Features

•

•

•

•

AEC-Q100 gualified constant current power module with integrated shielded inductor

Power Module

- 36VDC input voltage buck regulator
- 1.5A output current with 0-100% PWM dimming
- SCP, OCP, OTP, and UVLO protection
- 3.0 x 5.0mm low profile QFN package

- Enable, fault, thermal shutdown & soft start functions
- -40 to 125°C operating temperature

Description

The RPY-1.5Q is an automotive grade constant current source buck regulator designed for driving high power LEDs. The integrated inductor means that a complete LED driver can be realized in a compact 3mm x 5mm x 1.6mm thermally-enhanced QFN package with a maximum current output of up to 1500mA set with an external sense resistor. The input voltage range is from 4 to 36VDC, allowing 5V, 12V, or 24V supply voltages to be used. The output is fully protected against continuous short-circuits, input undervoltage, output overcurrent, or over-temperature conditions. A fault indicator flags thermal shutdown or LED open/short circuit conditions. Applications include dimmable LED lighting, visible or IR LED illumination for drones and robotic camera systems, or precision high current CC sources for test and measurement use.

Selection Guide								
Part Number	Input Voltage Range [VDC]	Output Voltage [VDC]	Output Current [mA]	Efficiency typ. ⁽¹⁾ [%]				
RPY-1.5Q	4 - 36	0.8 - 34.8	0-1500	95				
Netee								

Notes:

Note1: Tested at V_{IN}= 36VDC, V_{CTRL/DIM}= 2VDC, V_{OUT}= 2x 3VDC or 2 series LED, I_{OUT}= 1.5A, f_{sw}= 2.2MHz

Notes:

Note2: Add suffix "-R" for tape and reel packaging

Add suffix "-CT" for bag packaging (refer to "PACKAGING INFORMATION")

Specifications

ABSOLUTE MAXIMUM RATINGS (exceeding these ratings may damage the device)							
Parameter	Symbol	Min.	Тур.	Max.			
	V _{IN}	-0.3VDC		40VDC			
	V _{CTRL/DIM}	-0.3VDC		6VDC			
Absolute Maximum Voltage	V _{SW}	-0.3VDC		$V_{IN} + 0.3VDC$			
	V _{OUT}	-0.3VDC		$V_{IN} + 0.3VDC$			
	V _{BST}	-0.3VDC		$V_{SW} + 6VDC$			
	others	-0.3VDC		6VDC			
Maximum Continuous Power Losses (3)	$@T_{AMB} = 25^{\circ}C$			2.7W			
Junction Temperature	TJ			150°C			
Lead Temperature				260°C			
Storage Temperature		-65°C		+150°C			

Notes:

Note3: Maximum power losses = (150-Tamb)/46. Exceeding this value will activate thermal protection.

RPY-1.5Q

RPY-1.5Q Series

Specifications

Parameter	Condition	Min.	Тур.	Max.
Input Voltage Range		4VDC		36VDC
	DC-DC ON	3.2VDC	3.5VDC	3.8VDC
V _{IN} Under-voltage Lockout Threshold	DC-DC OFF	2.8VDC	3.1VDC	3.4VDC
V _{IN} Under-voltage Lockout Threshold Hysteresis			400mV	
Output Voltage Range		0.8VDC		34.8VDC
Standby Current	DC-DC OFF			12µA
Switching Frequency		1800kHz	2200kHz	2600kHz
	$T_{AMB} = 25^{\circ}C$	192mV	200mV	208mV
Feedback Voltage	$T_{AMB} = -40^{\circ}C \text{ to } +125^{\circ}C$	184mV	200mV	216mV
Feedback Current	V _{FB} = 820mV		30nA	100nA
Start-up Time		46ms		
Rise-time	internal soft start		0.9ms	

Typical Application

C1 (C _{IN})	R ₁	R ₂	R ₃	C ₂ (C _{OUT})
10µF	1MΩ	100k Ω	$400 \text{m}\Omega$	10µF

The typical performance and circuit waveforms are shown in the **Typical Performance Characteristics** section. For more device applications, please refer to the related evaluation board datasheet <u>RPY-1.5Q-EVM-1</u>

SAFE OPERATING AREA

CTRL OPERATING CONDITIONS (VIN = 36VDC, IOUT = 1.5A TAMB = +25°C; tested with RECOM evaluation module: RPY-1.5Q-EVM-1 unless otherwise stated)						
Parameter	Condition	Min.	Тур.	Max.		
CTRL Rising Threshold		1.1VDC	1.45VDC	1.8VDC		
CTRL Falling Threshold		0.7VDC	1VDC	1.3VDC		
CTRL Input Current	V _{CTRL} = 2VDC		5nA	10nA		
CTRL Frequency Range (4)		100Hz		2kHz		
CTRL OFF delay		10ms	25ms	50ms		
Notes:				·		

Note4: Apply an external, 100Hz to 2kHz, PWM waveform to EN/DIM for PWM dimming. The average current is proportional to the PWM duty. The minimum amplitude of the PWM signal is 1.8V.

RPY-1.5Q Series

Specifications

FAULT						
Parameter	Condition	Min.	Тур.	Max.		
FAULT Over Voltage Detection			140%			
FAULT Over Voltage Detection Hysteresis			20%			
FAULT Detection Delay			10µs			
FAULT Sink Current Capability			0.4VDC			
FAULT Leakage Current			100nA			

The RPY-1.5Q has fault indication (FAULT) which is the open drain of a MOSFET and should be connected to VCC or another voltage source through a resistor (e.g. $100k\Omega$). FAULT is pulled high during normal operation. During the error conditions of output short circuit, open circuit, or thermal shutdown, FAULT is pulled down to indicate a fault status.

Parameter		/DC, I _{our} = 1.5A; tested with RECOM eva Condition	Min.	Тур.	Max.
Operating Junction Temperature			-40°C		+125°C
Thermal Impedance		junction to ambient		46K/W	
Thermal Impedance		case to ambient		30K/W	
Thermal Shutdown		Junction Temperature= 170°C		auto reco	very after cool dov
Thermal Derating (I _{OUT} = 1.5A)	Notes: Note6: 7 6 5 4 4 2 1 0 -40	Tested with RECOM evaluation module			

OUTPUT CURRENT SETTING

The external resistor R_3 divider sets the output current (see *"Typical Application"*) and should be approximately 400m Ω . R_3 can then be calculated with below equation. The resistor (R_2) sets the feedback loop bandwidth. The lower the R_2 is, the higher the bandwidth. A high BW may cause insufficient phase margin, resulting in loop instability. R3 Ensure that Sense resistor is capable of handling defined current. Thermal drift and resistor tolerance will have an impact on current stability.

RPY-1.5Q Series

Specifications

PWM DIMMING (V _{IN} = 36VDC, I _{LED} = 1.5A, T _{AMB} = +25°C; tested with RECOM evaluation module: RPY-1.5Q-EVM-1 unless otherwise stated)						
Parameter	Condition	Min.	Тур.	Max.		
CTRL/DIM frequency		100Hz		2kHz		
PWM Voltage		1.8VDC				
PWM on time at start up		2s				

Dimming tested with RECOM EVM board RPY-1.5Q-EVM-1, with 100Hz to 2kHz and PWM waveform to CTRL/DIM.

RPY-1.5Q Series

Specifications

rameter Co			Condition	ndition			Valu
ESD		human-body model	(HBM), ANSI/ESE	, ANSI/ESDA/JEDEC JS-001			±2k
ESD		charged-device mo	del (CDM), JEDE	CDM), JEDEC JESD22-C101			±0.75k
Moisture Sensitive Level		MS	SL peak temp. (7)				Level 3, 260°C, 168h
Notes:							
Note7: The Moisture Sens	itivity Leve	I rating is according to	the JEDEC indus	try stan	dard classifi	cations and	l peak solder temperature
SAFETY AND CERTIFICATIONS							
Certificate Type (Safety)							Standar
RoHS2							RoHS 2011/65EU + AM2015/86
DIMENSION AND PHYSICAL CHAR	ACTERIS	STICS					
Parameter			Туре				Valu
Material			case				plast
Dimension (LxWxH)							3.0 x 5.0 x 1.6m
Weight							0.095
Dimension Drawing (mm)							
Dimonolon Drawing (inity)		3.0					
							I.
			1				
		RECOM					
				Din Ir	nformatio	n	
			2.0		Function	///	Description
	IN 1 ID ndex Area			F III #	Function	Open dra	ain output fault indicator which is pulled
				1	FAULT	low when	the LED is short, open, or when thermal shutdown occurs.
				2			control. Pull CTRL/DIM high to enable the Apply a 100Hz to 2kHz external clock to CTRL/DIM for PWM dimming.
				3	FB		Feedback Voltage
	1.6			4	VCC		Internal 4.9VDC LDO output.
	<u></u> * <u>2X</u>	1.03		5	AGND		round. Reference ground of logic circuit. ND is connected to PGND internally.
	<u>2X 1.0</u>	0		6, 7, 8, 12	SW	Switch nod	e. Connect 6, 7, and 8 to large copper pa for optimal heat dissipation.
		18 10 10	ŧ	9, 10, 11	Vout		utput. Connect LED+ to VOUT. An output or is needed between VOUT and PGND
20	20			13	DNC	Do not con	nect. Must be soldered to an isolated pac
а развидати и развиди и На види и развиди и разви и развиди и развиди и разви	2X 0.70			14, 15	PGND	ower Gr	round. Connect these pins to the power ground plane on the PCB.
	↓ ↑	→14 →3 →2 16 14⊂	2X 0.60	16	Vin	external by	age. Connect a low-ESR low-inductance pass capacitor between this pin and GNI as close to the pins as possible.
			22	17	DNC		Do not connect. Leave Floating
	<u>8X 0.6</u>	0, .175	<u>16X 0.25</u>		ces: according de is wettable		/IO-220 arity shall be 0.10mm max. (optional)
		SYMM					,

continued on next page

RPY-1.5Q Series

Specifications

SOLDERING

Profile Feature	PB-Free Assembly
Preheat	
minimum Temperature (TS_min)	155°C
maximum Temperature (TS_max)	245°C
Time (tS)	100s-300s
Liquidus	
Temperature (TL)	217°C
Time (tL)	30-60s
Peak Temperature (TP)	245°C
Time remaining around Peak Temperature	10s
max Ramp Down Rate (from Ts_max to TP)	5K/s
max Ramp Up Rate	3K/s
max time from 25°C to Peak Temperature (TP)	8min

1	Pb-Free assembly is recommended according ro JEDEC J-STD020.
2	Ensure that the peak reflow temperature does not exceed 240°C $\pm 5^\circ\text{C}$ as per JEDEC J-STD020
3	The reflow time period during peak temperature of $240^{\circ}C \pm 5^{\circ}C$ should not exceed 30 seconds.
4	Reflow time above liquids (217°C) should not exceed 150 seconds.
5	For solder paste use a standard SAC Alloy such as SAC 305, type 3 or higher.
6	Other soldering methods (e.g. vapor-phase) are not verified and have to validate by the customer on his own risk.

Soldering temp. graph

RPY-1.5Q Series

Specifications

PCB LAYOUT SUGGESTION

Efficient PCB layout, especially of the input capacitor placement, is critical for stable operation. For best results follow the guidelines below.

- 1. Connect a large ground plane to PGND pins 14 and 15 directly. If the bottom layer is a ground plane, add vias near GND.
- 2. Ensure that the high-current paths at GND and VIN have short, direct, and wide traces.
- 3. Place the ceramic input capacitor close to VIN and GND.
- 4. Keep the connection of the input capacitor and VIN as short and wide as possible.
- 5. Place the external feedback resistors close to the chip.
- 6. Use multiple vias to connect power planes to internal layers.

Inner Layer

PACKAGING INFORMATION				
Parameter	Туре	Value		
	reel (diameter + width)	Ø177.8 x 12.4mm		
Packaging Dimension (LxWxH)	tape and reel (carton)	260.0 x 240.0 x 60.0mm		
	moisture barrier bag ("-CT")	100.0 x 100.0 x 30mm		
Deckering Quentity	tape and reel	500pcs		
Packaging Quantity	moisture barrier bag ("-CT")	10pcs		
Tape Width		12mm		
Storage Temperature Range		-65°C to +150°C		

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Non-Isolated DC/DC Converters category:

Click to view products by RECOM POWER manufacturer:

Other Similar products are found below :

 DP8160G-S1-R1
 APTH003A0X-SRZ
 PROPOWER-3.3V
 JRCS016A0S4-HZ
 VI-920194B
 T31SN24005NMFA
 RPX-4.0-R
 RPM5.0-1.0-CT

 TPSM5D1806RDBR
 XC9291B33E0R-G
 R-78K3.3-0.5
 R-78K1.2-2.0L
 RPMGS12-20
 R-78K15-1.0
 R-78K2.5-2.0L
 R-78K15-2.0

 RGA4W250W010A-003
 R-78K5.0-0.5
 R-78K9.0-1.0
 RPX-0.5Q-R
 R-78K1.8-0.5
 RPMGQ12-20
 R-78K1.8-1.0
 R-78K2.5-0.5
 R-78K1.5-0.5

 RGC4W300W008A-001
 R-78K12-0.5
 R-78K2.5-2.0
 R-78K1.2-2.0
 R-78K9.0-2.0L
 R-78K1.8-2.0L
 R-78K1.5-2.0L
 RGA24250W014A-001

 RGC4W300W012A-001
 R-78K9.0-2.0
 RPMGS5.0-20
 RGC4W300W012A-003
 RPY-1.5Q-R
 R-78K3.3-1.0
 R-78K1.8-2.0L

 RGA4W250W010A-001
 R-78K3.3-2.0L
 R-78CK12-0.5
 R-78K2.5-1.0
 R-78CK3.3-0.5
 R-78K12-1.0
 R-78K5.0-2.0

 RGC4W300W008A-003
 RGA24250W014A-003
 RC4250W010A-003
 R-78K5.0-2.0
 R-78K5.0-2.0
 R-78K5.0-2.0

 RGC4W300W008A-003
 RGA24250W014A-003
 R-78CK12-0.5
 R-78K2.5-1.0
 R-78CK3.3-0.5
 R-78K12-1.0
 R-78K5.0-2.0