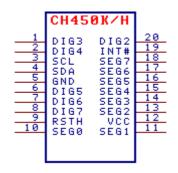

数码管驱动及键盘控制芯片 CH450

手册 版本: 2 <u>http://wch.cn</u>

1、概述


CH450 是数码管显示驱动和键盘扫描控制芯片。CH450 内置时钟振荡电路,可以动态驱动 6 位数码管或者 48 只 LED;同时还可以进行 48 键的键盘扫描;CH450 通过 2 线串行接口与单片机等交换数据;并且可以对单片机提供上电复位信号。

2、特点

- 内置显示电流驱动级,段电流不小于 15mA, 字电流不小于 80mA。
- 动态显示扫描控制,直接驱动 6 位数码管或者 48 只发光管 LED。
- 内置 48 键键盘控制器,基于 8×6 矩阵键盘扫描。
- 内置按键状态输入的下拉电阻,内置去抖动电路。
- 提供低电平有效的键盘中断,提供按键释放标志位,可供查询按键按下与释放。
- 高速 2 线串行接口,时钟速度从 0 到 2MHz,兼容两线 1²C 总线,节约引脚。
- 内置时钟振荡电路,不需要外部提供时钟或者外接振荡元器件,更抗干扰。
- 内置上电复位,可以为单片机提供高电平有效的复位输出。
- 支持低功耗睡眠,节约电能,可以被按键唤醒或者被命令操作唤醒。
- 提供 DIP20 和 SOP20 两种无铅封装,兼容 RoHS,功能和引脚部分兼容 CH455 芯片。

3、封装

封装形式	宽度		引脚间距		封装说明	订货型号
S0P20	7. 62mm	300mil	1. 27mm	50mil	标准的宽 20 脚贴片	CH450H
DIP20	7. 62mm	300mil	2. 54mm	100mil	标准 20 脚双列直插	CH450K

4、引脚

引脚号	引脚名称	类型	引脚说明
12	12 VCC 电源		正电源,持续电流不小于 100mA
5	GND	电源	公共接地,持续电流不小于 100mA
10、11、13、14、	SEG0	三态输出	数码管的段驱动,高电平有效,
15、16、17、18	\sim SEG7	及输入	键盘扫描输入,高电平有效,内置下拉电阻
20、1、2、	DIG2	输出	数码管的字驱动,低电平有效,
6、7、8	\sim DIG7	押山	键盘扫描输出,高电平有效
4	SDA	内置上拉 开漏输出 及输入	2 线串行接口的数据输入和输出
3	SCL	输入	2 线串行接口的数据时钟,内置上拉电阻
9	RSTH	输出	上电复位输出,高电平有效
19	INT#	内置上拉 开漏输出	键盘中断输出,低电平有效

5、功能说明

5.1. 一般说明

本手册中的数据,以 B 结尾的为二进制数,以 H 结尾的为十六进制数,否则为十进制数,标注为 x 的位表示该位可以是任意值。

单片机(也可以是 DSP、微处理器等控制器)通过 2 线串行接口控制 CH450 芯片,CH450 的数码管显示驱动与键盘扫描控制之间相互独立,单片机可以通过操作命令分别启用、关闭、设定这两个功能。CH450 的 2 线串行接口是由硬件实现的,单片机可以频繁地通过串行接口进行高速操作,而绝对不会降低 CH450 的工作效率。

5.2. 显示驱动

CH450 对数码管和发光管采用动态扫描驱动,顺序为 DIG2 至 DIG7,当其中一个引脚吸入电流时,其它引脚则不吸入电流。CH450 内部具有电流驱动级,可以直接驱动 0.5 英寸至 1 英寸的共阴数码管,段驱动引脚 SEG6~SEG0 分别对应数码管的段 G~段 A,段驱动引脚 SEG7 对应数码管的小数点,字驱动引脚 DIG7~DIG2 分别连接 6 个数码管的阴极,CH450 也可以连接 8×6 矩阵的发光二级管 LED 阵列或者 48 个独立发光管,或者通过外接反相驱动器支持共阳数码管,或者外接大功率管支持大尺寸的数码管。

CH450 内部具有 6 个 8 位的数据寄存器,用于保存 6 个字数据,分别对应于 CH450 所驱动的 6 个数码管或者 6 组每组 8 个的发光二极管。数据寄存器中字数据的位 $7\sim$ 位 0 分别对应各个数码管的小数点和段 $G\sim$ 段 A,对于发光二极管阵列,则每个字数据的数据位唯一地对应一个发光二级管。当数据位为 1 时,对应的数码管的段或者发光管就会点亮;当数据位为 0 时,则对应的数码管的段或者发光管就会熄灭。例如,第三个数据寄存器的位 0 为 1,所以对应的第三个数码管的段 A 点亮。

下图是数码管的段名称

	_									
F	Α	В	57	56	S5	54	S3	52	S1	SØ A
•	G	•	DP	G	F	Е	D	С	В	A
Ε	D	C D	P	SEG	7-8	EGE	与	数征	马管	

5.3. 键盘扫描

CH450 的键盘扫描功能支持 8×6 矩阵的 48 键键盘。在键盘扫描期间,DIG7 \sim DIG2 引脚用于列扫描输出,SEG7 \sim SEG0 引脚都带有内部下拉电阻,用于行扫描输入。

CH450 定期在显示驱动扫描过程中插入键盘扫描。在键盘扫描期间,DIG7~DIG2 引脚按照 DIG2 至 DIG7 的顺序依次输出高电平,其余引脚输出低电平;SEG7~SEGO 引脚的输出被禁止,当没有键被按下时,SEG7~SEGO 都被下拉为低电平;当有键被按下时,例如连接 DIG3 与 SEG4 的键被按下,则当 DIG3 输出高电平时 SEG4 检测到高电平;为了防止因为按键抖动或者外界干扰而产生误码,CH450 实行两次扫描,只有当两次键盘扫描的结果相同时,按键才会被确认有效。如果 CH450 检测到有效的按键,则记录下该按键代码,并通过 INT#引脚产生低电平有效的键盘中断,此时单片机可以通过串行接口读取按键代码;在没有检测到新的有效按键之前,CH450 不再产生任何键盘中断。CH450 不支持组合键,也就是说,同一时刻,不能有两个或者更多的键被按下;如果多个键同时按下,那么按键代码较小的按键优先。

CH450 所提供的按键代码为 7 位,位 $2\sim$ 位 0 是列扫描码,位 $5\sim$ 位 3 是行扫描码,位 6 是状态码(键按下为 1,键释放为 0)。例如,连接 DIG3 与 SEG4 的键被按下,则按键代码是 1100011B 或者 63H,键被释放后,按键代码通常是 0100011B 或者 23H(也可能是其它值,但是肯定小于 40H),其中,对应 DIG3 的列扫描码为 011B,对应 SEG4 的行扫描码为 100B。单片机可以在任何时候读取按键代码,但一般在 CH450 检测到有效按键而产生键盘中断时读取按键代码,此时按键代码的位 6 总是 1,另外,如果需要了解按键何时释放,单片机可以通过查询方式定期读取按键代码,直到按键代码的位 6 为 0。

下表是在 DIG7 \sim DIG2 与 SEG7 \sim SEGO 之间 8 \times 6 矩阵的按键编址,也是数码管段位和发光管 LED 阵列的顺序编址。由于按键代码是 7 位,键按下时位 6 总是 1,所以当键按下时,CH450 所提供的实际按键代码是表中的按键编址加上 40H,也就是说,此时的按键代码应该在 40H 到 7FH 之间。

编址	DIG7	DIG6	DIG5	DIG4	DIG3	DIG2	
SEG0	07H	06H	05H	04H	03H	02H	
SEG1	0FH	0EH	ODH	0CH	OBH	OAH	
SEG2	17H	16H	15H	14H	13H	12H	
SEG3	1FH	1EH	1DH	1CH	1BH	1AH	
SEG4	27H	26H	25H	24H	23H	22H	
SEG5	2FH	2EH	2DH	2CH	2BH	2AH	
SEG6	37H	36H	35H	34H	33H	32H	
SEG7	3FH	3EH	3DH	3CH	3BH	3AH	

5.4. 附加功能

CH450 可以向单片机提供高电平有效的上电复位。单片机、DSP、微处理器的复位输入引脚可以根据需要直接连接到 CH450 的 RSTH 引脚,当 CH450 通电时,RSTH 引脚输出高电平有效的复位脉冲信号。CH450 的上电复位脉冲信号同时作用于 CH450 芯片的内部电路。

CH450 的上电复位是指上电过程(从断电状态变为正常供电状态的过程)中产生的复位脉冲。为了减少 CH450 驱动大电流而产生的电源干扰,在设计印制电路板 PCB 时,应该紧靠 CH450 芯片,在正负电源之间并联一组电源退耦电容,包括至少一个容量不小于 0.1 uF 的独石或者瓷片电容和一个容量不小于 100uF 的电解电容。

5.5. 串行接口

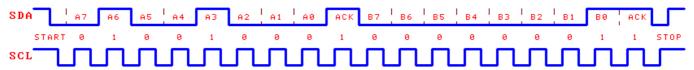
CH450 具有硬件实现的 2 线串行接口,包含 2 个主要信号线: 串行数据时钟输入线 SCL、串行数据输入和输出线 SDA; 以及 1 个辅助信号线: 中断输出线 INT#。其中,SCL 是带上拉的输入信号线,默认是高电平; SDA 是带上拉的准双向信号线,默认是高电平; INT#是带上拉的开漏输出,在启用键盘扫描功能后作为键盘中断输出线,默认是高电平。

SDA 用于串行数据输入和输出,高电平表示位数据 1, 低电平表示位数据 0, 串行数据输入的顺

序是高位在前,低位在后。

SCL 用于提供串行时钟, CH450 在其上升沿从 SDA 输入数据, 在其下降沿从 SDA 输出数据。

在 SCL 为高电平期间发生的 SDA 下降沿定义为串行接口的启动信号,在 SCL 为高电平期间发生的 SDA 上升沿定义为串行接口的停止信号。CH450 只在检测到启动信号后才接收并分析命令。所以在单片机 I/0 引脚资源紧张时,可以在保持 SDA 引脚状态不变的情况下,将 SCL 引脚与其它接口电路共用;如果能够确保 SDA 引脚的变化仅在 SCL 引脚为低电平期间发生,那么 SCL 引脚和 SDA 引脚都可以与其它接口电路共用。


INT#用于键盘中断输出,默认是高电平。当 CH450 检测到有效按键时,INT#输出低电平有效的键盘中断;单片机被中断后,对 CH450 执行读操作, CH450 将 INT#恢复为高电平,并从 SDA 输出按键代码,单片机从 SDA 获得一个字节的数据,其中低 7 位是按键代码。

单片机与 CH450 的通讯过程总是分为 6 个步骤,按单片机的操作方向分成两种类型,一种是写操作,用于输出数据,一种是读操作,用于输入数据。具体过程可以参考例子程序中的说明。

写操作包括以下 6 个步骤:输出启动信号、输出字节 1、应答 1、输出字节 2、应答 2、输出停止信号。其中,启动信号和停止信号如上所述,应答 1 和应答 2 总是固定为 1,输出字节 1 和输出字节 2 各自包含 8 个数据位,即一个字节数据。

读操作包括以下 6 个步骤:输出启动信号、输出字节 1、应答 1、输入字节 2、应答 2、输出停止信号。其中,启动信号和停止信号如上所述,应答 1 和应答 2 总是固定为 1,输出字节 1 和输入字节 2 各自包含 8 个数据位,即一个字节数据。

下图是一个写操作的实例,字节 1 为 01001000B,即 48H;字节 2 为 00000001B,即 01H。

6、操作命令

CH450 的操作命令分为 3 组。各命令的启动信号、停止信号、应答 1 和应答 2 都相同,区别在于输出字节 1 和字节 2 的数据不同以及字节 2 的传输方向不同。

6.1. 设置系统参数命令

该命令的输出字节 1 为 01001000B,即 48H;输出字节 2 为 [SLEEP] [INTENS] 000 [KEYB] [DISP] B。 设置系统参数命令用于设定 CH450 的系统级参数:显示驱动使能 DISP、键盘扫描使能 KEYB、显示驱动亮度控制 INTENS、低功耗睡眠控制 SLEEP。

当 DISP 位为 1 时允许显示输出,当 DISP 位为 0 时关闭显示驱动。

当 KEYB 位为 1 时启用键盘扫描,当 KEYB 位为 0 时关闭键盘扫描。

INTENS 用于控制显示驱动的亮度,包含两位数据,有 4 种组合:数据 00B、01B、10B 分别设置显示驱动占空比为 4/4、1/4、2/4,并且启用内部的段驱动限流;数据 11B 设置显示驱动占空比为 4/4,但是禁止内部的段驱动限流,所以外部需要在段引脚串接限流电阻 R0。

SLEEP 用于使 CH450 进入低功耗睡眠状态,从而可以节约电能。处于低功耗睡眠状态中的 CH450 可以被下述两种事件中的任何一种唤醒,第一种事件是检测到 SEG3~SEG0 上的按键,有效按键代码是 42H 到 5FH;第二种事件是接收到单片机发出的下一个操作命令。当 CH450 被唤醒后,SLEEP 位会自动清 0。睡眠和唤醒操作本身不会影响 CH450 的其它工作状态。如果 KEYB 位为 1 则唤醒后产生按键中断,如果 KEYB 位为 0 则唤醒后不产生按键中断。

该命令不影响内部数据缓冲区中的数据。

6.2. 加载字数据命令

该命令的输出字节 1 为地址 64H、66H、68H、6AH、6CH 或者 6EH,分别对应于 DIG2 \sim DIG7 引脚驱动的 6 个数码管,输出字节 2 为[DIG_DATA]B,即 00H 到 0FFH 之间的值,是 8 位的字数据。

加载字数据命令用于将字数据 DIG_DATA 写入字节 1 指定地址的数据寄存器中。例如,命令数据 01100100B(即 64H 对应 DIG2)、01111001B表示将字数据 79H 写入第 1 个数据寄存器,使 DIG2 引脚

驱动的数码管将显示 E。

上电复位后 CH450 内部数据寄存器中的数据是不确定的,所以在开启显示之前,应该先清空数据寄存器中的数据,或者直接加载将要显示的数据,复位过程不影响数据寄存器中的数据。

6.3. 读取按键代码命令

该命令的输出字节 1 为 01001111B, 即 4FH;输入字节 2 的低 7 位为按键代码。

读取按键代码命令用于获得 CH450 最近检测到的有效按键的按键代码。该命令属于读操作,是唯一的具有数据返回的命令,单片机必须先释放 SDA 引脚(三态输出禁止或者上拉到高电平),然后 CH450 从 SDA 引脚输出按键代码,按键代码的有效数据是位 $6\sim$ 位 0,其中位 6 是状态码,位 $5\sim$ 位 0 是扫描码和按键编址。

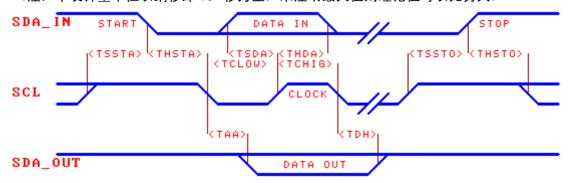
7、参数

7.1. 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	85	$^{\circ}$ C
TS	储存时的环境温度	-55	125	$^{\circ}$
VCC	电源电压(VCC 接电源,GND 接地)	-0. 5	6. 0	٧
V10	输入或者输出引脚上的电压	-0. 5	VCC+0. 5	٧
IMdig	单个 DIG 引脚的连续驱动电流	0	120	mA
IMseg	单个 SEG 引脚的连续驱动电流	0	25	mA
lMall	所有 SEG 引脚的连续驱动电流的总和	0	130	mA

7.2. 电气参数 (测试条件: TA=25℃, VCC=5V)

名称	参数说明	最小值	典型值	最大值	单位
VCC	电源电压	3	5	5. 5	٧
ICC	电源电流	0. 2	80	150	mA
ICCs5	5V 时静态电流(输入引脚均为高电平)		0. 4	1	mA
ICCs3	3. 3V 时静态电流(输入引脚均为高电平)		0. 1	0. 3	mA
VIL	SCL 和 SDA 引脚低电平输入电压	-0. 5		0. 8	٧
VIH	SCL 和 SDA 引脚高电平输入电压	2. 0		VCC+0. 5	٧
VILseg	SEG 引脚低电平输入电压	-0. 5		0. 5	٧
VIHseg	SEG 引脚高电平输入电压	1.8		VCC+0. 5	٧
V0Ldig	DIG 引脚低电平输出电压(-80mA)			0. 8	٧
VOHdig	DIG 引脚高电平输出电压(8mA)	4. 5			٧
V0Lseg	SEG 引脚低电平输出电压(-18mA)			0. 5	٧
V0Hseg	SEG 引脚高电平输出电压(15mA)	4. 5			٧
VOL	其余引脚低电平输出电压(-4mA)			0. 5	٧
VOH	其余引脚高电平输出电压(4mA)	4. 5			٧
I DN1	SEG 引脚的输入下拉电流		-50		uA
IUP1	SCL 引脚的输入上拉电流		100	300	uA
IUP2	SDA 引脚的输入上拉电流		250	400	uA
IUP3	INT#引脚的输出上拉电流		500	5000	uA
VR	上电复位的默认电压门限	2. 3	2. 6	2. 9	٧


7.3. 内部时序参数 (测试条件: TA=25℃, VCC=5V)

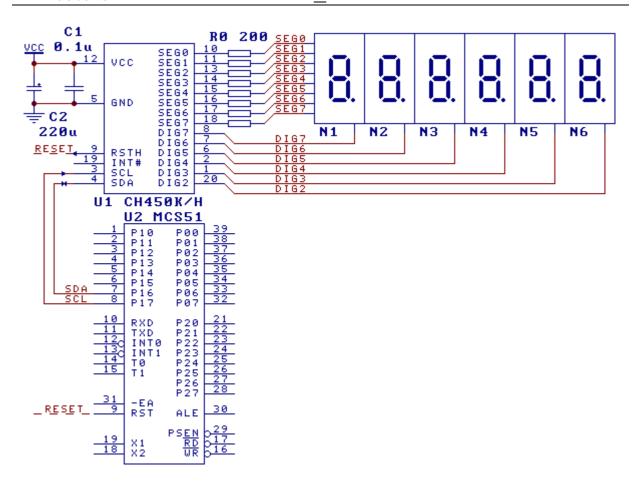
(注:本表时序参数都是内置时钟周期的倍数,内置时钟的频率随着电源电压的降低而降低)

名称	参数说明	最小值	典型值	最大值	单位
TPR	电源上电检测产生的复位时间	6	20	50	mS
TDP	显示扫描周期		8		mS
TKS	按键响应时间(两次键盘扫描)	20	50		mS

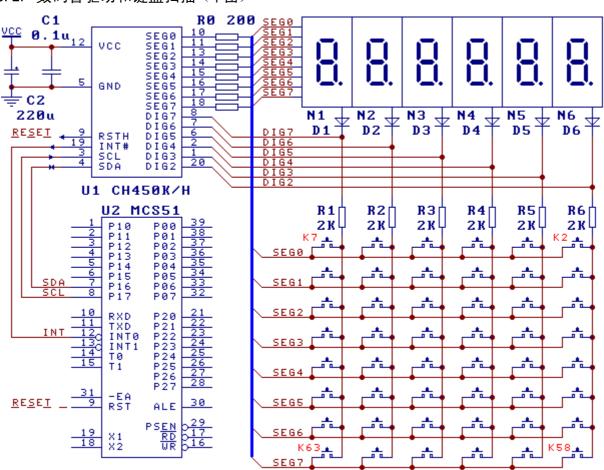
7.4. 接口时序参数 (测试条件: TA=25℃, VCC=5V, 参考附图)

(注:本表计量单位以纳秒即 10⁻⁹ 秒为主,未注明最大值则理论值可以无穷大)

名称	参数说明	最小值	典型值	最大值	单位
TSSTA	SDA 下降沿启动信号的建立时间	100			nS
THSTA	SDA 下降沿启动信号的保持时间	100			nS
TSST0	SDA 上升沿停止信号的建立时间	100			nS
THST0	SDA 上升沿停止信号的保持时间	100			nS
TCLOW	SCL 时钟信号的低电平宽度	100			nS
TCHIG	SCL 时钟信号的高电平宽度	100			nS
TSDA	SDA 输入数据对 SCL 上升沿的建立时间	30			nS
THDA	SDA 输入数据对 SCL 上升沿的保持时间	10			nS
TAA	SDA 输出数据有效对 SCL 下降沿的延时	2		30	nS
TDH	SDA 输出数据无效对 SCL 下降沿的延时	2		40	nS
Rate	平均数据传输速率	0		2M	bps

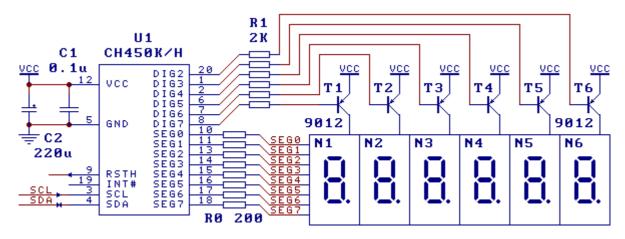

8、应用

8.1. 数码管显示驱动(下图)


CH450 通过 2 线串行接口 SCL 和 SDA 与外部的单片机相连接。电容 C1 和 C2 布置于 CH450 的电源引脚附近,用于电源退耦,减少驱动大电流产生的干扰。

CH450 可以直接动态驱动 6 个共阴数码管,所有数码管的相同段引脚(段 A \sim 段 G以及小数点)并联后通过串接的限流电阻 RO 连接 CH450 的段驱动引脚 SEGO \sim SEG7,各数码管的公共阴极分别由 CH450 的 DIG2 \sim DIG7 引脚进行驱动。

段引脚串接的电阻 R0 用于限制和均衡段驱动电流,在 5V 电源电压下,串接 200 Ω 电阻通常对应段电流 13mA。CH450 内部可以对段驱动电流进行限制,所以 R0 可以省掉。


8.2. 数码管驱动和键盘扫描(下图)

CH450 具有 48 键的键盘扫描功能,如果应用中只需要很少的按键,那么可以在 8×6 矩阵中任意 去掉不用的按键。为了防止键被按下后在 SEG 信号线与 DIG 信号线之间形成短路而影响显示,一般应该在 CH450 的 DIG2 \sim DIG7 引脚与键盘矩阵之间串接限流电阻 R1–R6,其阻值可以从 1K Ω 至 10K Ω 。 当使用键盘功能时,CH450 的 INT#引脚可以连接到单片机的中断输入引脚,如果连接到普通 I/0 引脚,那么应该使用查询方式确定 CH450 是否检测到有效按键。

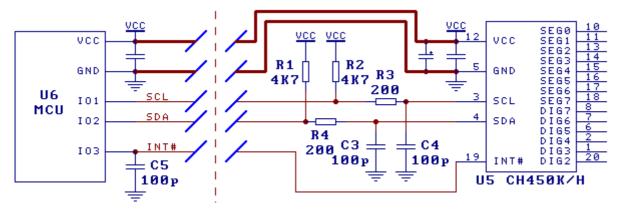
图中,单片机 U2 通过 CH450 驱动 6 个共阴数码管显示,并同时扫描 48 个按键。由于某些数码管在较高工作电压时存在反向漏电现象,容易被 CH450 误认为是某个按键一直按下,所以建议使用二级管 D1-D6 防止数码管反向漏电,并提高键盘扫描时 SEGO~SEG7 输入信号的电平,确保键盘扫描更可靠。当电源电压较低时(例如 VCC=3. 3V),这些二级管应该去掉以避免影响显示亮度。

8.3. 驱动共阳数码管(下图)

在为 DIG2 \sim DIG7 字引脚增加反相器后,CH450 可以驱动共阳数码管。图中是由 6 只 PNP 三极管 T1 \sim T6(型号为 9012 或 8550 等)和 6 只电阻 R1(阻值 300 Ω \sim 3K Ω)构成 6 组反相器,分别驱动 6 只共阳数码管的公共端阳极。由于该共阳接法中 CH450 的 SEG 段引脚是反相驱动,所以加载字数据命令中的字数据应该按位取反,数据位为 0 则点亮,数据位为 1 则熄灭。

如果需要驱动大尺寸高压数码管或者需要增加驱动电流提高亮度,那么可以参考 CH452 芯片的数据手册中的方法处理。

8.4. 抗干扰 (重要)


由于 CH450 驱动数码管或者 LED 的电流较大,会在电源上产生较大的毛刺电压,所以如果电源线或者地线的 PCB 布线不合理,将有可能影响单片机或者 CH450 的稳定性,有关电源干扰的解决措施:

- ①、建议使用较短的和较粗的电源线和地线,尤其当 CH450 和单片机分属两块 PCB 时:
- ②、靠近 CH450 在正负电源之间并联电源退耦电容,至少一只 0.1uF 的独石或者瓷片电容和一只容量不小于 100uF 的电解电容。

对于信号线较长时的外来干扰,参考下图解决:

- ①、 在信号线的靠近 CH450 引脚端,增加电容 C3 和 C4,电容值可以是 47pF 到 470pF,电容越大,与单片机通讯接口的传输速度越慢:
- ②、 可选地增加电阻 R3 和 R4, 电阻值可以是 100Ω 到 470Ω ;
- ③、降低单片机与 CH450 之间的传输速度 (因为增加了电阻电容):
- ④、如果是由准双向 I/O 引脚驱动(例如标准 MCS51 单片机),建议增加电阻 R1 和 R2,电阻值可以是 500 Ω到 10K Ω,以加强 MCS-51 单片机的准双向 I/O 引脚的上拉能力,以便在远距离传输时保持较好的数字信号波形;信号线较短时无需上拉电阻 R1 和 R2,对于图腾柱驱动方式的双向 I/O 引脚,无需上拉电阻 R1 和 R2。

另外,对于强干扰的应用环境,单片机可以每隔数秒定期对 CH450 进行刷新,包括重新加载各个数码管的数据寄存器,以及重新开启显示。

8.5. 单片机接口程序

网站上提供了部分单片机的 C 语言和 ASM 汇编接口程序。

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LED Display Drivers category:

Click to view products by Qin Heng manufacturer:

Other Similar products are found below:

STP16CPP05XTTR SCT2027CSSG KP22306WGA KP1199AWPA KP1199BWPA GN1628T BCT3236EGH-TR HT1628BRWZ

KP1192SPA KP1182SPA KP1262FSPA KP1072LSPA KP1191SPA KP18001WPA KP1070LSPA KP1221SPA KP107ALSPA GN1640T

MBI5253GP-A WS90561T S7P WS9821B S7P WS9032GS7P LYT3315D M08888G-11 M08890G-13 SCT2001ASIG SCT2024CSOG

SCT2024CSSG AL8400QSE-7 PR4401 PR4403 PCA9685PW STP16CPC05XTTR WS2821B PR4402 M08898G-13 RT8471GJ5

TLC59482DBQR ISL97634IRT14Z-TK AW36413CSR LP5562TMX WS2818B BCR401R BCR401U BCR402U SCT2004CSOG

SCT2026CSOG SCT2026CSSG SCT2932F SCT2932J