input buffer	Connect to GND
P0_SD_N	1		
P1_SD_P	1		
P1_SD_N	1		
P0_RD_P	1		
P0_RD_N	1		
P1_RD_P	1		
P1_RD_N	1		
P0_TD_OUT_P	0	3.3-V PECL output buffer	Open
P0_TD_OUT_N	0		
P1_TD_OUT_P	0		
P1_TD_OUT_N	0		
P0_FX_EN_OUT	0	Output buffer (3.3 V) 12 mA	Open
P1_FX_EN_OUT	0		

2.4.2 External Memory/ MCU Interface Pins

Pin Name	I/O	Interface	Recommended Connection when Not in Use
BUSCLK	0	Output buffer (3.3 V) 9 mA	Open
CSZ0 / HCSZ	I/O	I/O buffer (3.3 V) 6 mA 50kΩ pull-up	Open
A2-A20 / HA2-HA20	I/O	I/O buffer (3.3 V) 6 mA 50kΩ pull-down	Open
D0-D15 / HD0-HD15			
RDZ / HRDZ	I/O	I/O buffer (3.3 V) 6 mA 50kΩ pull-up	Open
WRSTBZ / HWRSTBZ			
WRZ0, WRZ1 / BENZ0,			
BENZ1 / HWRZ0, HWRZ1			

2.4.3 System Pins

Pin Name	I/O	Interface	Recommended Connection when Not in Use
NMIZ	I	Input buffer (3.3 V) Schmitt in, 50k Ω pull-up	Connect to VDD33 (3.3 V)
XT1	1	Oscillator with EN	Connect to GND
XT2	I/O		-
RSTOUTZ	0	Output buffer (3.3 V) 6m A	Open
RESETZ	I	Input buffer (3.3 V) Schmitt in	-
PONRZ			
HOTRESETZ			Connect to VDD33 (3.3 V)
OSCTH	Ι	Input buffer (3.3 V) Schmitt in,	Set these pins according to the
JTAGSEL		50kΩ pull-down	operating mode

2.4.4 Test Pins

Pin Name	I/O	Interface	REQUIRED Connection when Not in Use
TMODE0-TMODE2	I	Input buffer (3.3 V) Schmitt in,	Connect to GND
		50kΩ pull-down	
TMS	I/O	I/O buffer (3.3 V) 6 mA 50kΩ pull-up	Open
TDI	I	Input buffer (3.3 V), 50k Ω pull-up	Open
TDO	0	3-state output buffer (3.3 V) 6 mA	Open
TRSTZ	I	Input buffer (3.3 V) Schmitt in,	Open
		50kΩ pull-up	
ТСК	1	Input buffer (3.3 V), 50k Ω pull-down	Open
TMC1	1	(TMC1) input buffer (3.3 V) for TMC terminal	Connect to GND
TMC2	I	(TMC2) input buffer (3.3 V) for TMC terminal	Connect to GND
ATP Note	I	Input buffer (3.3 V)	Open
TEST1 Note	I	Input buffer (3.3 V)	Connect to GND
TEST2 Note	I	Input buffer (3.3 V)	
TEST3 Note	I	Input buffer (3.3 V)	
TESTDOUT5 Note	0	Output buffer (3.3 V)	Open

Note: Only applies to R-IN32M3-EC.

2.4.5 Port Pins

		-	(1/2)
Pin Name	I/O	Interface	Recommended Connection when
			Not in Use
P00-P07	I/O	[R-IN32M3-EC]	R-IN32M3-EC: Connect to GND
		I/O buffer (3.3 V) (6 mA)	R-IN32M3-CL: Open
		[R-IN32M3-CL]	
		Programmable I/O buffer (3.3 V)	
		Load drive select function (6 mA, 12 mA)	
		Resistor select function	
		(50k Ω pull-up or 50k Ω pull-down or neither)	
P10	I/O	Programmable I/O buffer (3.3 V)	Open
		Load drive select function (6 mA, 12 mA)	
		Resistor select function	
		(50k Ω pull-up or 50k Ω pull-down or neither)	
P11-P17	I/O	Programmable I/O buffer (3.3 V) (6 mA)	Open
		Resistor select function	
		(50k Ω pull-up or 50k Ω pull-down or neither)	
P20-21, P25-26	I/O	[R-IN32M3-EC]	R-IN32M3-EC: Connect to GND
		I/O buffer (3.3 V) (6 mA)	R-IN32M3-CL: Open
		[R-IN32M3-CL]	
		Programmable I/O buffer (3.3 V)	
		Load drive select function (6 mA, 12 mA)	
		Resistor select function	
		(50k Ω pull-up or 50k Ω pull-down or neither)	
P22-24, 27	I/O	[R-IN32M3-EC]	
		I/O buffer (3.3 V) (6 mA)	
		[R-IN32M3-CL]	
		Programmable I/O buffer (3.3 V) (6 mA)	
		Resistor select function	
		(50k Ω pull-up or 50k Ω pull-down or neither)	
P30, P31	I/O	Programmable I/O buffer (3.3 V)	Open
		Load drive select function (6 mA, 12 mA)	
		Resistor select function	
		(50k Ω pull-up or 50k Ω pull-down or neither)	
P32-P36	I/O	Programmable I/O buffer (3.3 V) (6 mA)	
		Resistor select function	
		(50k Ω pull-up or 50k Ω pull-down or neither)	
P37	I/O	Programmable I/O buffer (3.3 V)	
		Load drive select function (6 mA, 12 mA)	
		Resistor select function	
		(50k Ω pull-up or 50k Ω pull-down or neither)	

Pin Name	I/O	Interface	Recommended Connection when Not in Use
P40-P47	I/O	Programmable I/O buffer (3.3 V) (6 mA) Resistor select function	Open
		(50k Ω pull-up or 50k Ω pull-down or neither)	
P50-P52	I/O	Programmable I/O buffer (3.3 V)	
		Load drive select function (6 mA, 12 mA)	
		Resistor select function	
		(50k Ω pull-up or 50k Ω pull-down or neither)	
P53-P56	I/O	5V-tolerant I/O buffer 4 mA	
		50kΩ pull-up	
P57	I/O	Programmable I/O buffer (3.3 V) (6 mA)	
		Resistor select function	
		(50k Ω pull-up or 50k Ω pull-down or neither)	
P60, P65-P67	I/O	[R-IN32M3-EC]	R-IN32M3-EC: Connect to GND
		I/O buffer (3.3 V) (6 mA)	R-IN32M3-CL: Open
		[R-IN32M3-CL]	
		Programmable I/O buffer (3.3 V) (6 mA)	
		Resistor select function	
		(50k Ω pull-up or 50k Ω pull-down or neither)	
P61-P64	I/O	[R-IN32M3-EC]	
		I/O buffer (3.3 V) (6 mA)	
		[R-IN32M3-CL]	
		Programmable I/O buffer (3.3 V)	
		Load drive select function (6 mA, 12 mA)	
		Resistor select function	
		(50k Ω pull-up or 50k Ω pull-down or neither)	
P70-P77	I/O	[R-IN32M3-EC]	R-IN32M3-EC: Connect to GND
		I/O buffer (3.3 V) (6 mA)	R-IN32M3-CL: Open
		[R-IN32M3-CL]	
		Programmable I/O buffer (3.3 V) (6 mA)	
		Resistor select function	
		(50k Ω pull-up or 50k Ω pull-down or neither)	
RP00-RP07	I/O	Programmable I/O buffer (3.3 V)	Open
RP10-RP17		Load drive select function (6 mA, 12 mA)	
RP20-RP27		Resistor select function	
RP30-RP37		(50k Ω pull-up or 50k Ω pull-down or neither)	

(2/2)

2.4.6 Operation Mode Setting Pins

Pin Name	I/O	Interface	Recommended Connection when Not in Use
BOOT0, BOOT1	1	Input buffer (3.3 V) Schmitt in	Set these pins according to the
MEMIFSEL			operating mode
BUS32EN			
HIFSYNC			
HWRZSEL			
MEMCSEL			
ADMUXMODE			

2.4.7 CC-Link IE Field (Intelligent Device Station) Pin (R-IN32M3-CL Only)

Pin Name	I/O	Interface	Recommended Connection
			when Not in Use
CCI_CLK2_097M	1	Input buffer (3.3 V)	2.097152-MHz clock input

Caution: This pin requires a clock input even when the CC-Link IE Field is not in use.

2.4.8 CC-Link Pins (Intelligent Device Station, Remote Device Station)

Pin Name	I/O	Interface	Recommended Connection
			when Not in Use
CCM_CLK80M	1	Input buffer (3.3 V)	Connect to GND

2.4.9 Trace Pins

Pin Name	I/O	Interface	Recommended Connection when Not in Use
TRACECLK	0	Output buffer (3.3 V) 6 mA	Open
TRACEDATA0-			
TRACEDATA3			

3. Specifications

3.1 CPU (Cortex-M3)

An R-IN32M3 device incorporates a high-performance 32-bit processor (Arm Cortex-M3 core). This chapter explains information specific to R-IN32M3 products.

3.1.1 CPU Core Information

The version of the Cortex-M3 core currently used in an R-IN32M3 is shown below. More information about the architecture of the CPU can be obtained from: <u>http://infocenter.arm.com/help/topic/com.arm.doc.set.cortexm/index.html</u>

Product Name	Revision	
R-IN32M3 Series	Cortex-M3 r2p1	

3.1.2 CPU Core Configuration

The Cortex-M3 of an R-IN32M3 has the following configurations.

Category	Configuration Item	Setting	Remark
Interrupts	NUM_IRQ	128	The number of IRQ interrupts to be input: 1 to 240 (NMI interrupts are counted separately)
Interrupt priority	LVL_WIDTH	4	Priority bit number 3 to 8 (8 to 256 priority levels)
MPU	MPU_PRESENT	Yes	Presence of the memory protection unit
Debug level	DEBUG_LVL	3	Debug level 1 to 3
Trace level	TRACE_LVL	2	Trace level 0 to 2
SW/SWJ-DP	JTAG_PRESENT	SWJ-DP	SWJ-DP is selected when JTAG access circuit is
selection			built in.
Bit-band area	BB_PRESENT	Yes	Presence of bit-banding

Debug Level	1	2	3 (Settings in R-IN32M3)
Function outline	Minimum debug	Full Debug configuration	Full debug configuration
	configuration	(Data matching is not	(with data matching)
		available)	
Debugging halt	Yes	Yes	Yes
Breakpoints	2 (Instruction)	6 (Instruction)	6 (Instruction)
		2 (Literal)	2 (Literal)
DWT comparator number	1 (Data matching is not	4 (Data matching is not	4
	available)	available)	
Flash patch function	No	Yes	Yes

Trace Level	0	1	2 (Settings in R-IN32M3)
Function outline	No trace	Standard trace	Full trace
ITM and TPIU functions	No	Yes	Yes
DWT trigger and counter	No	Yes	Yes
ETM function	No	No	Yes

Caution: R-IN32M3 products do not support SLEEPDEEP mode. Do not set the SLEEPDEEP bit of the SCR register to 1.

3.2 Gigabit Ethernet MAC

3.2.1 Features

- 1 port (by switching between two ports)
- 10BASE, 100BASE, 1000BASE MAC
- Supports 1000BASE-X Physical Coding Sublayer (PCS)
- Supports full-duplex and half-duplex communication modes
- Automatic pause packet transmission function
- Auto broadcast suspension in response to reception of a pause packet
- Supports MII/GMII interface

3.2.2 Switch Functions

Following switching features are provided in an R-IN32M3.

- Two-port interface
- Hardware switching, look-up and filtering
- QoS with frame prioritization
- Priority control based on VLAN Priority (IEEE802.1q), which enables priorities to be re-assigned
- Classification and assigning of priority based on Differentiated Services (DiffServ) Code Point Field of IP v.4 and Class of Service (CoS) in IP v.6
- Queue with four priority levels
- Multicasting and broadcasting
- VLAN frames
- Cut-through and hub features
- Device level ring (DLR)

3.3 EtherCAT Slave Controller Function (R-IN32M3-EC only)

The EtherCAT Slave Controller (ESC) uses the EtherCAT Slave Controller IP Core made by Beckhoff Automation GmbH, Germany.

The ESC handles EtherCAT communications by serving as an interface between EtherCAT field bus and slave applications.

	Feature	R-IN32M3-EC	ET1100
Po	orts	2	2-4
F١	MMUs	8	8
Sy	/ncManagers	8	8
R	AM [Kbytes]	8	8
Di	stributed clocks	64 bits	64 bits
EE	Bus	Not available	Available (0-4)
Pr	ocess data interfaces (PDIs)	-	-
	Digital I/O	Not available	Available
	SPI slave	Not available	Available
	Host CPU interface	On-chip bus (external MCU interface)	8 bits/16 bits, synchronous/asynchronous

Caution: The register area (0E_0000H-0E_0F7FH) cannot be accessed from the external MPU interface (host CPU interface).

3.4 CC-Link IE Field (Intelligent Device Station) Function (R-IN32M3-CL only)

The CC-Link IE field intelligent device station has functionality equivalent to that of the dedicated CP220 communications LSI chips manufactured by Mitsubishi Electric Corporation.

The outline specifications of the CC-Link IE field are as follows. For detailed specifications on the CC-Link IE field network, visit the following CC-Link Partner Association website.

https://www.cc-link.org/en/cclink/cclinkie/index.html

	Table 3.2	Outline S	pecifications	of CC-Link	IE Field
--	-----------	-----------	---------------	------------	----------

Item	Specification
Ethernet standards	IEEE802.3ab (1000BASE-T) compliant
Transfer rate	1Gbps
Topology	Line, star, ring
Maximum number of connected units	254 modules
Maximum station-to-station distance	100 m

3.5 General DMA Controller

3.5.1 Features

- Number of channels: 4 independent channels
- Transfer data size
 - > Independently selectable for source and destination
 - ➢ Size range: 8 to 512 bits
- Maximum number of transfer bytes: 2³²-1
- Channel priority control
 - ➢ Fixed priority mode
 - > Round robin mode (The channel that last completed a transfer is shifted to the lowest priority position.)
- DMA transfer methods

The data used for DMA transfer is set in an internal register by using the following two modes.

➢ Register mode:

DMA transfer is performed using the values set in the control registers of the DMA controller written by the CPU. This mode supports conventional general DMA transfer.

➤ Link mode:

DMA transfer is performed according to a descriptor located in data RAM and external memory. The responsiveness of this mode is inferior to register mode because access of the descriptor occurs at every DMA transfer.

- Skip function

Continuous access size and skip space size can each be set for the areas that are accessed with DMA transfer. Following access of the set size, it is possible to skip to the next address to be accessed.

- Buffer data dump function

Then DMA is forced to stop, the function can dump the data stored in the buffer. After the dump, the DMA transfer is continued.

- Suspension function

The ongoing DMA transaction can be suspended.

- DMA transfers interval setting function

The DMA transfer interval can be specified to adjust the bus occupancy rate.

- Transfer mode
 - Single transfer mode

When a DMA transfer request is made, the right to use the bus is acquired and the bus is released each time a transfer is completed. After that, whenever a DMA transfer request is made, this operation is repeated until the numbers of transfers specified in the control register are completed.

➢ Block transfer mode

When a DMA transfer request is made, the right to use the bus is acquired and data transfer is repeated until the numbers of transfers specified in the control register are completed. In this case, the bus is not occupied.

Caution: Transfer 512-bit wide data requires the data to be aligned on a 512-bit boundary.

3.6 DMA Controller for Real-time Port

3.6.1 Features

- Number of channels: 1
- Transfer data size
 - Independently selectable for source and destination
 - ➢ Size range: 8 to 128 bits
- Maximum number of transfer bytes: 23²-1
- DMA transfer methods
 - ➢ Register mode:

DMA transfer is performed according to the control register in the DMA controller that is set from the CPU. The conventionally used General DMA transfer is supported.

➤ Link mode:

DMA transfer is performed according to a descriptor located in data RAM and external memory. The responsiveness of this mode is inferior to register mode because the access of the descriptor occurs at every DMA transfer.

- SKIP function

A continuous access size and skip space size can be set respectively for the area to be accessed for DMA transfer. After space of the set continuous access size has been accessed, the function can skip space of the set discrete access size before accessing the next address.

- Buffer data dump function

When DMA is forced to stop, the function can dump the data stored in the buffer. After the dump, the DMA transfer is continued.

- Suspension function

The ongoing DMA transaction can be suspended.

- DMA transfers interval setting function

The DMA transfer interval can be specified to adjust the bus occupancy rate.

- Transfer mode
 - ≻Single transfer mode

When a DMA transfer request is made, the right to use the bus is acquired and the bus is released each time a transfer is completed. After that, whenever a DMA transfer request is made, this operation is repeated until the numbers of transfers specified in the control register are completed.

≻Block transfer mode

When a DMA transfer request is made, the right to use the bus is acquired and data transfer is repeated until the numbers of transfers specified in the control register are completed. In this case, the bus is not occupied.

Caution: Transfer 128-bit wide data requires the data to be aligned on a 128-bit boundary.

3.7 Window Watchdog Timer

3.7.1 Features

- Operation mode after reset selectable by using start-up option
- Software triggered start mode
- Error mode options
 - ➢ Generates an NMI request on error detection
 - Generates a reset on error detection
- Window watchdog function
- Overflow interval time
 - ▶ 25MHz operation: 163 µs to 5.36 s

3.8 Timer Array Unit

3.8.1 Features

-1 unit with 4 channels is provided

-32-bit counter and 32-bit data registers per channel

-Independent channel operation

-Synchronous channel operation (master and slave operation)

-Generation of different types of output signals

-Counter can be triggered by an external signal

-Interrupt generation

Independent Channel Operation	Synchronous Channel Operation
Independent channel operation functions	Synchronous channel operation function
Interval timer function	PWM output function
External input interval timer function	
External event count function	
Independent channel signal measurement functions	
Overflow interrupt output function	
External input period count detection function	
External input pulse interval judgment function	
External input signal width judgment function	
Other independent channel function	
External input position detection function	

-Supplementary note

Timers support prescaler options: count clock selectable from among four types of internal clocks as well as from an external clock. Each timer may be configured to PCLK frequency divided by 2^0 to 2^{15} , and one clock may be configured to be further divided by 1 to 256.

3.9 Asynchronous Serial Interface

3.9.1 Features

-Full-duplex communication via built-in receive and transmit FIFOs

≻Internal 10-bit × 16 receive data FIFO

≻Internal 8-bit × 16 transmit data FIFO

-2-pin configuration

≻Transmit data output pin

► Receive data input pin

-Error detection functions

≻Rx parity error

≻Rx framing error

≻Tx data consistency error

-Tx FIFO overflow error

≻Rx FIFO overrun error

≻Rx timeout error

≻Rx BF receive error

-FIFO status information

≻Rx FIFO full/empty status

≻Tx FIFO empty/empty status

≻Rx FIFO fill level

≻Tx FIFO fill level

-Interrupt requests: 3

≻Transmission interrupt

➢Reception interrupt

≻Status interrupt

-Character length: 7 or 8 bits

-Parity options: odd, even, 0, none

-Transmission stop bits: 1 or 2 bits

-MSB-/LSB-first transfer selectable

-Transmit/receive data inverted input/output possible

-13 to 20 bits selectable for the BF (Break Field) in the LIN (Local Interconnect Network) communication format

Recognition of 11 bits or more possible for BF reception in LIN communication format

≻BF reception flag provided

-BF reception can be detected during data communication

-Bus monitor function to keep data consistency of the transmit data

-Supported Baud rate: 300 to 12,500,000bps

Baud Rate (bps)	Prescaler Clock (PRSCLK) Divisor "URTJnPRS"	Baud Rate Clock (BRCLK) Divisor "URTJnBRS"	ERR (%)
300	6	2604	0.01
600	5	2604	0.01
1200	4	2604	0.01
2400	3	2604	0.01
4800	2	2604	0.01
9600	1	2604	0.01
19200	0	2604	0.01
31250	0	1600	0.01
38400	0	1302	0.01
76800	0	651	0.01
115200	0	434	0.01
153600	0	326	-0.15
312500	0	160	0.00
1000000	0	50	0.00
2000000	0	25	0.00
2500000	0	20	0.00
5000000	0	10	0.00
6250000	0	8	0.00
1000000	0	5	0.00
1250000	0	4	0.00

Table 3.3 Baud Rate Generator Clocks Output (PCLK: 100 MHz)

3.10 Clocked Serial Interface

3.10.1 Features

- Three-wire serial synchronous data transfer
- Master mode and slave mode selectable
- Multiple slaves configuration plus RCB (Recessive Configuration for Broadcasting) thanks to two configurable chip select output signals
- Built-in baud rate generator
- Adjustable baud rate; in slave mode it is determined by the input clock
- Maximum transmission speed: (at 100 MHz PCLK operation)
 - ➢ in master mode: PCLK/4 (25 MHz)
 - ➢ in slave mode: PCLK/6 (16.6 MHz)
- Phase of clock and data selectable
- Data transfer with MSB or LSB first selectable
- Transfer data length selectable from 7 to 16 bits in 1-bit increments
- Extended data length (EDL) function for transferring more than 16 bits of data
- Three selectable transfer modes:
 - Transmission mode
 - Reception mode
 - Transmission and reception mode
- Error detection (data consistency check, parity, timeout, overflow, overrun)
- Full support of job concept
- 128 words I/O buffer memory
- Memory mode selectable (FIFO, dual buffer, Tx-only buffer, direct access)
- Four different interrupt request signals
 - communication interrupt
 - reception interrupt
 - > error interrupt
 - job completion interrupt
- Loop back mode (LBM) function for self-test

3.11 I2C Bus

3.11.1 Features

- Operating mode
 - Standard mode (serial clock frequency: 100 kHz max.)
 - Fast mode (serial clock frequency: 400 kHz max.)
- Transfer mode
 - Single transfer mode
 - Continuous transfer mode
- Pin configuration
 - Serial clock pin
 - ➢ Serial transmit/receive data pin
- Interrupt request signal
 - Data transmit/receive interrupt request signal
 - Status interrupt request signal
- Communication data length
 - > 8 bits
- Multi master support
 - > Multiple masters can control the bus simultaneously.
- Serial clock signal level width
 - Serial clock signal (SCLn) high- and low-level pulse width can be changed.
- Automatic detection
 - Start and stop conditions can be detected automatically

3.12 CC-Link Function

The outline specifications of CC-Link are as follows. Please refer to the following URL for the additional details of CC-Link.

https://www.cc-link.org/en/

Table 3.4 CC-Link Outline Specifications

Item	Specification
Version	Ver.1.10 and Ver.2.00
Supported stations	Intelligent device station and Remote device station
Maximum number of link points	Remote I/O: 8192 points each, Remote register: 2048 words
Total number of slave stations	64 units
Communication speed and	10 Mbps: 100 m
maximum overall cable extension	5 Mbps: 160 m
length	2.5 Mbps: 400 m
	625 kbps: 900 m
	156 kbps: 1200 m
Communication system	Broadcast polling system

Caution: To use a remote device station, it is necessary to connect CCS_REFSTB pin (P10) to a port pin with the external interrupt function (INTPZ).

3.13 CAN Controller

3.13.1 Features

- Compliant with ISO-11898
- Standard frame and extended frame transmission/reception enabled
- Transfer rate: 1 Mbps max.
- 64 message buffers per channel
- Receive/transmit history list function (can be set individually for each message buffer)
- Automatic block transmission function
- Multi-buffer receive block function
- Mask setting of 8 patterns is possible for each channel, applicable for data and remote frames
- Data bit time, communication baud rate and sample point can be controlled
 - ➢ For example: 66.7%, 70.0%, 75.0%, 80.0%, 81.3%, 85.0%, 87.5%
 - > Baud rates in the range of 10 kbps up to 1 Mbps can be configured
- Enhanced features:
 - Each message buffer can be configured to operate as a transmit or a receive message buffer
 - A transmission request can be aborted by clearing the Transmit-Request flag of the relevant message buffer. Supported by Transmission Abort Interrupt, on successful abortion.
 - > Automatic block transmission operation mode (ABT)
 - > Time stamp function in collaboration with timers capture channels
 - A centralized global data update bit monitor register makes it possible to check all data update bits from one location

3.14 External MCU Interface

The external MCU interface is used to connect external MCUs. It functions both as an I/O port and an interface with external memory. The pin for the external MCU interface also functions for the external memory interface. The external MCU interface can be used when the high level is applied to the MEMIFSEL pin. After the power for the module is turned on, the level of the pin needs to be determined before the module is released from a reset state. This module does not support dynamic switching of levels.

3.14.1 Features

(1) External MCU interface

- Interface system
 - > Asynchronous SRAM with wait control (for reading and writing)
 - > Page ROM reading with wait control
- Synchronous relationship (set up with the HIFSYNC pin)
 - HBUSCLK synchronous mode (max. 50 MHz), asynchronous mode

Caution: Drive the HBUSCLK pin to low when asynchronous mode is to be used.

- Bus width (set up with the BUS32EN pin)
 - ➢ 32 bits / 16 bits

Remark: The module does not support 8-bit bus width.

- Transfer data size
 - 32 bits / 16 bits / 8 bits
- Buffers
 - Write buffer: Two stages (synchronous mode is selected) or one stage (asynchronous mode is selected)
 - Read buffer: Advance reading of up to 32 bytes is possible.
- Transfer type
 - Single transfer
 - Page read transfer
- Timing control function

(2) AHB master port function

- AMBA Ver. 2.0 compliant
 - ➢ 32-bit AHB-Lite
 - ➢ Little endian fixed
- Address conversion
 - > 4-Gbyte resource in the AHB memory area can be assigned as the area for the external MCU interface
- Bus sizing
 - ► External 16-bit => 32-bit
- Error response
 - > Outputs an interrupt request HERROUTZ in response to reception of an error
 - > Access information which involves the error source is stored in the register

(3) Status check function

- Check status of:
 - > Internal reset (available in synchronous/asynchronous SRAM interface mode)
 - > The HIFSYNC pin, the BUS32EN pin

3.15 Asynchronous SRAM Memory Controller

The asynchronous SRAM memory controller is connectable to external paged ROM, ROM, and SRAM through a 16- or 32-bit bus. It is also connectable to peripheral devices compliant with the SRAM interface.

The pin functions for the asynchronous SRAM memory controller are multiplexed with those for the synchronous burst access memory controller and the external MCU interface, and the asynchronous controller can be used when the low level is applied to both the MEMCSEL and MEMIFSEL pins.

When both the BOOT0 and BOOT1 pins are at the low level, booting is from the memory connected to CSZ0.

3.15.1 Features

- Memory controller supporting page ROM, ROM, SRAM
- 32- or 16-bit data Bus
- Static memory control
 - ➢ SRAM and I/O connection
 - Page ROM connection (CSZ0 only)
 - Four chip select signals are available (CSZ0-CSZ3)
 CSZ0: page ROM / SRAM: 1000 0000H-13FF_FFFFH (64 Mbytes)
 CSZ1: SRAM only: 1400 0000H-17FF_FFFFH (64 Mbytes)
 CSZ2: SRAM only: 1800 0000H-1BFF_FFFFH (64 Mbytes)
 CSZ3: SRAM only: 1C00 0000H-1FFF_FFFFH (64 Mbytes)
- Programmable wait
 - Address setup wait
 - Data wait
 - ➢ Write recovery wait
 - ➤ Idle wait

3.16 Synchronous Burst Access Memory Controller

The synchronous burst access memory controller can be used to connect external page ROM, ROM, SRAM, PSRAM, NOR-Flash, and peripheral devices with an interface similar to the SRAM interface via the 32/16-bit bus.

By setting the ADMUXMODE pin to high level, the address signals can be multiplexed to be output from data pins.

The synchronous burst access memory controller and asynchronous SRAM memory controller share external microcontroller interface pins. Using these pins for the synchronous burst access memory controller is selected when the

MEMCSEL pin outputs a high level and the MEMIFSEL pin outputs a low level.

The CPU is booted from the memory connected to CSZ0 when the BOOT0 pin outputs a low level and the BOOT1 pin outputs a high level.

3.16.1 Features

- Memory controller supporting page ROM, ROM, SRAM (synchronous /asynchronous), PSRAM and NOR-Flash
- 32- or 16-bit data bus
- Address / data multiplex feature

Remark: Page access is possible only when performing asynchronous access in separate bus mode.

- Static memory control

- External connection of SRAM (synchronous, asynchronous) and other peripheral devices with an interface similar to the SRAM interface
- Four chip select signals are available (CSZ0-CSZ3)
 CSZ0: 1000 0000H-13FF_FFFH (64 Mbytes)
 CSZ1: 1400 0000H-17FF_FFFFH (64 Mbytes)
 CSZ2: 1800 0000H-1BFF_FFFFH (64 Mbytes)
 CSZ3: 1C00 0000H-1FFF_FFFFH (64 Mbytes)

Remark: Chip select areas can be assigned to the area between addresses 1000_0000H - 1FFF_FFFFH by using the SMADSEL register (specified in 16-MB units).

- Programmable wait
- Memory access frequency (by dividing 100 MHz signal by 2 to 6)
- Up to four wait state signals available (WAITZ, WAITZ1 to WAITZ3)

3.17 Instruction RAM

The instruction RAM is 768 Kbytes of memory that can be accessed from I-code AHB, D-code AHB, DMAC or an external MCU.

3.17.1 Features

- 128-bit (32-bit \times 4) read buffer
- Latency: latency is 2 in read access in general but 1 in the case of hitting the read buffer. latency is 1 in write access.
- AHB bus width: 32 bits
- RAM data bus width: 128 bits (without ECC circuit)
- Transfer size: 16- or 32-bit transfer selectable
 - Burst transfer: single burst transfer, burst transfer of the required length, burst transfer of the fixed length (INCR4/8/16, WRAP4/8/16)
- Little endian fixed
- ECC response: 1-bit error correction, 2-bit error detection

3.17.2 Read Buffer

- 128-bit (32bit \times 4) read buffer
- Response to the AHB involves no waiting in the case of hitting the read buffer
- Clear the data in the read buffer when a 2-bit ECC error occurs.
- A 2-bit ECC error at the time of the read response generates an ECC error interrupt.

3.17.3 Write Interface

- When 16-bit write access arises, write to the RAM in 32-bit units through two consecutive rounds of access.
- When 8-bit write access arises, return an error response.

Caution: Write access by an external MCU in 16-bit units may occur. The specification assumes that such access to the RAM will always proceed two consecutive times (for the writing of data in 32-bit units).

3.18 Data RAM

The internal data RAM is a 512-Kbyte RAM that can be accessed from the AHB and Header Endec (communication bus).

3.18.1 Features

- AHB latency: latency is 1 in read and write access (latency is 2 in read access following write access).
- Communication bus latency: latency is 1 in read and write access
- Arbitration of access when contention arises: Round robin
- AHB bus width: 32 bits
- Communication bus width: 128 bits
- RAM bus width: 128 bits (without ECC circuit)
- AHB transfer size: 8/16/ 32-bit selectable
- Communication bus transfer size: 8/16/32/128-bit selectable
- Burst transmission: single burst transfer, burst transfer of the required length, burst transfer of the fixed length (INCR4/8/16, WRAP4/8/16)
- Little endian fixed
- ECC response: 1-bit error correction, 2-bit error detection

3.19 Buffer RAM

Buffer RAM is 64KByte of memory that can be accessed by the AHB and communication bus.

3.19.1 Features

- Communication-bus latency: latency is 1 in read and write access
- Arbitration of access when contention arises: Fixed priority (the communication bus is given priority)
- Communication bus width: 128 bits
- RAM bus width: 128 bits (without ECC circuit)
- Communication-bus transfer size: 8-, 16-, 32-, 128-bit transfer selectable
- ECC response: 1-bit error correction, 2-bit error detection

3.20 Hardware Real-time OS

The Hardware Real-time OS supports 30 types of system-calls including event, semaphore and mailbox.

3.20.1 Outline of Features

-Task Scheduler

- Hardware ISR: 32 routines selectable from 128 interrupt sources
- ➢ Number of contexts elements: 64
- ▶ Number of semaphore identifiers: 128
- Number of event identifiers: 64
- Number of mailbox identifiers: 64
- Number of mailbox elements: 192
- Number of context priority levels: 16

-Hardware Function Manager

-Internal DMA

- -Buffer allocator
- -Header EnDec

Remark: The hardware real-time OS can be controlled by using the µITRON system calls provided by the sample driver. For how to use the driver, see the R-IN32M3 Series Programming Manual (OS).

Figure 3.1 Structure of Hardware Real-time OS

3.21 Port Functions

3.21.1 Features

- 96 I/O ports
- Shared with I/O ports of other peripheral circuits
- Ports can be designated as input or output on 1-bit basis

Cautions 1: Switching from a signal for a peripheral module that is multiplexed with a port pin to port mode might lead to a spike, depending on the state of the pin at the time. The following general countermeasure for spikes should therefore be implemented in software.

- Switch the pin function while the peripheral function is stopped.
- If the multiplexed pin function in use is an interrupt signal, clear the interrupt request flag and then remove masking of the interrupt.
- Only switch the mode after the output value is fixed.
- 2: Do not externally apply an intermediate voltage to input buffers because these buffers do not implement through-current countermeasures.

3.21.2 Port Configuration

The R-IN32M3-EC incorporates eight 3-state I/O ports and four real-time control ports. Input or output mode can be specified for ports in 1-bit units. The basic structure of ports is the 8-bit unit, but ports P0x-P3x, P4x-P7x, and RP0x-RP3x (x = 0.7) can also be grouped to enable reading and writing in 32-bit units. The real-time port pins (RP00 to RP37) can be used for input and output in synchronization with interrupt signals.

Each port allows access in 8-, 16-, or 32-bit access depending on the setting of the corresponding register.

4. Electrical Specifications

4.1 Terminology

Table 4.1 Terms Used in Absolute Maximum Ratings

Parameter	Symbol	Meaning	
Power supply voltage	V _{DD}	Indicates the voltage range within which damage or reduced reliability will not	
		result when power is applied to a VDD pin.	
Input voltage	VI	Indicates the voltage range within which damage or reduced reliability will not	
		result when power is applied to an input pin.	
Output voltage	Vo	Indicates the voltage range within which damage or reduced reliability will not	
		result when power is applied to an output pin.	
Output current	lo	Indicates the absolute tolerance value for DC current to prevent damage or	
		reduced reliability when a current flows out of or into an output pin.	
Operating ambient	TA	Indicates the ambient temperature range for normal logic operations.	
temperature			
Storage temperature	T _{stg}	Indicates the element temperature range within which damage or reduced	
		reliability will not result while no voltage or current is being applied to the device.	

Table 4.2 Terms Used in Recommended Operating Range Ratings

Parameter	Symbol	Meaning
Power supply voltage	V _{DD}	Indicates the voltage range for normal logic operations that occur when $V_{SS} = 0 V$.
Input voltage, high	Vih	Indicates the voltage, which is applied to the input pins of R-IN32M3, is the voltage indicates that the high level state for normal operation of the input buffer.
		 If a voltage that is equal to or greater than the "Min." value is applied, the input voltage is guaranteed as a high level voltage.
Input voltage, low	VIL	Indicates the voltage, which is applied to the input pins of R-IN32M3, is the voltage indicates that the low level state for normal operation of the input buffer.
		 -If a voltage that is equal to or less than the "Max." value is applied, the input voltage is guaranteed as a low level voltage.
Positive trigger voltage	VP	Indicates the input level at which the output level is inverted when the input to R-IN32M3 is changed from the low-level side to the high-level side.
Negative trigger voltage	VN	Indicates the input level at which the output level is inverted when the input to R-IN32M3 is changed from the high-level side to the low-level side.
Hysteresis Voltage	V _H	Indicates the differential between the positive trigger voltage and the negative trigger voltage.
Input rise time	t _{ried} ,	Indicates the limit value for the time period when an input voltage applied to
	t _{ric} ,	R-IN32M3 rises from 10% to 90%. $t_{\text{ried}},t_{\text{ric}},\text{and}t_{\text{ris}}\text{each}$ indicate the input rise time
	t _{ris}	for the data clock and Schmitt buffer.
Input fall time	t _{fid} ,	Indicates the limit value for the time period when an input voltage applied to
	t _{fic} ,	R-IN32M3 falls from 90% to 10%. $t_{\textrm{fid}}, t_{\textrm{fic}},$ and $t_{\textrm{fis}}$ each indicate the input fall time for
	t _{fis}	the data clock and Schmitt buffer.

Parameter	Symbol	Meaning
Off-state output current	loz	Indicates the current that flows from the power supply pins when the rated power supply voltage is applied when a 3-state output has high impedance.
Output short circuit current	los	Indicates the current that flows when the output pins are shorted (to GND pins) when output is at high level.
Input leakage current	lu	Indicates the current that flows via an input pin when a voltage is applied to that pin.
Output current, low	lol	Indicates the current that flows to the output pins when the rated low-level output voltage is being applied.
Output current, high	Іон	Indicates the current that flows from the output pins when the rated high-level output voltage is being applied.
Output voltage, low	V _{OL}	Indicates the output voltage at low level and when the output pin is open.
Output voltage, high	Vон	Indicates the output voltage at high level and when the output pin is open.

Table 4.3 Terms Used for DC Characteristics

4.2 Absolute Maximum Ratings

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	V _{DD}	1.0V type	-0.5 to +1.4	V
		1.5 V type <r></r>	-0.5 to +2.0	V
		3.3 V type	-0.5 to +4.6	V
I/O voltage	Vı/Vo	3.3 V buffer $V_1/V_0 < V_{DD} + 0.5V$	-0.5 to +4.6	V
		5V-Tolerant buffer $V_1/V_0 < V_{DD} + 3.0V$	-0.5 to +6.6	V
Output current (3.3 V buffer)	lo	6 mA type	15	mA
		12 mA type	25	mA
Output current (5V-Tolerant buffer)	lo	4 mA type	10.35	mA
Operating ambient temperature	TA	-	-40 to +85	°C
Storage temperature	T _{stg}	-	-65 to +125	°C

Caution: Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark: 3.3 V must be applied to the I/O pins only after applying the power supply voltage.

4.3 Recommended Operating Conditions

Table 4.5 Recommended Operating Conditions

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage	Vdd	1.0 V power supply	0.9	1.0	1.1	V
		1.5 V power supply <r></r>	1.35	1.5	1.65	V
		3.3 V power supply	3.0	3.3	3.6	V
Negative trigger voltage	VN	3.3 V buffer	0.6	-	1.8	V
		5 V tolerant buffer	0.8	-	1.1	V
Positive trigger voltage	VP	3.3 V buffer	1.2	-	2.4	V
		5 V tolerant buffer	1.7	-	2.2	V
Hysteresis voltage	Vн	3.3 V buffer	0.3	-	1.5	V
		5 V tolerant buffer	0.9	-	1.1	V
Input voltage, low	VIL	3.3 V buffer	-0.3	-	0.8	V
		5 V tolerant buffer	0	-	0.8	V
Input voltage, high	VIH	3.3 V buffer	2.0	-	V _{DD} + 0.3	V
		5 V tolerant buffer	2.0	-	5.5	V
Input rise/fall time	t _{ried}	-	0	-	200	ns
	t _{fid}	-	0	-	200	ns
Input rise/fall time (clock)	t _{ric}	-	0	-	4	ns
	t _{fic}	-	0	-	4	ns
Input rise/fall time (Schmitt input)	t _{ris}	-	0	-	1	ms
	t _{fis}	-	0	-	1	ms
Operating ambient temperature	TA	-	-40	-	85	°C

4.4 DC Characteristics

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Supply current	IDD	$V_I = V_{DD} \text{ or } GND$	With	an internal regulator	-	-	-	-
(R-IN32M3-EC)				1.0V	-	270	880	mA
				3.3 V	-	210	220	mA
			Witho	out an internal regulator	-	-	-	-
				1.0V		270	880	mA
				3.3 V		120	130	mA
				1.5V	-	150	170	mA
Supply current	IDD	$V_I = V_{DD} \text{ or } GND$	1.0V 3.3 V		-	280	890	mA
(R-IN32M3-CL)					-	45	50	mA
Off-state current	loz	$V_{I} = V_{DD} \text{ or } GND$ 3.3 V output		-	-	±10	μA	
			5V-tolerant buffer		-	-	±10	μA
Output short circuit current ^{Note}	los	$V_{O} = GND$	-		-	-	-250	mA
Input leakage current	h	$V_I = V_{DD} \text{ or } GND$	Norm	nal input	-	-	±10	μA
(3.3 V buffer)		V _I = GND		With pull-up resistor (50kΩ)		-65.7	-129.8	μA
		$V_I = V_{DD}$	With (50kΩ	pull-down resistor 2)	10.2	43.4	83.9	μA
Input leakage current (5V-tolerant buffer)	h	V _I = GND	With	pull-up resistor (50kΩ)	39.0	-	100.9	μA

Table 4.6 DC Characteristics (VDD = 3.3 ± 0.3 V, TA = -40 to +85°C) (1/2)

Note: The output short circuit time is no more than one second and is only for one pin on the LSI.

Remark: In the notes for the table, the (+) and (–) signs indicate the current direction. Current flowing to the device is indicated by (+) and current flowing out is indicated by (–).

Table 4.7 DC Characteristics (VDD = 3.3 ± 0.3 V, TA = -40 to +85°C) (2/2)

Parameter	Symbol		MIN.	TYP.	MAX.	Unit	
Output current, low	lol	Vol = 0.4V	6 mA type	6.0	-	-	mA
(3.3 V buffer)			12 mA type	12.0	-	-	mA
Output current, low (5V-Tolerant buffer)	Iol	$V_{OL} = 0.4V$	4 mA type	4.0	-	-	mA
Output current, high	Іон	Vон = 2.4V	6 mA type	-6.0	-	-	mA
(3.3 V buffer)			12 mA type	-12.0	-	-	mA
Output current, high (5V-Tolerant buffer)	Іон	V _{OH} = 2.4V	4 mA type	-4.0	-	-	mA
Output voltage, low	Vol	$I_{OL} = 0 \text{ mA}$	3.3 V buffer	-	-	0.1	V
			5V-Tolerant buffer	-	-	0.1	V
Output voltage, high	Vон	Iон = 0 mA	3.3 V buffer	VDD - 0.1	-	-	V
			5V-Tolerant buffer	VDD - 0.1	-	-	V

4.5 Pull-up/Pull-down Resistor Values

Table 4.8 Pull-up/Pull-down Resistor Values ($VDD = 3.3 \pm 0.3 V$, TA = -40 to $+85^{\circ}C$)

Parameter	Library Specification	MIN.	TYP.	MAX.	Unit
Pull-up resistor (3.3 V buffer)	50kΩ	27.7	50.2	103.9	kΩ
Pull-up resistor (5V-Tolerant buffer)	50kΩ	35.7	51.2	77.0	kΩ
Pull-down resistor (3.3 V buffer)	50kΩ	42.9	76.1	295.5	kΩ

4.6 Terminal Capacity Values

Table 4.9 Terminal Capacity Values

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Input Buffer	Св	5.0	-	7.0	pF
Output Buffer		5.0	-	7.0	pF
I/O Buffer		5.0	-	7.0	pF

4.7 Power-on/off sequence

The power circuit for the R-IN32M3 products consists of an internal power supply (VDD10: 1.0V), I/O power supply (VDD33: 3.3 V) and PHY power supply (VDD15: 1.5V). (PHY power only applies to R-IN32M3-EC.)

Supply power to the internal circuit then to the I/O circuit. Conversely, cut-off power to the I/O circuit then internal circuit. This is not a stipulated sequence for power supply (See Figure 4.1).

If power to the I/O circuit is supplied before power to the internal circuit is supplied, the mode of the I/O buffer will not be determined until the internal circuit starts up and thus the output values become unstable regardless of the mode of the buffer. Also, be sure to apply 3.3 V to the I/O pins after the power supply voltage has been decided.

Regardless of the power on/off sequence, the time difference between the startup of the first module and the levels of both modules having been stabilized should fall within 100 ms. Here, the time to be measured is when the voltage of each module is at 0.1 VDD to 0.9 VDD.

Figure 4.1 Recommended Sequence of Power-on/off

Note: The recommendation for time difference should also be applied to the PHY module only when a build-in regulator of an R-IN32M3-EC is not in use.

4.8 AC Characteristics

4.8.1 Clock Pins

(1) Input clock

Parameter	Symbol	Conditions	MIN	MAX	Unit
XT1, XT2	t sysclk	-	25 ± 50ppm		MHz
ETH0_TXC, ETH1_TXC Note	tтхс	-	- 25		MHz
ETH0_RXC, ETH1_RXC Note	t _{RXC}	-	-	125	MHz
CCM_CLK80M	t _{CCLCLK}	-	80 ± 50ppm		MHz
CCI_CLK2_097M Note	t CCLIECLK	-	2.097152 :	± 100ppm	MHz
HBUSCLK	t HBUSCLK	-	-	50	MHz
CSISCK0, CSISCK1	tcsissck	Slave mode	-	16.6	MHz
ТСК	tтск	-	-	50.	MHz

Note: This applies to R-IN32M3-CL only.

(2) Output clock

Parameter	Symbol	Conditions	MIN	MAX	Unit
BUSCLK output cycle	t BUSCLK		10	-	ns
BUSCLK high level width	tвскн		0.5 × tвизськ - 2.0	0.5 × tBUSCLK + 2.0	ns
BUSCLK low level width	t BCKL	C∟ = 15pF	0.5 × tвизськ - 2.0	0.5 × tBUSCLK + 2.0	ns
BUSCLK rising time	t _{BCKR}		-	1.2	ns
BUSCLK falling time	tвскғ		-	1.2	ns
CLKOUT25Mn ^{Note1} output cycle	tco25M		40	-	ns
CLKOUT25Mn ^{Note1} high level width	t _{CO25MH}		0.5 × t _{визськ} - 5.3	0.5 × t _{BUSCLK} + 5.3	ns
CLKOUT25Mn ^{Note1} low level width	tco25ML	C∟ = 15pF	0.5 × tвизськ - 5.3	0.5 × tвизськ + 5.3	ns
CLKOUT25Mn ^{Note1} rise time	tco25MR		-	3.4	ns
CLKOUT25Mn ^{Note1} fall time	t _{CO25MF}		-	3.4	ns
ETHn_GTXC Note1 output frequency	tдтхс	C _L = 13pF	-	125	MHz
CSISCKn output frequency	tсsімscк	Master mode C _L = 15pF	-	25	MHz
SCLn output frequency	tsc∟	High speed mode $C_L = 30pF$	-	400	KHz
SMSCK output frequency	tsмscк	C∟ = 15pF	-	50	MHz
CATI2CCLK Note2 output frequency	t ECIICCLK	C∟ = 30pF	-	148.8	kHz
TRACECLK output frequency	t TRACECLK	$C_L = 15 pF$	-	50	MHz

Notes 1. Only applies to R-IN32M3-CL.

2. Only applies to R-IN32M3-EC.

Remark: n = 0 or1

Figure 4.2 Output Clock Timing Diagram

4.8.2 Reset Pins

Parameter	Symbol	Conditions	MIN	MAX	Unit
RESETZ low level width	twrsl	-		-	ns
HOTRESETZ Note low level width	twhrsl	-	Secure enough time for the external	-	ns
PONRZ low level width	twPRSL	-	oscillator to be stabilized + 1 μ sec.	-	ns
PONRZ input timing (to RESETZ↑)	t skpr	-	0	-	ns

Figure 4.3 Reset Timing Diagram

Note: Only applies to R-IN32M3-CL.

4.8.3 External Memory Interface Pins

(1) Calculating value for delay due to an external load

The values for transition delay of the external memory interface pins of the R-IN32M3 products do not consider external load on them because it depends on the user environment. Calculate the value for delay in consideration with the load under your environment and also with wiring delays on the printed board.

Drive capability	Delay value per pF (ns)			
	MIN.	MAX.		
6 mA	0.026	0.067		
12 mA	0.012	0.034		

Example)

When an address pin (6- mA output buffer) has 30-pF load, the actual delay is as follows.

MIN.: 1.0 ns (The MIN delay value at the time of 0 pF) + (0.026×30) ns = 1.78ns MAX.: 7.0 ns (The MAX delay value at the time of 0 pF) + (0.067×30) ns = 9.01ns

(2) Asynchronous SRAM MEMC access timing

Parameter	Symbol	MIN	MAX	Unit
Address, CSZ0-CSZ3 output delay time (from BUSCLK↑)	tdka	1.0 (1.78) ^{Note}	7.0 (9.01) ^{Note}	ns
RDZ output delay time (from BUSCLK↑)	tdkrd	1.0 (1.78) ^{Note}	7.0 (9.01) ^{Note}	ns
WRZ0 - WRZ3 (BENZ0-BENZ3), WRSTBZ output delay time (from BUSCLK↑)	t dkwr	1.0 (1.78) ^{Note}	7.0 (9.01) ^{Note}	ns
BCYSTZ output delay time (from BUSCLK↑)	t DKBSL	1.0 (1.78) ^{Note}	7.0 (9.01) ^{Note}	ns
WAITZ input setup time (to BUSCLK↓)	t _{sкw}	4.0	-	ns
WAITZ input hold time (to BUSCLK↓)	tнкw	0	-	ns
Date input setup time (from BUSCLK↑)	tskid	4.0	-	ns
Data input hold time (from BUSCLK↑)	t HKID	0	-	ns
Date output delay time (from BUSCLK↑)	tdkod	1.0 (1.78) ^{Note}	7.0 (9.01) ^{Note}	ns
Data float delay time (from BUSCLK↑)	tнкор	1.0 (1.78) ^{Note}	7.0 (9.01) ^{Note}	ns

Note: Values in parenthesis are based on a 30pF capacitive load.

(a) Read timing

Figure 4.4 Memory Controller Read Timing Diagram (Asynchronous Memory)

Remark: Above timing shows the case for when "Idle Wait", "Write Recovery Wait", and "Address Wait" are set to 0, and "Data Wait" is set to 3.

Note: The WRZ0-WRZ3 pins function both as WRZ0-WRZ3 and BENZ0-BENZ3. These pins function as BENZ0-BENZ3 after a reset and can be switched with the write enable switch registers (WREN). For details, see section 9.3.5, Write Enable Switch Registers (WREN), in the R-IN32M3 Series User's Manual: Peripheral Modules.

(b) Write timing

Figure 4.5 Memory Controller Read Timing Diagram (Asynchronous Memory)

Note: The WRZ0-WRZ3 pins function both as WRZ0-WRZ3 and BENZ0-BENZ3. These pins function as BENZ0-BENZ3 after a reset and can be switched with the write enable switch registers (WREN). For details, see section 9.3.5, Write Enable Switch Registers (WREN), in the R-IN32M3 Series User's Manual: Peripheral Modules.

Remark: Above timing shows the case for when "Idle Wait", "Write Recovery Wait", and "Address Wait" are set to 0, and "Data Wait" is set to 3.

(3) Synchronous burst access MEMC access timing

Parameter	Symbol	MIN	MAX	Unit
BUSCLK output frequency	t BUSCLK	-	50	MHz
Address, CSZ0-CSZ3 output delay time	tdka	1.0 (1.78) ^{Note}	7.8 (9.81) ^{Note}	ns
RDZ output delay time	t _{dkrd}	1.0 (1.78) ^{Note}	7.8 (9.81) ^{Note}	ns
WRZ0-WRZ3 (BENZ0-BENZ3), WRSTBZ output delay time	tdkwr	1.0 (1.78) ^{Note}	7.8 (9.81) ^{Note}	ns
ADVZ output delay time	t DKBSL	1.0 (1.78) ^{Note}	7.8 (9.81) ^{Note}	ns
WAITZ input setup time	tsкw	5.3	-	ns
WAITZ input hold time	tнкw	0	-	ns
Data input setup time	t _{SKID}	5.3	-	ns
Data input hold time	tнкid	0	-	ns
Data output delay time	tdkod	1.0 (1.78) ^{Note}	7.8 (9.81) ^{Note}	ns
Data float delay time	tнкор	1.0 (1.78) ^{Note}	7.8 (9.81) ^{Note}	ns

Note: Values in parenthesis are based on a 30pF capacitive load.

(a) Read timing

Figure 4.6 Memory Controller Read Timing Diagram (Synchronous Memory)

Remark: Above timing is for the case where "t_ceoe" is 2 and "t_rc" is 4.

(b) Write timing

Figure 4.7 Memory Controller Write Timing Diagram (Synchronous Memory)

Remark: Above timing is for the case where "t_wp" is 2 and "t_wc" is 5.

4.8.4 External MCU Interface Pins

The timing specification of external MCU interface pins are based on a 65pF (HD pins) and 35pF (HWAITZ pin) capacitive load.

(1) Synchronous Mode

					(1/2)
No.	Parameter	Symbol	MIN	MAX	Unit
1	HBUSCLK high-level width	t _{HBHIGH}	0.5t _{HBUSCLK} - 2.1	0.5t _{HBUSCLK} + 2.1	ns
2	HBUSCLK low-level width	t _{HBLOW}	0.5t _{HBUSCLK} - 2.1	0.5t _{HBUSCLK} + 2.1	ns
3	HBUSCLK input cycle	t _{HBUSCLK}	20	-	ns
4	Address, HCSZ/HPGCSZ input setup time (to HBUSCLK↑)	t _{skha}	4.0	-	ns
5	HBENZ0-HBENZ3 (HWRZ0-HWRZ3), HWRSTBZ input setup time (to HBUSCLK↑)	t _{SKHWR}	4.0	-	ns
6	Address, HCSZ/HPGCSZ input hold time (from HBUSCLK↑)	t _{HKHA}	1.0	-	ns
7	HBENZ0-HBENZ3 (HWRZ0-HWRZ3), HWRSTBZ input hold time (from HBUSCLK↑)	t _{HKHWR}	1.0	-	ns
8	HWRZ0-HWRZ3, HWRSTBZ recovery time (high width)	t _{whwR}	35.0	-	ns
9	Data input setup time (to HBUSCLK↑)	t _{skihd}	4.0	-	ns
10	Data input hold time (from HBUSCLK↑)	t _{HKIHD}	1.0	-	ns
11	HWAITZ output delay time (from HCSZ, HPGCSZ↓)	t _{DKHD}	2.0	-	ns
12	HWAITZ output delay time (from HWRSTBZ, HWRZ0-HWRZ3↓)	t _{DKHWT}	2.0	-	ns
13	HWAITZ enable data output delay time (from HBUSCLK [↑])	t _{DKHWTV}	2.0	10.0	ns
14	HWAITZ enable data hold time (from HWRSTBZ, HWRZ0-HWRZ3↑)	t _{HKHWTV}	3.0	-	ns
15	HWAITZ output hold time (from HWRSTBZ, HWRZ0-HWRZ3↑)	t _{HKWTWR}	-	13.6	ns
16	Data, HWAITZ output hold time (from HCSZ/HPGCSZ↑)	t _{HKWTCS}	-	13.6	ns
17	Address, HCSZ/HPGCSZ input setup time (to HRDZ↓)	t _{skhahr}	4.3	-	ns
18	Data at the page access, Address input hold time (from HRDZ1)	t _{HKHAHR}	4.3	-	ns
19	HRDZ recovery time (high width)	t _{WHRD}	35.0	-	ns
20	Data, HWAITZ output delay time (from HRDZ↓)	t _{DKHDHR}	2.0	-	ns
21	HWAITZ enable data output delay time (from HRDZ↓)	t _{DKWTVHR}	-	16.4	ns

					(2/2)
No.	Parameter	Symbol	MIN	MAX	Unit
22	Data settle time (from HWAITZ↑)	t _{skhdhwt}	t _{нвusclk} - 10	-	ns
23	Data, HWAITZ enable data output hold time (from HRDZ↑)	t _{HKHWTHR}	3.0	-	ns
24	Data, HWAITZ output hold time (from HRDZ↑)	t _{нконд}	-	13.6	ns
25	Data at the on-page access, HWAITZ output delay time (from the address)	t _{DKPON}	3.0	16.4	ns
26	Data at the off-page access, HWAITZ output delay time (from the address)	t _{DKPOFF}	3.0	16.4	ns
27	HWAITZ enable data output delay time (from HCSZ/HPGCSZ↓)	t _{DKWTVCS}	-	16.4	ns
28	HRDZ input setup time (to HBUSCLK↑)	t _{skhrd}	4.0	-	ns
29	HRDZ input hold time (to HBUSCLK↑)	t _{HKHRD}	1.0	-	ns

Figure 4.8 External MCU Write Timing (MEMCSEL = L, HIFSYNC = H)

R-IN32M3 Series Data Sheet

Figure 4.9 External MCU Read Timing (MEMCSEL = L, HIFSYNC = H)

Figure 4.10 External MCU Page Read Timing (MEMCSEL = L, HIFSYNC = H)

(2) Synchronous Mode (CC-Link IE Field)

No.	Parameter	Symbol	MIN	MAX	Unit
1	HBUSCLK high-level width	tнвніgн	0.5thBUSCLK-2.1	0.5thbusclk+2.1	ns
2	HBUSCLK low-level width	tнвlow	0.5thBusclk-2.1	0.5tнвusclк+2.1	ns
3	HBUSCLK input cycle	t HBUSCLK	20	-	ns
4	Address, HCSZ/HPGCSZ input setup time (to HBUSCLK↓)	tsкнcs	5.0	-	ns
5	HBENZ0-HBENZ3 (HWRZ0-HWRZ3), HWRSTBZ input setup time (to HBUSCLK↓)	t skhwr	5.0	-	ns
6	Address, HCSZ/HPGCSZ, HBENZ0-HBENZ3, Data input hold time (from HRDZ, HWRSTBZ, HWRZ0-HWRZ3↑)	tнкна	0	-	ns
7	HWRZ0-HWRZ3, HWRSTBZ recovery time (high width)	twhwr	theusclk x 1	-	ns
8	Data input setup time (to HWRSTBZ, HWRZ0- HWRZ3↓)	tskihd	0	-	ns
9	HWAITZ output delay time (from HCSZ, HPGCSZ↓)	toкно	2.0	-	ns
10	HWAITZ output delay time (from HWRSTBZ, HWRZ0 - HWRZ3↓)	tокнwт	2.0	-	ns
11	HWAITZ enable data output delay time (from HBUSCLK↑) "HWAITZ output in synchronization with HBUSCLK↑"	tokhwt∨	3.0	11.0	ns
	HWAITZ enable data output delay time (from HBUSCLK↓) "HWAITZ output in synchronization with HBUSCLK↓"	tокнwтv	3.0	11.0	ns
12	HWAITZ enable data output hold time (from HWRSTBZ, HWRZ0-HWRZ3)	tнкнwт∨	3.0	-	ns
13	HWAITZ output hold time (from HWRSTBZ, HWRZ0-HWRZ3↑)	t HKWTWR	-	13.6	ns
14	Data, HWAITZ output hold time (from HCSZ, HPGCSZ↑)	tнкwтсs	-	13.6	ns
15	HRDZ recovery time (high width)	twhrd	theusclk x 1	-	ns
16	Data, HWAITZ output delay time (from HRDZ↓)	t dkhdhr	2.0	-	ns
17	HWAITZ enable data output delay time (from Latch timing of HRDZ, HWWRSTBZ, HWRZ0 - HWRZ3) "HWAITZ output in synchronization with HBUSCLK [†] "	İ dkwtvhr	-	theusclk/2 + 11.0	ns
	HWAITZ enable data output delay time (from Latch timing of HRDZ, HWWRSTBZ, HWRZ0 - HWRZ3) "HWAITZ output in synchronization with HBUSCLK↓"	İ dkwtvhr	-	thbusclk + 11.0	ns
18	Data settle time (from HWAITZ↑) "HWAITZ output in synchronization with HBUSCLK↑"	tsкнонwт	-	10 ^{Note} - tнвиsclк x n	ns
	Data settle time (from HWAITZ↑) "HWAITZ output in synchronization with HBUSCLK↓"	tsкнонwт	-	О ^{Note} - tнвиsclк x n	ns
19	Data, HWAITZ enable data output hold time (from HRDZ↑)	tнкнwтнr	3.0	-	ns
20	Data, HWAITZ output delay time (from HRDZ↑)	tнконр	-	13.6	ns
21	HRDZ input setup time (to HBUSCLK↓)	t skhrd	5.0	-	ns

- Remark: When setting the value other than 100_B to the CIEWAITDLY register, refer to the value of HWAITZ output in synchronization with HBUSCLK↑.
 - Note: This indicates the value when WAITDLY2-WAITDLY0 in the CIEWAITDLY register is 100_B . n: $000_B = 4$, $001_B = 3$, $010_B = 2$, $011_B = 1$

Figure 4.11 External MCU Write Timing (MEMCSEL = L, HIFSYNC = H)

Figure 4.12 External MCU Read Timing (MEMCSEL = L, HIFSYNC = H)

(3) Asynchronous Mode

No.	Parameter	Symbol	MIN	MAX	Unit
1	Address, HCSZ/HPGCSZ, HBENZ0-HBENZ3 input setup time (to HWRSTBZ, HWRZ0-HWRZ3↓)	t _{addwrs}	4.8 ^{Note1} - 10 × n	-	ns
2	HWRZ0-HWRZ3, HWRSTBZ recovery time (high width)	t _{WRW}	35.0	-	ns
3	Data input setup time (to HWRSTBZ, HWRZ0-HWRZ3↓)	t _{wrs}	4.8 ^{Note1} - 10 × n	-	ns
4	Data input hold time (from HWRSTBZ, HWRZ0-HWRZ3↑)	t _{WRH}	4.8	-	ns
5	HWAITZ output delay time (from HCSZ or HPGCSZ \downarrow)	t _{CLZ}	2.0	-	ns
6	HWAITZ output delay time (from HWRSTBZ, HWRZ0-HWRZ3↓)	t _{WAITD}	2.0	-	ns
7	HWAITZ enable data output delay time (from HWRSTBZ, HWRZ0-HWRZ3↓)	t _{wrwaitf}	-	16.4	ns
8	HWAITZ enable data output hold time (from HWRSTBZ, HWRZ0-HWRZ3↑)	t _{waitvh}	3.0	-	ns
9	HWAITZ output hold time (from HWRZ0-3, HWRSTBZ↑)	t _{WAITH}	-	13.6	ns
10	Data, HWAITZ output hold time (from HCSZ/HPGCSZ↑)	t _{CHZ}	-	13.6	ns
11	Address, HCSZ/HPGCSZ input setup time (to HRDZ \downarrow)	t _{ADDRDS}	4.3 ^{Note2} - 10 × n	-	ns
12	Data at the off-page access, Address input hold time (from HRDZ [↑])	t _{ADDRDH}	4.3	-	ns
13	HRDZ recovery time (high width)	t _{RDW}	35.0	-	ns
14	Data, HWAITZ output delay time (from HRDZ \downarrow)	t _{RDLZ}	2.0	-	ns
15	HWAITZ enable data output delay time (from HRDZ↓)	t _{RDWAITF}	-	16.4	ns
16	Data settle time (from HWAITZ↑)	t _{WAITR}	-	-7.5 ^{Note3} +10 × n	ns
17	Data, HWAITZ enable data output hold time (from HRDZ↑)	t _{DATAOH}	3.0	-	ns
18	Data, HWAITZ output hold time (from HRDZ↑)	t _{RDHZ}	-	13.6	ns
19	Data at the on-page access, HWAITZ output delay time (from the address)	t _{PAGEOND}	3.0	16.4	ns
20	Data at the off-page access, HWAITZ output delay time (from the address)	t _{PAGEOFD}	3.0	16.4	ns
21	HWAITZ enable data output delay time (from HCSZ/HPGCSZ↓)	t _{waitvd}	-	16.4	ns
22 <r></r>	Address input hold time when advance reading is enabled (from HRDZ↑)	t _{addrdhp}	4.3	-	ns

Notes 1. This indicates the value when WRSTD2-WRSTD0 in the HIFBTC register is 000_B . n: Indicated by the value of WRSTD2-WRSTD0

- 2. This indicates the value when RDSTD1-RDSTD0 in the HIFBTC register is 00_B . n: Indicated by the value of RDSTD1-RDSTD0
- 3. This indicates the value when RDDTS1-RDDTS0 in the HIFBTC register is 00_B . n: Indicated by the value of RDDTS1-RDDTS0

Figure 4.13 External MCU Write Timing (MEMCSEL = L, HIFSYNC = L)

Figure 4.14 External MCU Read Timing (MEMCSEL = L, HIFSYNC = L)

(4) Synchronous SRAM Type Transfer Mode

No.	Parameter	Symbol	MIN	MAX	Unit
1	HBUSCLK high-level width	t _{HBHIGH}	0.5t _{HBUSCLK} - 2.1	0.5t _{HBUSCLK} + 2.1	ns
2	HBUSCLK low-level width	t _{HBLOW}	0.5t _{HBUSCLK} - 2.1	0.5t _{HBUSCLK} + 2.1	ns
3	HBUSCLK input cycle	t _{HBUSCLK}	20	-	ns
4	Address, HCSZ/HPGCSZ input setup time (to HBUSCLK↑)	t _{skpha}	4.0	-	ns
5	Address, HCSZ/HPGCSZ input hold time (from HBUSCLK↑)	t _{HKPCS}	1.0	-	ns
6	Address, HCSZ/HPGCSZ input setup time (to HBUSCLK↓)	t _{sknha}	4.0	-	ns
7	Address, HCSZ/HPGCSZ input hold time (from HBUSCLK↓)	t _{hKNHA}	1.0	-	ns
8	HWRZ0-HWRZ3 input setup time (to HBUSCLK↑)	t _{skphwr}	4.0	-	ns
9	HWRZ0-HWRZ3 input hold time (from HBUSCLK↑)	t _{HKPHWR}	1.0	-	ns
10	HWRZ0-HWRZ3 input setup time (to HBUSCLK↓)	t _{sknhwr}	4.0	-	ns
11	HWRZ0-HWRZ3 input hold time (from HBUSCLK↓)	t _{HKNHWR}	1.0	-	ns
12	HBCYSTZ, HWRSTBZ input setup time (to HBUSCLK↑)	t _{SKPHBCY}	4.0	-	ns
13	HBCYSTZ, HWRSTBZ input hold time (from HBUSCLK↑)	t _{нкрнвсү}	1.0	-	ns
14	HBCYSTZ, HWRSTBZ input setup time (to HBUSCLK↓)	t _{SKNHBCY}	4.0	-	ns
15	HBCYSTZ, HWRSTBZ input hold time (from HBUSCLK↓)	t _{HKNHBCY}	1.0	-	ns
16	HRDZ input setup time (to HBUSCLK↑)	t _{skphrd}	4.0	-	ns
17	HRDZ input hold time (from HBUSCLK↑)	t _{HKPHRD}	1.0	-	ns
18	HRDZ input setup time (to HBUSCLK↓)	t _{sknhrd}	4.0	-	ns
19	HRDZ input hold time (from HBUSCLK↓)	t _{HKNHRD}	1.0	-	ns
20	Data input setup time (to HBUSCLK↑)	t _{SKPHD}	4.0	-	ns
21	Data input hold time (from HBUSCLK↑)	t _{HKPHD}	1.0	-	ns
22	Data input setup time (to HBUSCLK↓)	t _{sknhd}	4.0	-	ns
23	Data input hold time (from HBUSCLK↓)	t _{HKNHD}	1.0	-	ns
24	Data output delay time (from HRDZ↓)	t _{DKNHRD}	2.0	-	ns
25	Data output hold time (from HRDZ↑)	t _{HKPHRD}	-	13.6	ns
26	Data output delay time (from HBUSCLK↑)	t _{DKPHD}	2.0	10.0	ns
27	Data output delay time (from HBUSCLK↓)	t _{DKNHD}	2.0	10.0	ns
28	HWAITZ output delay time (from HBUSCLK↑)	t _{DKPHWT}	2.0	10.0	ns
29	HWAITZ output delay time (from HBUSCLK↓)	t _{DKNHWT}	2.0	10.0	ns
30	Data output hold time (from HCSZ/HPGCSZ ↑)	t _{HKPHCS}	-	13.6	ns

R-IN32M3 Series Data Sheet

Figure 4.16 External MCU Write Timing (MEMCSEL = H, ADMUXMODE = H)

Remark: Address is input in A/D multiplex mode.

R18DS0008EJ0500 Dec. 28, 2018

Remark: Address is input in A/D multiplex mode.

R18DS0008EJ0500 Dec. 28, 2018

4.8.5 Serial Flash ROM Interface

Parameter	Symbol	Conditions	MIN	MAX	Unit
SMSCK output cycle	tsfrcyc	C∟ = 15 pF	20	-	ns
SMSCK high level width	tsмскн		0.5 tsfrcyc - 2.0	0.5 tsfrcyc + 2.0	ns
SMSCK low level width	t SMCKL		0.5 t _{SFRCYC} - 2.0	0.5 t _{SFRCYC} + 2.0	ns
SMSCK rise time	t SMCKR		—	1.9	ns
SMSCK fall time	tSFRCYC		—	1.9	ns
Delay time from a falling of SMCSZ to a	tdsмcscк	C∟ = 15 pF	6.0 Note <r></r>	-	ns
rising of SMSCK		Freq = 50 MHz			
Hold time until a rising of SMCSZ from a	t DSMCKCS	C∟ = 15 pF	9.0 Note <r></r>	-	ns
rising of SMSCK		Freq = 50 MHz			
SMCSZ high level width	t SMCSH	C∟ = 15 pF	14 ^{Note}	—	ns
SMSI input setup time (to SMSCK↓)	tssmi	-	6.0	-	Ns
SMSI input hold time (from SMSCK↓)	tнsмi	-	0	-	ns
SMSI output delay time (from SMSCK↓)	t DSMI	C∟ = 15 pF	-1.0	5.0	ns
SMSO input setup time (to SMSCK↓)	t _{SSMO}	-	6.0	-	ns
SMSO input hold time (from SMSCK↓)	tнѕмо	-	0	-	ns
SMSO output delay time (from SMSCK↓)	tdsмo	C _L = 15 pF	-1.0	5.0	ns

Note: Timing can be extended by setting of SFMSSC register.

Please refer to 12.2.2 Chip Selection Control Register (SFMSSC) of User's Manual (Peripheral Modules).

Figure 4.18 Serial Flash Rom Access Timing Diagram

4.8.6 External DMA Interface

Parameter	Symbol	Conditions	MIN	MAX	Unit
DMAREQZn, RTDMAREQZ	t skdr	-	7.0	-	ns
input setup time (from BUSCLK↑)					
DMAREQZn, RTDMAREQZ	thkdr1	-	Until DMAACKZn↓,	-	ns
input hold time 1			RTDMAACKZ↓		
DMAREQZn, REDMAREQZ	thkdr2	-	-	tBUSCLK Note1 × M Note2 -	ns
input hold time 2 (from BUSCLK↑)				7.0	
DMAACKZn, RTDMACKZ	t DKDA	$C_L = 30 pF$	2.0	10.0	ns
output delay time (from BUSCLK↑)					
DMAACKZn, RTDMAACKZ	twdal	-	tBUSCLK Note1 × m Note2 - 8	t _{BUSCLK} Note1 × m Note2 + 8	ns
output low level width					
DMATCZn, RTDMATCZ	t _{DKTC}	$C_L = 30 pF$	2.0	10.0	ns
output delay time (from BUSCLK↑)					

Notes 1. tBUSCLK is one cycle (10 ns) of BUSCLK.

2. n = 0,1 and m = 1-31 (DMAIFC0, DMAIFC1, RTMDAIFC registers).

Remark: n = 0, 1

4.8.7 CSI Interface

The clocked serial interface (CSI) supports both master and slave mode.

(1) Master mode

Parameter	Symbol	Conditions	MIN	MAX	Unit
CSISCKn output cycle	tcsімscк	C∟ = 15pF	40	-	ns
CSISCKn output high level width	twsкн	C∟ = 15pF	tcsімscк×0.5 – 5.0	-	ns
CSISCKn output low level width	twskl	C∟ = 15pF	tcsімscк×0.5 – 5.0	-	ns
CSISIn input setup time (to CSISCKn↑)	t _{SMSI}	-	8.5	-	ns
CSISIn input setup time (to CSISCKn↓)	tsmsi	-	8.5	-	ns
CSISIn input hold time (from CSISCKn↑)	t _{HMSI}	-	7.0	-	ns
CSISIn input hold time (from CSISCKn↓)	t _{HMSI}	-	7.0	-	ns
CSISOn output delay time (from CSISCKn↑)	t _{DMSO}	C∟ = 15pF	-	7.0	ns
CSISOn output delay time (from CSISCKn↓)	tomso		-	7.0	ns
CSISOn output hold time (from CSISCKn↑)	t _{HMSO}		t _{сsімscк} × 0.5 - 5.0	-	ns
CSISOn output hold time (from CSISCKn↓)	tHMSO		tcsімscк × 0.5 - 5.0	-	ns

Figure 4.20 CSI Access Timing Diagram (Master Mode)

Remarks 1. n = 0, 1

2. Above timing diagram shows the case for when "Data Output from CSISCKn↓" and "Data Input from CSISCKn↑". See the timing diagram according to the operating mode.

(2) Slave mode

Parameter	Symbol	Conditions	MIN	MAX	Unit
CSISCKn input cycle	tcsissck	-	60	-	ns
CSISCKn input high level width	twsкн	-	tсsімsск×0.5 – 5.0	-	ns
CSISCKn input low level width	t _{WSKL}	-	t _{CSIMSCK} ×0.5 – 5.0	-	ns
CSISIn input setup time (to CSISCKn↑)	tsssi	-	10.0	-	ns
CSISIn input setup time (to CSISCKn↓)	tsssi	-	10.0	-	ns
CSISIn input hold time (from CSISCKn↑)	t _{HSSI}	-	15	-	ns
CSISIn input hold time (from CSISCKn↓)	t _{HSSI}	-	15	-	ns
CSISOn output delay time (from CSISCKn↑)	tosso	C∟ = 15pF	-	10.0	ns
CSISOn output delay time (from CSISCKn↓)	tosso		-	10.0	ns
CSISOn output hold time (from CSISCKn↑)	t _{HSSO}		t _{сsisscк} × 0.5 - 5.0	-	ns
CSISOn output hold time (from CSISCKn \downarrow)	tHSSO		tcsisscк × 0.5 - 5.0	-	ns

Figure 4.21 CSI Access Timing Diagram (Slave Mode)

Remarks 1. n = 0, 1

2. Above timing diagram shows the case for when "Data Output from CSISCKn↓" and "Data Input from CSISCKn↑". See the timing diagram according to the operating mode.

4.8.8 I2C Interface

) e ve me et e v	Cumphial	Conditions	Norma	l mode	High speed	d mode	1.1
F	Parameter	Symbol	Conditions	MIN	MAX	MIN	MAX	Unit
SCL clock freque	ency	tscL	C _L = 30pF	0	100	0	400	kHz
Bus-free time be	tween the stop condition	t _{BUF}		4.7	-	1.3	-	μs
and start condition	on							
Hold time		t HSTA		4.0	-	0.6	-	μs
SCL clock low-le	evel width	tscll		4.7	-	1.3	-	μs
SCL clock high-l	evel width	tsclh		4.0	-	0.6	-	μs
Setup time for th conditions	e start and restart	tssta		4.7	-	0.6	-	μs
Data hold time	For a CBUS compatible master	t hdat		5.0	-	-	-	μs
	For an IIC bus			0	-	0	0.9	μs
Data setup time		t _{SDAT}		250	-	100	-	ns
SDA and SCL si	gnal rise time	tsclr		-	1000	20 + 0.1Cb	300	ns
SDA and SCL si	gnal fall time	tsclf		-	300	20 + 0.1Cb	300	ns
Stop condition s	etup time	tssto		4.0	-	0.6	-	μs
Pules width of s	pike suppressed by input	tsp		-	-	0	50	ns
filter								
Capacitance loa	d of each bus line	Cb	-	-	400	-	400	pF

Figure 4.22 I2C Access Timing Diagram

Remark 1 n = 0, 1

tSCLR and tSCLF are omitted from the diagram.

4.8.9 CAN Interface

Parameter	Symbol	Conditions	MIN	MAX	Unit
Internal delay time	t NODE	C _L = 30pF	-	75	ns

Figure 4.23 CAN Access Timing Diagram

Internal delay time (t_{NODE}) = Internal transmission delay time (t_{OUTPUT}) + Internal reception delay time (t_{INPUT})

Figure 4.24 CAN Access Timing (Supplementary Information)

```
Remarks 1. CAN internal clock (f<sub>CAN</sub>): CAN baud late clock
2. n = 0,1
```


4.8.10 Ethernet Interface (R-IN32M3-CL only)

(1) GMII interface

Parameter	Symbol	Conditions	MIN	MAX	Unit
ETHn_GTXC output cycle	tдтхс	C∟ = 13pF	8	-	ns
ETHn_RXC input cycle	tGRXC	-	8	-	ns
ETHn_TXDm output delay time (from ETHn_GTXC↑)	t dgtktd	$C_L = 13 pF$	0.5	5.5	ns
ETHn_TXEN, ETHn_TXER output delay time (from	t dgtkte	C∟ = 13pF	0.5	5.5	ns
ETHn_GTXC↑)					
ETHn_RXDm input setup time (to ETHn_RXC↑)	t sgrdrk	-	2.0	-	ns
ETHn_RXDm input hold time (from ETHn_RXC↑)	t hgrdrk	-	0	-	ns
ETHn_RXDV, ETHn_RXER input setup time (to ETHn_RXC↑)	t sgrvrk	-	2.0	-	ns
ETHn_RXDV, ETHn_RXER input hold time (from	t _{HGRVRK}	-	0	-	ns
ETHn_RXC↑)					

Figure 4.25 Ethernet Access Timing Diagram (GMII Transmission)

Figure 4.26 Ethernet Access Timing Diagram (GMII Reception)

Remark: n = 0, 1, m = 0-7

(2) MII interface

Parameter	Symbol	Conditions	MIN	MAX	Unit
ETHn_TXC input cycle	t _{TXC}	-	40	-	ns
ETHn_RXC input cycle	trxc	-	40	-	ns
ETHn_TXDm output delay time (from ETHn_TXC↑)	t dtktd	$C_L = 30 pF$	0	25	ns
ETHn_TXEN, ETHn_TXER output delay time (from	tdtkte	C∟ = 30pF	0	25	ns
ETHn_TXC↑)					
ETHn_RXDm input setup time (to ETHn_RXC↑)	t _{SRDRK}	-	10	-	ns
ETHn_RXDm input hold time (from ETHn_RXC↑)	t HRDRK	-	10	-	ns
ETHn_RXDV, ETHn_RXER input setup time (to ETHn_RXC↑)	t srvrk	-	10	-	ns
ETHn_RXDV, ETHn_RXER input hold time (from	t hrvrk	-	10	-	ns
ETHn_RXC↑)					

Figure 4.27 Ethernet Access Timing Diagram (MII Transmission)

Remark: n = 0, 1, m = 0-7

(3) Serial management interface

Parameter	Symbol	Conditions	MIN	MAX	Unit
ETH_MDC output cycle	tMDC	$C_L = 30 pF$	80	-	ns
ETH_MDIO input setup time (to ETH_MDC↑)	tsmdio		10	-	ns
ETH_MDIO input hold time (from ETH_MDC↑)	t _{HMDIO}		0	-	ns
ETH_MDIO output delay time (from ETH_MDC↑)	tomdio		20	-	ns

Figure 4.29 Ethernet Access Timing Diagram (Serial Management)

4.8.11 Debug Interface

(1) Debug serial interface

Parameter	Symbol	Conditions	MIN	MAX	Unit
TCK input cycle	tтск	-	20	-	ns
TMS input setup time (to TCK↑)	tsтмs	-	6.5	-	ns
TMS input hold time (from TCK↑)	t _{HTMS}	-	0	-	ns
TDI input setup time (to TCK↑)	tstdi	-	6.5	-	ns
TDI input hold time (from TCK↑)	tнтрі	-	0	-	ns
TDO output delay time (from TCK↓)	t _{DTDO}	C _L = 30pF	3.0	13.0	ns

Figure 4.30 Debug Serial Interface

(2) Trace interface

Parameter	Symbol	Conditions	MIN	MAX	Unit
TRACECLK output frequency	t trcclk	C _L = 15pF	20	-	ns
TRACEDATA output delay time (from TRACECLK)	t dtrcdat	C∟ = 15pF	0.26	8.43	ns

Figure 4.31 Trace Interface

5. Package Drawing

324-PIN PLASTIC BGA (19x19)

	(UNIT:mm)
ITEM	DIMENSIONS
D	19.00±0.10
Е	19.00±0.10
w	0.30
е	1.00
А	1.83±0.12
A1	0.50±0.10
A2	1.33
b	0.60±0.10
×	0.10
У	0.15
y1	0.35
ZD	1.00
ZE	1.00
F	324F1-100-HN4-

REVISION HISTORY R-IN32M3 Series Data Sheet

Rev.	Date		Description
		Page	Summary
Preliminary 1.00	2011.06.14	-	First edition issued
Preliminary	2012.12.03	overall	Change the description of "CC-Link IE Field"
2.00			"CC-Link IE Field network" → "CC-Link IE Field"
		12-13	Addition of 2.1 Pin Placement
		14-16	Modification of 2.3.1 Ethernet Signal
		20	Modification of pin name of 2.3.5 Port Signal, Real-time port Signal
		26	Modification of level during reset of 2.3.9 Timer I/O Signal
		28	Addition of new pin information of 2.3.14 System Signal
		29	Addition of new pin information of 2.3.15 Test Signal
		30	Addition of new pin information of 2.3.16 Operation mode Setting Signal
		36	Addition of new pin information of 2.4.4Test Signal
		39-62	Addition of 3 Specification
		65-68	Modification of the description of output buffer of <i>4 Electrical Specifications</i>
		69	Addition of 4.6 Power-on/off sequence
		70-89	Addition of 4.7 AC characteristics
Preliminary	2013.1.17	2	Modification of Access to External Memory of 1.3 Overview
3.00		3	Modification of status of CC-Link of 1.3 Overview
			Addition EtherPHY Information of <i>1.3 Overview</i>
		4	Modification of block diagram of R-IN32M3-EC of <i>1.4 INTERNAL BLOCK</i> DIAGRAM
		5	Modification of block diagram of R-IN32M3-CL of 1.4 INTERNAL BLOCK DIAGRAM
		14	Modification of list of PHY Interface of 2.3.1 Ethernet Signal
		16	Modification of level during reset of PHYLINK0/1 of 2.3.1 Ethernet Signal
		17	Modification of level during reset of CATSYNC1 of 2.3.2 EtherCAT Slave Controller Signal
		18	Addition of WAITZ1-3 port and list of note of 2.3.3 External Memory Interface Signal
		25	Modification of level during reset of 2.3.8 External Interrupt Input Signal
		26	Modification of level during reset of TIN2/TOUT2 of 2.3.8 External Interrupt Input Signal and level during reset of 2.3.10 Watchdog Timer Output Signal
		30	Modification of level during reset of 2.3.16 CC-Link (Remote device station)
		31	Addition the signal of VDDQ_PECL_B0/ VDDQ_PECL_B1 of 2.3.17 System signal
		34	Modification of Required Connection when not in use of ETH0_TXC of 2.4.1 Ethernet Signal

Rev.	Date		Description
		Page	Summary
Preliminary 20 3.00	2013.1.17	36	Modification of Required Connection when not in use of TRSTZ of 2.4.4 Test Signal
		64	Addition the figure of HW-RTOS structure of 3.20 Hardware Real-time OS
		65	Addition the list of service call of 3.20 Hardware Real-time OS
1.00	Mar 29,2013	overall	Modification of English expressions
		overall	Change the description of "CC-Link IE Field"
			"CC-Link IE Field Slave" \rightarrow "CC-Link IE Field (Intelligent device station)"
		overall	Change the description of "CC-Link"
			"CC-Link (Slave)" \rightarrow "CC-Link (Remote device station)"
		1	Modification of the contents of 1.1 Introduction
		14	Modification of the status of ETH_MDC during the reset of 2.3.1 Ethernet
			Signals
			Modification of the contents of Note of 2.3.1 Ethernet Signals
		18	Modification of the status of BUSCLK during the reset of 2.3.3 External Memor
			Interface Signals
		19	Modification of the status of HD0-HD15 during the reset of 2.3.4 External MPU
			Interface Signals
		31	Addition the signals of HOTRESETZ, VDDQ_MII, CLKOUT25M0, CLKOUT25M
			of 2.3.17 System Signals
			Modification of the function of PONRZ of 2.3.17 System Signals
		53	Modification of the status of the kind of supported station of 3.12 CC-Link Function
		78	Modification of the example calculation of 4.7.3 <i>External memory interface</i>
		10	signals (1)
		78	Modification of the MIN calculation result at the time of 30pF of 4.7.3 External
			memory interface signals (2)
		81	Modification of the MIN calculation result at the time of 30pF of 4.7.3 External
			memory interface signals (3)
		84	Addition the 4.7.4 External microcomputer interface signal
2.00	2013, Dec 9	overall	Change the kind of CC-Link station to support
		3	Standby mode deletion of Table1.1 Overview of R-IN32M3
		6 to 10	Modification of the accessible area of EtherCAT of 1.5 Memory Map
		28	Addition explanation of Function of 2.1.14 CC-Link IE Field Signals
		31	Modification of the function of VDD15 of 2.3.17 System Signals
			Addition the note to VDDQ_MII of 2.3.17 System Signals
		47	Modification of WDT overflow time of 3.7 Watchdog Timer
		71	Addition of the value of Supply current of 4.4 DC Characteristics
		73	Modification of the contents of 4.6 Power-on/off sequence
		80	Modification of the contents of 4.7.3 External memory interface signals (3)
		81	Modification of the contents of Figure 4.6 Memory controller read timing
			diagram (synchronous memory)
		92	Modification of the value of output delay time of ETHn_TXDm/ETHn_TXEN,
			ETHn_TXER of <i>4.7.10 Ethernet interface (1)</i>

Rev.	Date		Description
		Page	Summary
2.01	Feb 07 ,2014	6, 10	Modification of the accessible area of EtherCAT of 1.5 Memory Map
		30	Add CCM_CLK80M pins to list of 2.3.16 CC-Link Signals (Remote device station)
		33	Modification of Boot mode select of 2.3.19 Operation mode Setting Signals
		37	Addition the resister value for Pull-up/down
		39	Modification of title name of 2.4.8 CC-Link Signal (Intelligent device station,
		00	Remote device station)
		72	Delete the description of 5k Ω row of 4.5 Pull-up/down Resister Values
		71	Addition Table4.6 DC Characteristics TYP value
		86	Addition the description at 4.7.5 Serial flash ROM interface
2.02	Apr 18 ,2014	overall	Modification of CC-Link Signals (Remote device station)
		39	Modification of the description about 'recommended connection' and addition a
			caution description at 2.4.7 CC-Link IE Field Signal
2.03	May 30 ,2014	73	Add a notes of "4.6 Power-on-off sequence"
2.04	Dec 25 ,2014	3	Change status for Intelligent device station for CC-Link in 1.3 Overview
	,	6 to 10	Modification of the accessible area of EtherCAT of 1.5 Memory Map
		31	Modify the property for FB pin from "-" to "Input"
		76	Modify the description of MIN value for low level width in 4.7.2 Reset signals
		86	Add description for "Asynchronous mode" in 4.7.4 External microcomputer
			interface signal.
3.00	Aug 31,2015	83 to 93	Correction the timing information of <i>4.7.4 External Microcomputer Interface</i>
3.01	Sep 18,2015	88 to 91	Add description for "Synchronous mode (CC-Link IE Field)" in 4.7.4 External
			microcomputer interface signal.
4.00	Nov 30,2015	14 to 36	Add description of "Symbol and Abbreviation", port functions of synchronous
			burst access memory controller at 2.3 Signals by Function.
		15	Add a Note of Ethernet Transmit ports at 2.3.1(1) PHY Interface.
		19	Modify the "Level during reset" for BUSCLK and add Note1 at 2.3.3 External
			Memory Interface Signals.
		27	Modify the "Level during reset" for TRACECLK at 2.3.11 Trace Signals.
		29	Add a Note for CCI_WAITEDGEH and CCI_WRLENH at 2.3.14 CC-Link IE
			Field (Intelligent device station) Signals.
		30	Modify the "Function" for CCM_CLK80M at 2.3.15 CC-Link Signals
			(Intelligent device station).
		31	Add a Note2 for CCM_CLK80M at 2.3.16 CC-Link Signals (Remote device
			station).
		32	Modify the "Function" for XT1/XT2, OSCTH, JTAGSEL and "Active" for OSCTH
			and "Level during reset" for RSTOUTZ, CLKOUT25M0/1 at 2.3.17 System
			Signals.
		36	Add the combinations of available operating mode at 2.3.19 Operation Mode
			Setting Signal.
		39	Modify "I/O" for XT2 and "Recommended connection when not in use" for
			OSCTH, JTAGSEL at 2.4.3 System Signals .

Rev.	Date		Description
		Page	Summary
4.00	Nov 30,2015	42	Modify "Recommended connection when not in use" at 2.4.6 Operating Mode
			Setting Signals.
		46	Modify "Table3.1" at 3.3 EtherCAT Slave Controller Function.
		51	Add "External event count function" at 3.8.1 Features.
		65-66	Modify "QINT" and add "Remark" at 3.20.1 Features .
		72	Add 4.6 Terminal Capacity Values.
		74	Modify "MAX" values for CCI_CLK2_097M at 4.8.1(1) Input clock
			characteristics.
		78-82	Modify a Note for Figure4.4, Figure4.5 and Add WAITZ1-WAITZ3 for Figure4.6
			Figure4.7 at 4.8.3(3) Synchronous burst access MEMC access timing.
		100	Modify "Symbol" for DMAACKZn, RTDMAACKZoutput low level width at 4.8.6
			External DMA Interface.
		101-102	Add "Symbol" for CSISCKn output high/low level width and "Remark" at 4.8.7
			CSI Interface.
		105-106	Modify the signals "ETHn_RXDm" at 4.8.10 Ethernet Interface .
		107	Modify "Parameter" and "MAX" value for TRACEDATA output delay time at
			4.8.11(2) Trace interface.
4.01	Feb 28, 2017	30	Modify description of the CCM_MDIN0-3 signals at 2.3.15
			CC-Link Pins (Intelligent Device Station). (complement)
		58	Modify interface system, synchronous relationship, and buffers at 3.14.1(1)
			External MCU Interface. (complement)
		59	Modify description of address conversion at 3.14.1(2) AHB master port
			function. (expression alignment)
			Explicitly notate applicable modes at 3.14.1(3) Status check function.
			(complement)
		60	Change from "state" to "wait" at 3.15.1 Features. (expression alignment)
		61	Change pin names for wait signal at 3.16.1 Features . (error correction)
		62	Add the ECC error interrupt function at 3.17.1 Features . (new function)
			Correct operation of the AHB bus at occurrence of a 2-bit ECC error at 3.17.2
			Read Buffer. (error correction)
		63	Change expression of Header Endec at 3.18 Data RAM . (expression
			alignment)
			Add an ECC error interrupt function at 3.18.1 Features . (new function)
		64	Add an ECC error interrupt function at 3.19.1 Features . (new function)
		65	Add a supported function "Internal DMA/Buffer Allocator/Header EnDec" at
			3.20.1 Features. (new function)
		71	Delete the column of $5k\Omega$ resistor from Table 4.6 Input leakage current (error
			correction) and modify the symbol for the voltage of high-level output ($I_{OL} \rightarrow I_{OH}$)
			in Table 4.7 (error correction) at 4.4 DC Characteristics .

Rev.	Date		Description
		Page	Summary
5.00	Dec 28, 2018	3	1.3 Overview, Table 1.2 Overview of R-IN32M3 (2/2)
			Description of 1.5 V power supply for internal PHY was added.
		6, 7,	1.5 Memory Maps
		10 to 12	Note describing that the addresses the instruction RAM mirror area (768
			Kbytes) where access actually occurs will change according to the select boot
			mode, was added.
			Figure 1.1 Memory Map (All) (R-IN32M3-EC)
			Figure 1.2 Memory Map (All) (R-IN32M3-CL)
			Figure 1.6 External MCU Interface Area (R-IN32M3-EC)
			Figure 1.7 External MCU Interface Area (R-IN32M3-CL)
		6, 7	1.5 Memory Maps
			Figure 1.1 Memory Map (All) (R-IN32M3-EC)
			Figure 1.2 Memory Map (All) (R-IN32M3-CL)
			Locations of instruction RAM area and instruction RAM mirror area were
			corrected.
		10 to 12	1.5 Memory Maps
			Figure 1.6 External MCU Interface Area (R-IN32M3-EC)
			Figure 1.7 External MCU Interface Area (R-IN32M3-CL)
			"Instruction RAM area" was corrected to "Instruction RAM mirror area".
		23	2.3.5 Port Pins and Real-time Port Pins
			The pin name indicated as "CCM_IRZ" was modified to "CCM_IRLZ".
		31	2.3.15 CC-Link Pins (Intelligent Device Station)
			The name and functional descriptions of the CC-Link (intelligent device station)
			pins were modified.
		70	4.2 Absolute Maximum Ratings, Table 4.4 Absolute Maximum Ratings
			1.5 V type was added as the condition for power supply voltage.
		71	4.3 Recommended Operating Conditions, Table 4.5 Recommended Operating
			Conditions
			1.5 V power supply was added as the condition for power supply voltage.
		93, 95	4.8.4 External MCU Interface Pins, (3) Asynchronous Mode
			Figure 4.14 External MCU Read Timing (MEMCSEL = L, HIFSYNC = L)
			Specification of "Address input hold time when advance reading" was added
		100	4.8.5 Serial Flash ROM Interface
			Specifications of tDSMCSCK and tDSMCKCS were modified.
		—	Error corrected, description modified, and contents and expressions adjusted

Instructions for the use of product

In this section, the precautions are described for over whole of CMOS device. Please refer to this manual about individual precaution: When there is a mention unlike the text of this manual, a mention of the text takes first priority

1.Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2.Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

-The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

-The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4.Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

-When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

• Arm[®] and Cortex[®] are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

- Ethernet is a registered trademark of Fuji Xerox Co., Ltd.
- IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers Inc.
- TRON is an acronym for "The Real-time Operation system Nucleus".
- ITRON is an acronym for "Industrial TRON".
- μITRON is an acronym for "Micro Industrial TRON".
- TRON, ITRON, and µITRON do not refer to any specific product or products.
- EtherCAT[®] and TwinCAT[®] are registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.
- CC-Link and CC-Link IE Field are registered trademarks of the CC-Link Partner Association (CLPA).
- Additionally all product names and service names in this document are a trademark or a registered trademark which belongs to the respective owners.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for veluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Relet to http://www.relesas.com/ for the latest and detailed information.	
Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351	
Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004	
Renesas Electronics Europe Limited Dukes Meadow, Miliboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804	
Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327	
Renesas Electronics (China) Co., Ltd. Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679	
Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999	
Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2866-9022	
Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +86-2-8175-9600, Fax: +886 2-8175-9670	
Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300	
Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysi Tel: +60-3-7955-9390, Fax: +60-3-7955-9510	а
Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700, Fax: +91-80-67208777	
Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ARM Microcontrollers - MCU category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

MB9BF566NPMC-G-JNE2 MK60DX256ZVMD10 MKE02Z32VLC4R R7FS3A77C2A01CLK#AC1 STM32F205ZGT6J STM32F439ZGY6TR CG8360AM CP8363AT CP8570AT R7FS7G27H2A01CLK#AC0 CY8C4245LTI-DM405 CY8C4245PVS-482 MB9BF106NAPMC-G-JNE1 MB9BF122LPMC1-G-JNE2 MB9BF122LPMC-G-JNE2 MB9BF128SAPMC-GE2 MB9BF218TBGL-GE1 MB9BF529TBGL-GE1 XMC4500-E144F1024 AC MVF62NN151CMK40 CP8347AT XMC4402-F64K256 AB AT91SAM7XC128B-AUR STM32L063C8T6 STM32F215ZET6TR MKE06Z64VLD4 MKE02Z16VLC2R ATSAMD20G18A-UUT MAX32631ICQ+ MAX32630IWG+T MAX32630ICQ+ SIM3L167-C-GQR STM32L052C8T6D 5962-8506403MQA R7FS124773A01CNB#AC0 MC-10105F1-821-FNA-M1-A STM32L031C6T6 MK22FN512VDC12R SPC560B54L3C6E0X STM32F411CEU6TR STM32F769AIY6TR STM32F042G4U6TR MB9AF342MAPMC-G-JNE2 S6E2CC8J0AGV2000A MB9AF008LWPMC-G-UNE2 MB9AF131KAPMC-G-SNE2 STM32F412ZGT6TR MB9BF121KPMC-G-JNE2 STM32L011K4T6D VA10800-D000003PCA