

Bi-directional 5V Low Capacitance ESD Protector

Description

The PESDMC2XD5VB protects sensitive semiconductor components from damage or upset due to electrostatic discharge (ESD) and other voltage induced transient events. They feature large cross-sectional area junctions for conducting high transient currents, offer desirable electrical characteristics for board level protection, such as fast response time, low operating voltage. It gives designer the flexibility to protect one bi-directional line in applications where arrays are not practical.

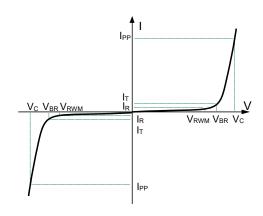
Feature

- \rightarrow 40W peak pulse power per line ($t_P = 8/20\mu s$)
- DFN0603-2L package
- Replacement for MLV(0201)
- Bidirectional configurations
- Response time is typically < 1ns</p>
- Low clamping voltage
- RoHS compliant
- Transient protection for data lines to IEC61000-4-2(ESD) ±15KV(air), ±15KV(contact); IEC61000-4-4 (EFT) 40A (5/50ns)

Pin 1 Circuit Diagram

Applications

- Cellular phones
- Portable devices
- Digital cameras
- Power supplies


Marking (Top View)

Mechanical Characteristics

- Lead finish:100% matte Sn(Tin)
- Mounting position: Any
- ➤ Qualified max reflow temperature:260 °C
- Device meets MSL 1 requirements

Electronics Parameter

Symbol	Parameter		
V _{RWM}	Peak Reverse Working Voltage		
I _R	Reverse Leakage Current @ V _{RWM}		
V _{BR}	Breakdown Voltage @ I⊤		
I _T	Test Current		
IPP	Maximum Reverse Peak Pulse Current		
Vc	Clamping Voltage @ I _{PP}		
P _{PP}	Peak Pulse Power		
Сл	Junction Capacitance		

Electrical characteristics per line@25°C (unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Peak Reverse Working Voltage	V _{RWM}				5.0	V
Breakdown Voltage	V_{BR}	I _t = 1mA	7.0		9.0	V
Reverse Leakage Current	I _R	V _{RWM} = 5V T=25℃			1.0	μΑ
Maximum Reverse Peak Pulse Current	I _{PP}			4.2		Α
Clamping Voltage	V _{CL}	I _{PP} =16A t _p =100ns		14.0		V
Clamping Voltage	Vc	I _{PP} =1A		10	12	V
Clamping Voltage	Vc	I _{PP} =3A		10	12	V
Clamping Voltage	Vc	I _{PP} =4A		10	12	V
Junction Capacitance	Cj	V _R =0V f = 1MHz		0.42	0.5	pF

Absolute maximum rating@25℃

Rating	Symbol	Value	Units
Peak Pulse Power (t _p =8/20µs)	P _{pp}	40	W
Operating Temperature	TJ	-55 to 150	$^{\circ}\!$
Storage Temperature	T _{STG}	-55 to 150	${}^{\mathbb{C}}$

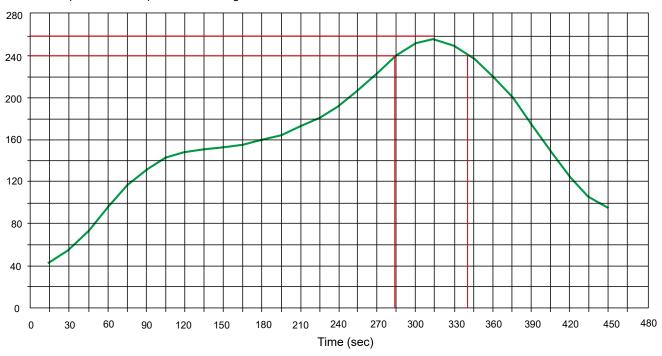
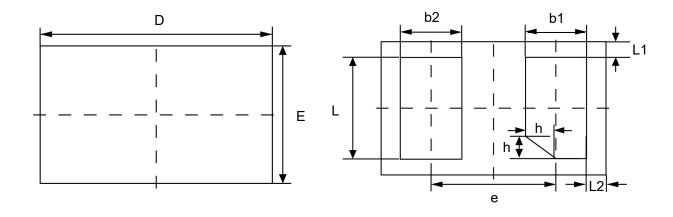

Typical Characteristics f=8µs 100 100 <u>d</u> IPP - Peak Pulse Current - % of 80 80 % Of Rated Power 60 60 =20µs 40 40 20 20 0 0 0 5 15 25 30 0 25 50 75 100 125 150 T_L – Lead Temperature - ${}^\circ\!\mathbb{C}$ t - Time -µs Fig 1.Pulse Waveform Fig 2.Power Derating Curve 20 0.515 f=1MHz 15 C-Junction capacitance (pf) C-Junction capacitance (pf) 0.485 10 TLP current(A) 5 0 -5 -10 -15 0.475 -20 -15 -10 10 15 6 TLP voltage(V) V_R-Reverse voltage (V) Fig 3.TLP Measurement Fig 4. Capacitance vs. Reveres voltage 1000 10.4 Pulse waveform: tp=8/20us 10.2 Vc-Clamping Voltage (V) 100 Peak Pulse Power (W) 10.0 9.6 10 9.2 8.8 1000 2 3 100 10 Pulse Duration(us) IPP-Peak pulse current (A)

Fig 6. Non-Repetitive Peak Pulse Power vs. Pulse time

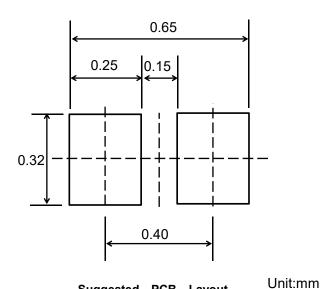
Fig 5. Clamping voltage vs. Peak pulse current

Solder Reflow Recommendation

Peak Temp=257°C, Ramp Rate=0.802deg. °C/sec

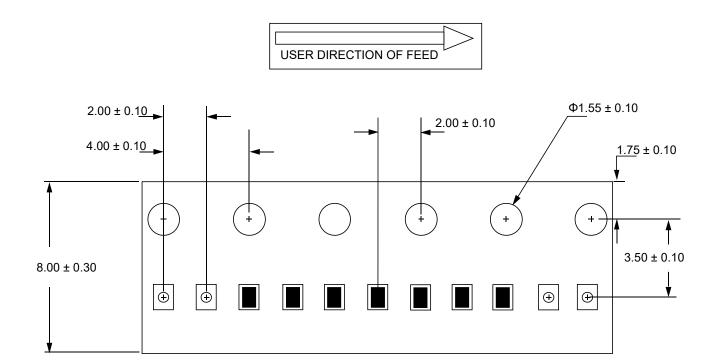



PCB Design


For TVS diodes a low-ohmic and low-inductive path to chassis earth is absolutely mandatory in order to achieve good ESD protection. Novices in the area of ESD protection should take following suggestions to heart:

- Do not use stubs, but place the cathode of the TVS diode directly on the signal trace.
- Do not make false economies and save copper for the ground connection.
- Place via holes to ground as close as possible to the anode of the TVS diode.
- > Use as many via holes as possible for the ground connection.
- Keep the length of via holes in mind! The longer the more inductance they will have.

Product dimension (DFN0603-2L)


Suggested PCB Layout

Dim					
Dim	MIN	Тур.	MAX		
Α	0.28	0.30	0.32		
A1	0	0.02	0.05		
b1	0.13	0.18	0.23		
b2	0.14	0.19	0.24		
С	0.05	0.10	0.15		
D	0.55	0.60	0.65		
е	0.35BSC				
L1	0.025BSC				
L2	0.035BSC				
Е	0.25	0.30	0.35		
L	0.20	0.25	0.30		
h	0	0.05	0.10		

Ordering information

Device	Package	Reel	Shipping
PESDMC2XD5VB	DFN0603-2L (Pb-Free)	7"	12000 / Tape & Reel

Load with information

Unit: mm

IMPORTANT NOTICE

and Prisemi® are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi), Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Website: http://www.prisemi.com
For additional information, please contact your local Sales Representative.

©Copyright 2009, Prisemi Electronics

Prisemi is a registered trademark of Prisemi Electronics.

All rights are reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ESD Suppressors / TVS Diodes category:

Click to view products by Prisemi manufacturer:

Other Similar products are found below:

60KS200C D18V0L1B2LP-7B D5V0F4U5P5-7 DESD5V0U1BB-7 NTE4902 P4KE27CA P6KE11CA P6KE39CA-TP P6KE8.2A

SA110CA SA60CA SA64CA SMBJ12CATR SMBJ33CATR SMBJ8.0A ESD101-B1-02ELS E6327 ESD105-B1-02EL E6327 ESD112-B1
02EL E6327 ESD119B1W01005E6327XTSA1 ESD5V0L1B02VH6327XTSA1 ESD7451N2T5G 19180-510 CPDT-5V0USP-HF

3.0SMCJ33CA-F 3.0SMCJ36A-F HSPC16701B02TP D3V3Q1B2DLP3-7 D55V0M1B2WS-7 DESD5V0U1BL-7B DRTR5V0U4SL-7

SCM1293A-04SO ESD200-B1-CSP0201 E6327 SM12-7 SMF8.0A-TP SMLJ45CA-TP CEN955 W/DATA 82350120560 VESD12A1A
HD1-GS08 CPDUR5V0R-HF CPDQC5V0U-HF CPDQC5V0USP-HF CPDQC5V0-HF D1213A-01LP4-7B D1213A-02WL-7

MMAD1108/TR13 5KP100A 5KP15A 5KP18A 5KP48A 5KP90A