High Current Composite Inductor - PA5002.XXXNLT and PM2202.XXXNLT

Height: 2.0mm Max

Prootprint: 5.7mm x 5.5mm Max Current Rating: up to 30Apk

Inductance Range: 0.15uH to 1.5uH High current, low DCR, and high efficiency

High reliability

Minimized acoustic noise and minimized leakage flux noise

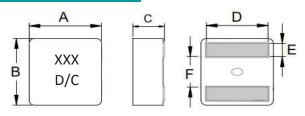
Available in Commercial (PA5002) and Automotive (PM2202) grades

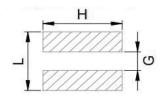
	Elect	rical Specifications @	25°C, Operating	Temperature Range	-55°C to +155°C		
Part Number		□ Inductance	Rated ³	DC Res	istance	Saturation ²	K Factor
Commerical	Automotive ⁶	100KHz, 0.1V	Current	TYP.	MAX.	Current	for
		uH±20%	A	mΩ	$m\Omega$	A	Core Loss
PA5002.151NLT	PM2202.151NLT	0.15	18.8	4	4.6	27	458.5
PA5002.161NLT	PM2202.161NLT	0.16	18.8	4	4.6	27	-
PA5002.331NLT	PM2202.331NLT	0.33	14.4	6.1	7	24	291.7
PA5002.471NLT	PM2202.471NLT	0.47	14.1	7	8.05	20	213.9
PA5002.561NLT	PM2202.561NLT	0.56	13.9	8.7	9.54	16	213.9
PA5002.681NLT	PM2202.681NLT	0.68	13.4	8.9	10.2	14	168.9
PA5002.801NLT	PM2202.801NLT	0.8	13	10.3	11.8	13.5	168.9
PA5002.821NLT	PM2202.821NLT	0.82	12	11	12.7	13	168.9
PA5002.102NLT	PM2202.102NLT	1	10.5	12	13.8	12.8	139.5
PA5002.122NLT	PM2202.122NLT	1.2	9.4	14.2	16.3	12.2	118.9
PA5002.152NLT	PM2202.152NLT	1.5	8.8	16.2	18.7	11.7	118.9

Notes:

- Actual temperature of the component during system operation (ambient plus temperature rise) must be within the standard operating range.
- The saturation current is the current at which the initial inductance is guaranteed to drop by no more than 40%. The typical inductance at a specified current can be found on the typical performance curves.
- The rated current is the DC current required to raise the component temperature by approximately 40 ° C. Take note that the components' performanc varies depending on the system condition. It is suggested that the component be tested at the system level, to verify the temperature rise of the component during system operation.
- The part temperature (ambient+temp rise) should not exceed 155 °C under worst case operating conditions. Circuit design, PCB trace size and thickness, airflow and

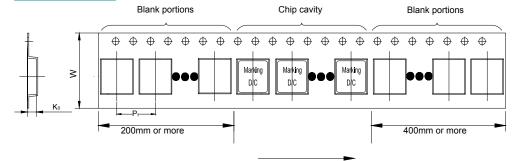
- other cooling provisions all affect the part temperature. Part temperature should be verified in the end application.
- Parts shown in bold are standard catalog parts and are available through sample stock and distribution. Parts in lighter font are available but are not necessarily held in sample stock or distribution and lead times may be longer. Please contact Pulse for availablity.
- The PM2202.XXXNLT part numbers are AEC-Q200 and IATF16949 certified. The mechanical dimensions are 100% tested in production but do not necessarily meet a product capability index (Cpk) >1.33 and therefore may not strictly conform to PPAP.
- Special Characteristics

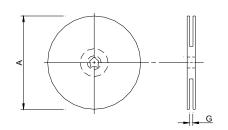

Power.PulseElectronics.com P807. E (07/20)


High Current Composite Inductor - PA5002.XXXNLT and PM2202.XXXNLT

Mechanical

PA5002.XXXNLT and PM2202.XXXNLT

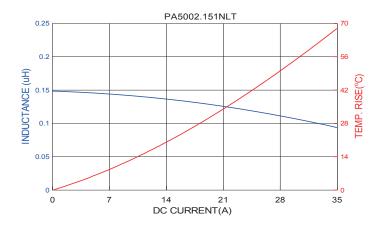

FINAL LAYOUT

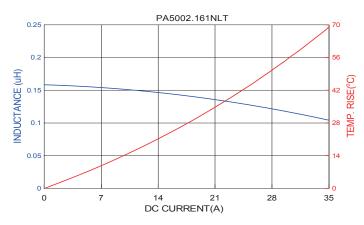

SUGGESTED PAD LAYOUT

Series	A	В	C	D	Е	F	L	G	Н
PA5002/PM2202	5.5±0.2	5.3±0.2	1.8±0.2	4.3±0.3	1.1±0.2	2.3±0.25	4.5 (REF)	2.0 (REF)	4.7 (REF)

All Dimensions in mm.

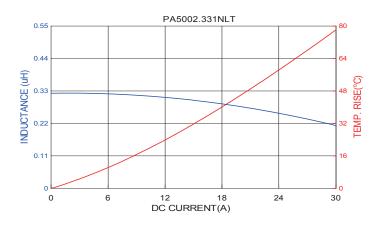
TAPE & REEL INFO

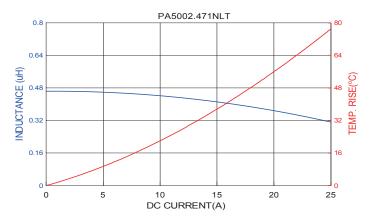


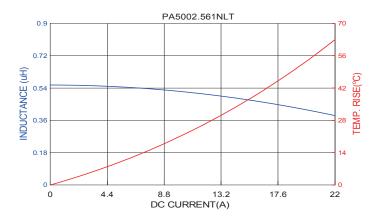


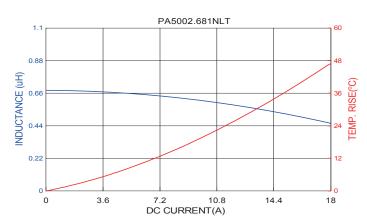
Direction of tape

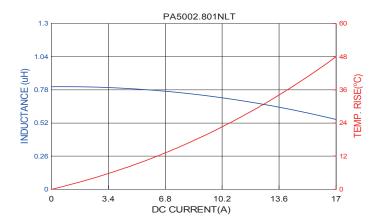
SURFACE MOUNTING TYPE, REEL/TAPE LIST									
	REEL SIZ	'E (mm)	T.A	QTY					
	A	G	P ₁	W	$K_{_{0}}$	PCS/REEL			
PA5002/PM2202	Ø330	12.4	8	12	2.3	3000			

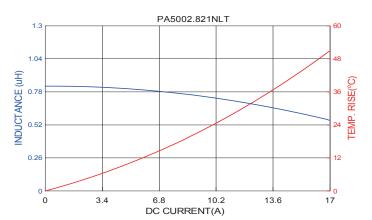

Typical Performance Curves



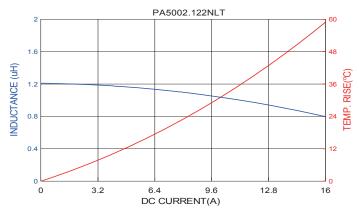


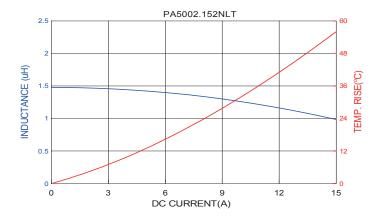

High Current Composite Inductor - PA5002.XXXNLT and PM2202.XXXNLT



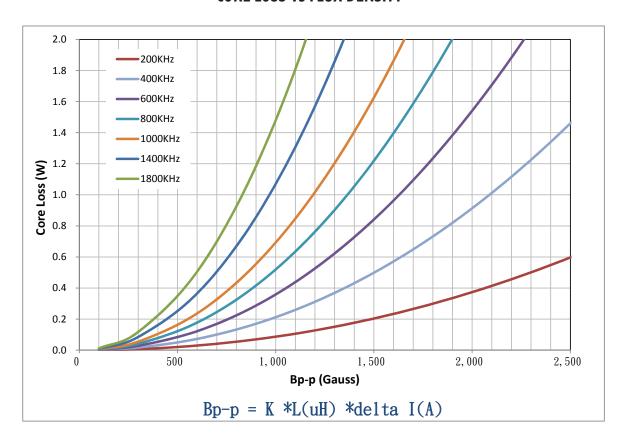



3




Power.PulseElectronics.com P807. E (07/20)

High Current Composite Inductor - PA5002.XXXNLT and PM2202.XXXNLT



Power.PulseElectronics.com P807. E (07/20)

CORE LOSS vs FLUX DENSITY

For More Information:

Americas - prodinfo_power@pulseelectronics.com | Europe - power-apps-europe@pulseelectronics.com | Asia - power-apps-asia@pulseelectronics.com

Performance warranty of products offered on this data sheet is limited to the parameters specified. Data is subject to change without notice. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners. © Copyright, 2020. Pulse Electronics, Inc. All rights reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Fixed Inductors category:

Click to view products by Pulse manufacturer:

Other Similar products are found below:

CR43NP-680KC CR54NP-820KC CR54NP-8R5MC CTX32CT-100 70F224AI MGDQ4-00004-P MHL1ECTTP18NJ MHL1JCTTD12NJ PE-51506NL PE-53601NL PE-53602NL PE-53630NL PE-53824SNLT PE-62892NL PE-92100NL PG0434.801NLT PG0936.113NLT 9310-16 PM06-2N7 PM06-39NJ A01TK 1206CS-471XJ HC2-2R2TR HC2LP-R47-R HC3-2R2-R 1206CS-151XG RCH664NP-140L RCH664NP-4R7M RCH8011NP-221L RCP1317NP-332L RCP1317NP-391L RCR1010NP-470M RCR110DNP-331L DH2280-4R7M DS1608C-106 ASPI-4020HI-R10M-T B10TJ B82477P4333M B82498B3101J000 B82498B3680J000 ELJ-RE27NJF2 1812CS-153XJ 1812CS-183XJ 1812CS-223XJ 1812LS-104XJ 1812LS-105XJ 1812LS-124XJ 1812LS-154XJ 1812LS-223XJ 1812LS-224XJ