RENESAS

R1LP0408D Series

4Mb Advanced LPSRAM (512-kword × 8-bit)

R10DS0274EJ0200 Rev.2.00 2019.10.29

Description

The R1LP0408D Series is a family of 4-Mbit static RAMs organized 512-kword × 8-bit, fabricated by Renesas's highperformance CMOS and TFT technologies. The R1LP0408D Series has realized higher density, higher performance and low power consumption. The R1LP0408D Series offers low power standby power dissipation; therefore, it is suitable for battery backup systems. It is offered in 32-pin SOP and 32-pin TSOP.

Features

- Single 5V supply: 4.5V to 5.5V
- Access time: 55ns (max.)
- Power dissipation:
 Standby: 4µW (typ.)
- Equal access and cycle times
- Common data input and output — Three state output
- Directly TTL compatible — All inputs and outputs
- Battery backup operation

Ordering Information

Orderable part name	Access time	Temperature range	Package	Shipping container
R1LP0408DSP-5SI#B*		-40 ~ +85°C -	525-mil 32-pin	Tube (Magazine)
R1LP0408DSP-5SI#S*	55		plastic SOP	Embossed tape
R1LP0408DSB-5SI#B*	55 ns		400-mil 32-pin	Tray
R1LP0408DSB-5SI#S*			plastic TSOP (II)	Embossed tape

Note 1. * = Revision code for Assembly site change, etc. (* = 0, 1, etc.)

Pin Arrangement

Pin Description

Pin name	Function					
Vcc	Power supply					
Vss	Ground					
A0 to A18	Address input					
I/O0 to I/O7	Data input/output					
CS#	Chip select					
WE#	Write enable					
OE#	Output enable					

Block Diagram

Operation Table

WE#	CS#	OE#	Mode	Vcc current	I/O0 to I/O7	Ref. cycle
×	Н	×	Not selected	Isb, Isb1	High-Z	—
Н	L	Н	Output disable	lcc	High-Z	—
Н	L	L	Read	lcc	Dout	Read cycle
L	L	Н	Write	lcc	Din	Write cycle (1)
L	L	L	Write	lcc	Din	Write cycle (2)

Note 1. H: VIH L:VIL \times : VIH or VIL

Absolute Maximum Ratings

Parameter	Symbol	Value	unit
Power supply voltage relative to Vss	Vcc	-0.5 to +7.0	V
Terminal voltage on any pin relative to Vss	VT	-0.5 ^{*1} to Vcc+0.3 ^{*2}	V
Power dissipation	Pτ	0.7	W
Operation temperature	Topr	-40 to +85	°C
Storage temperature range	Tstg	-65 to 150	°C
Storage temperature range under bias	Tbias	-40 to +85	°C

Note 1. -3.0V for pulse ≤ 30ns (full width at half maximum)

2. Maximum voltage is +7.0V.

DC Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Supply voltage	Vcc	4.5	5.0	5.5	V	
	Vss	0	0	0	V	
Input high voltage	VIH	2.2	_	Vcc+0.3	V	
Input low voltage	VIL	-0.3	_	0.8	V	1
Ambient temperature range	Та	-40	_	+85	°C	

Note 1. -3.0V for pulse \leq 30ns (full width at half maximum)

DC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit		Test conditions	
Input leakage current	I _{LI}	-	-	1	μA	Vin = Vs	s to Vcc	
Output leakage current	Ilo	_	_	1	μA	CS# =V _{IH} or OE# =V _{IH} , VI/O =Vss to Vcc		
Operating current	lcc	_	5 ^{*1}	10	mA	CS# =V _{IL} Others =	, Vih/Vil, II/O = 0mA	
Average operating current	I _{CC1}	_	15 ^{*1}	25	mA	Min. cycle, duty =100%, II/O = 0mA, CS# =V _{IL} , Others = V _{IH} /V _{IL}		
	I _{CC2}	_	3 ^{*1}	5	mA	Cycle =1µs, duty =100%, II/O = 0mA, CS# ≤ 0.2V, VIH ≥ Vcc-0.2V, VIL ≤ 0.2V		
Standby current	I _{SB}	_	0.1 ^{*1}	0.5	mA	CS# =V _{IH} , Others = Vss to Vcc		
Standby current		_	0.8 ^{*1}	2.5	μΑ	~+25°C		
		_	1 ^{*2}	3	μA	~+40°C	Vin = Vss to Vcc,	
	I _{SB1}	_	-	8	μA	~+70°C	CS# ≥ Vcc-0.2V	
		_	_	10	μA	~+85°C		
Output high voltage	Vон	2.4	_	_	V	I _{он} = -1m	A	
	V _{OH2}	Vcc-0.5	_	_	V	I _{ОН} = -0.1mA		
Output low voltage	Vol	_	_	0.4	V	I _{OL} = 2.1r	nA	

Note 1. Typical parameter indicates the value for the center of distribution at 5.0V (Ta=25°C), and not 100% tested.
2. Typical parameter indicates the value for the center of distribution at 5.0V (Ta=40°C), and not 100% tested.

Capacitance

			(Vcc =	4.5V ~	5.5V, f :	= 1MHz, Ta = -4	↓0 ~ +85°C)
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions	Note
Input capacitance	C in	_	_	8	pF	Vin =0V	1
Input / output capacitance	C 1/0	_	—	10	pF	VI/O =0V	1

Note 1. This parameter is sampled and not 100% tested.

AC Characteristics

Test Conditions (Vcc = $4.5V \sim 5.5V$, Ta = $-40 \sim +85^{\circ}C$)

- Input pulse levels: VIL = 0.4V, VIH = 2.4V
- Input rise and fall time: 5ns
- Input and output timing reference level: 1.5V
- Output load: See figures (Including scope and jig)

Read Cycle

Parameter	Symbol	Min.	Max.	Unit	Note
Read cycle time	t _{RC}	55	I	ns	
Address access time	taa	_	55	ns	
Chip select access time	t _{ACS}	_	55	ns	
Output enable to output valid	toe	_	25	ns	
Chip select to output in low-Z	t _{CLZ}	10	I	ns	2
Output enable to output in low-Z	tolz	5	I	ns	2
Chip deselect to output in high-Z	tснz	0	20	ns	1,2
Output disable to output in high-Z	tонz	0	20	ns	1,2
Output hold from address change	tон	10	-	ns	

Write Cycle

Parameter	Symbol	Min.	Max.	Unit	Note
Write cycle time	twc	55	I	ns	
Chip select to end of write	tcw	50	I	ns	4
Address setup time	t _{AS}	0	I	ns	5
Address valid to end of write	taw	50	I	ns	
Write pulse width	twp	40	I	ns	3,12
Write recovery time	twR	0	I	ns	6
Write to output in high-Z	twнz	0	20	ns	1,2,7
Data to write time overlap	t _{DW}	25	I	ns	
Data hold from write time	t _{DH}	0	I	ns	
Output enable from end of write	tow	5	_	ns	2
Output disable to output in high-Z	tонz	0	20	ns	1,2,7

Note 1. t_{CHZ}, t_{OHZ} and t_{WHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

- 2. This parameter is sampled and not 100% tested.
- 3. A write occurs during the overlap (twp) of a low CS# and a low WE#. A write begins at the later transition of CS# going low or WE# going low. A write ends at the earlier transition of CS# going high or WE# going high. twp is measured from the beginning of write to the end of write.
- 4. t_{CW} is measured from CS# going low to end of write.
- 5. t_{AS} is measured the address valid to the beginning of write.
- 6. t_{WR} is measured from the earlier of WE# or CS# going high to the end of write cycle.
- 7. During this period, I/O pins are in the output state so that the input signals of the opposite phase to the outputs must not be applied.
- 8. If the CS# low transition occurs simultaneously with the WE# low transition or after the WE# transition, the output remain in a high impedance state.
- 9. Dout is the same phase of the write data of this write cycle.
- 10. Dout is the read data of next address.
- 11. If CS# is low during this period, I/O pins are in the output state. Therefore, the input signals of the opposite phase to the outputs must not be applied to them.
- 12. In the write cycle with OE# low fixed, twp must satisfy the following equation to avoid a problem of data bus contention.

 $t_{WP} \ge t_{DW} \min + t_{WHZ} \max$

Timing Waveforms

Read Cycle (WE# = V_{IH})

Write Cycle (1) (OE# CLOCK)

Write Cycle (2) (OE# Low Fixed)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions ^{*3}		
V _{CC} for data retention	V_{DR}	2.0	_	5.5	V	Vin ≥ 0V, CS# ≥ Vcc-0.2V		
	Iccdr	_	0.8 ^{*1}	2.5	μA	~+25°C		
		_	1 ^{*2}	3	μA	~+40°C	Vcc=3.0V, Vin ≥ 0V,	
Data retention current		_	_	8	μA	~+70°C	CS# ≥ Vcc-0.2V	
		_	_	10	μA	~+85°C		
Chip deselect time to data retention	t _{CDR}	0	_	_	ns			
Operation recovery time	t _R	5	_	_	ms	See retention waveform.		

Note 1. Typical parameter indicates the value for the center of distribution at 3.0V (Ta=25°C), and not 100% tested.

2. Typical parameter indicates the value for the center of distribution at 3.0V (Ta=40°C), and not 100% tested.

3. CS# controls address buffer, WE# buffer, OE# buffer and Din buffer. If data retention mode, Vin levels (address, WE#, OE#, I/O) can be in the high impedance state.

R1LP0408D Series Data Sheet

		Description	
Rev.	Date	Page	Summary
1.00	2017.1.27	_	First Edition issued
2.00	2019.10.29	p.1	Revised orderable part name information.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SRAM category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

CY6116A-35DMB CY7C1049GN-10VXI CY7C1461KV33-133AXI GS8161Z36DD-200I GS88237CB-200I RMLV0408EGSB-4S2#AA0 IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6F2008V2E-LF70000 K6T4008C1B-GB70 CY7C1353S-100AXC AS6C8016-55BIN AS7C164A-15PCN 515712X IS62WV51216EBLL-45BLI IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI IS66WVE4M16EALL-70BLI IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1460KV25-200BZI CY7C1373KV33-100AXC CY7C1381KVE33-133AXI CY7C4121KV13-600FCXC GS882Z18CD-150I IS66WVC2M16ECLL-7010BLI 7140LA35PDG CY7C1380KV33-250AXC AS6C8016-55BINTR CY7C1370KV33-250AXC CY7C1370KVE33-167AXI 7140LA100PDG AS7C34096B-10TIN AS6C8016-55TIN IS62WV25616EALL-55TLI GS8128418B-167IV CY7C1460KV25-200BZXI CY7C1460KV25-167BZXI CY7C1315KV18-333BZXC CY7C1370KV25-200AXC 71421LA55JI8 CY62158G30-45ZSXI CY62157G30-45ZSXI RMLV3216AGSD-552#AA0 CY62187G30-55BAXI CY62157G30-45ZXI IS61VVPS102436B-200B3LI IS66WVC2M16EALL-7010BLI IS66WVE4M16EALL-70BLI-TR