Power TOPLED®

PowerTOPLED, a powerful member of the TOPLED family. Thanks to their high luminous efficacy, the LEDs are ideal for rear light clusters and indicators on vehicles and for display panels for traffic control systems.

Applications

- Interior Illumination (e.g. Ambient Map)
- Signalling

- Traffic Lights

Features:

- Package: white PLCC-4 package, colorless clear silicone resin
- Chip technology: Thinfilm
- Typ. Radiation: 120° (Lambertian emitter)
- − Color: $λ_{dom}$ = 625 nm (• red)
- Corrosion Robustness Class: 1B
- Qualifications: The product qualification test plan is based on the guidelines of AEC-Q101-REV-C,
 Stress Test Qualification for Automotive Grade Discrete Semiconductors.
- ESD: 2 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)

Ordering Information		
Туре	Luminous Intensity $^{1)}$ $I_F = 50 \text{ mA}$ I_V	Ordering Code
LR E6SF-ABCA-1-1	1400 3550 mcd	Q65111A0958

Maximum Ratings			
Parameter	Symbol		Values
Operating Temperature	T _{op}	min. max.	-40 °C 110 °C
Storage Temperature	T_{stg}	min. max.	-40 °C 110 °C
Junction Temperature	T _j	max.	125 °C
Forward current T _S = 25 °C	l _F	max.	70 mA
Surge Current t \leq 10 μ s; D = 0.005 ; T _s = 25 °C	I _{FS}	max.	100 mA
Reverse voltage ²⁾ T _S = 25 °C	V_R	max.	12 V
ESD withstand voltage acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)	V_{ESD}		2 kV

C	h	0	ro	~ ⁴	_	e i	64	н.	00

 I_F = 50 mA; T_S = 25 °C

Parameter	Symbol		Values
Peak Wavelength	$\lambda_{\sf peak}$	typ.	634 nm
Dominant Wavelength 3)	λ_{dom}	min.	620 nm
$I_F = 50 \text{ mA}$	40	typ.	625 nm
		max.	630 nm
Spectral Bandwidth at 50% I _{rel,max}	Δλ	typ.	19 nm
Viewing angle at 50% I _v	2φ	typ.	120 °
Forward Voltage 4)	V _F	min.	1.90 V
$I_F = 50 \text{ mA}$		typ.	2.15 V
		max.	2.50 V
Reverse current 2)	I _R	typ.	0.01 μΑ
V _R = 12 V		max.	10 μΑ
Temperature Coefficient of Peak Wavelength -10°C ≤ T ≤ 100°C	$TC_{\lambda peak}$	typ.	0.14 nm / K
Real thermal resistance junction/solderpoint 5)	R _{thJS real}	typ.	110 K / W
·	นางง เซสเ	max.	130 K / W
Electrical thermal resistance junction/solderpoint 5)	R _{thJS elec.}	typ.	79 K / W
with efficiency η_e = 28 %	1100 0100.	max.	94 K / W

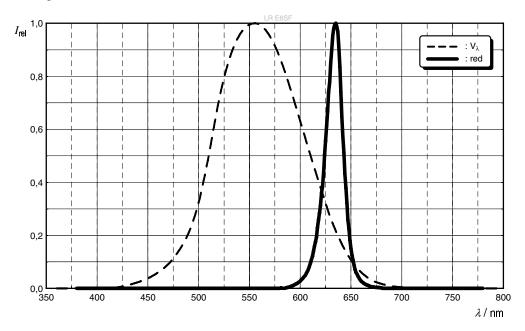
Brightness Groups

Group	Luminous Intensity ¹⁾ I _F = 50 mA min. I _v	Luminous Intensity. 1) I _F = 50 mA max. I _v	Luminous Flux ⁶⁾ $I_F = 50 \text{ mA}$ $typ.$ Φ_V
AB	1400 mcd	1800 mcd	4800 mlm
BA	1800 mcd	2240 mcd	6060 mlm
BB	2240 mcd	2800 mcd	7560 mlm
CA	2800 mcd	3550 mcd	9530 mlm

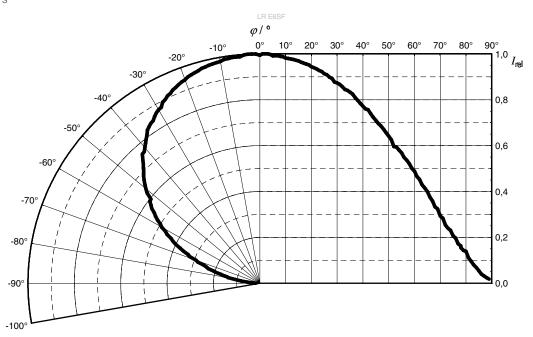
Forward Voltage Groups

Group	Forward Voltage ⁴⁾ I _F = 50 mA min. V _F	Forward Voltage ⁴⁾ I _F = 50 mA max. V _F
3A	1.90 V	2.05 V
3B	2.05 V	2.20 V
4A	2.20 V	2.35 V
4B	2.35 V	2.50 V

Group Name on Label

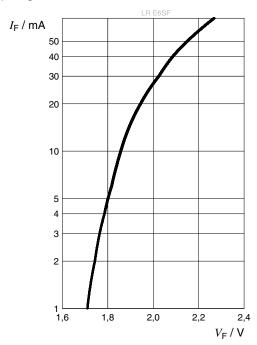

Example: AB-1-3A

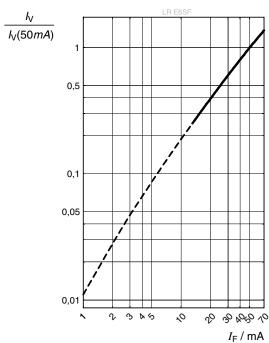
Brightness	Wavelength	Forward Voltage
AB	1	3A


Relative Spectral Emission 6)

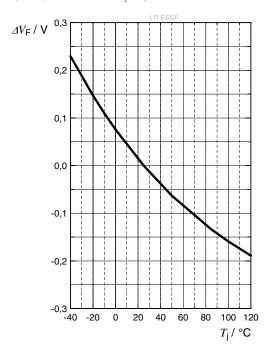
 I_{rel} = f (λ); I_{F} = 50 mA; T_{S} = 25 °C

Radiation Characteristics 6)

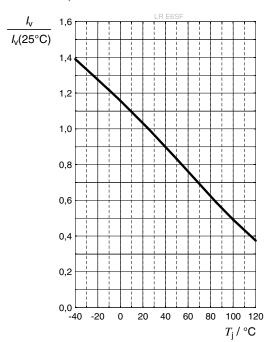

 $I_{rel} = f(\phi); T_S = 25 \, ^{\circ}C$


Forward current 6), 7)

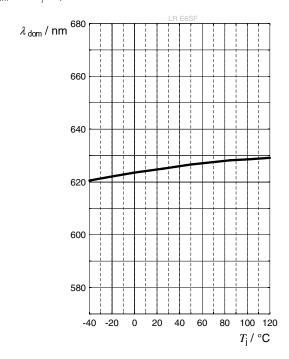
$$I_F = f(V_F); T_S = 25 \, ^{\circ}C$$


Relative Luminous Intensity 6), 7)

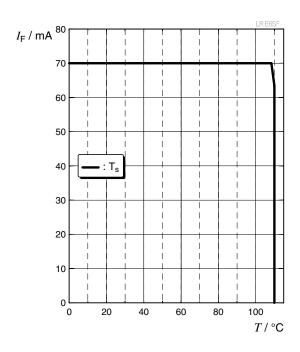
$$I_{v}/I_{v}(50 \text{ mA}) = f(I_{F}); T_{S} = 25 \text{ °C}$$


Forward Voltage 6)

$$\Delta V_F = V_F - V_F (25 \ ^{\circ}C) = f(T_j); I_F = 50 \ mA$$


Relative Luminous Intensity 6)

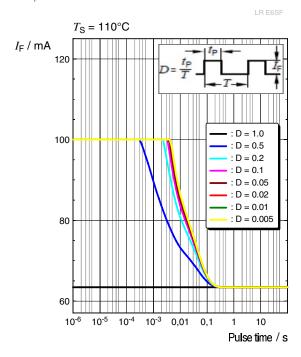
$$I_{v}/I_{v}(25 \text{ °C}) = f(T_{j}); I_{F} = 50 \text{ mA}$$


Dominant Wavelength 6)

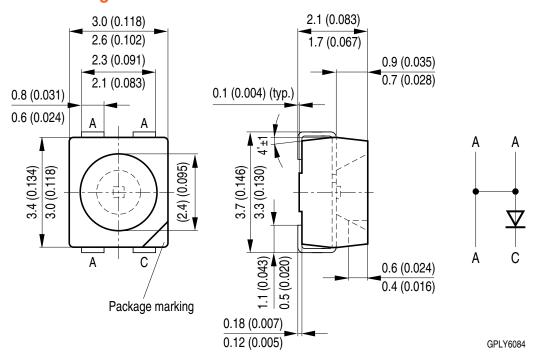
$$\lambda_{dom} = f(T_j); I_F = 50 \text{ mA}$$


Max. Permissible Forward Current

 $I_F = f(T)$


Permissible Pulse Handling Capability

 $I_F = f(t_p)$; D: Duty cycle

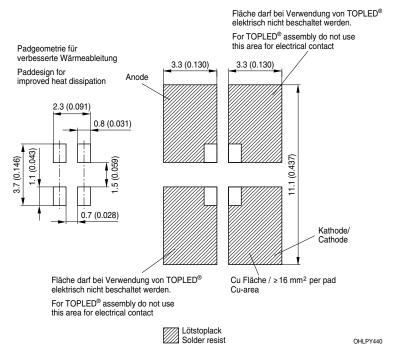


Permissible Pulse Handling Capability

 $I_F = f(t_p)$; D: Duty cycle

Dimensional Drawing 8)

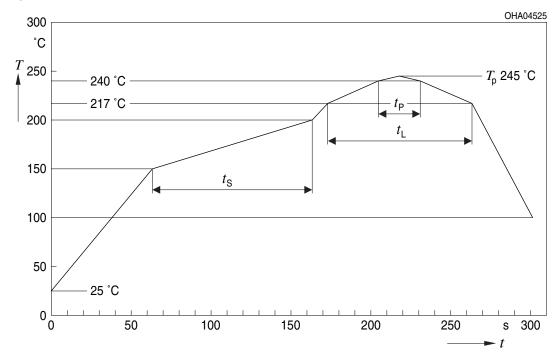
Further Information:


Approximate Weight: 30.0 mg Package marking: Cathode **Corrosion test:** Class: 1B

Test condition: 25°C / 75 % RH / 200ppb $\mathrm{SO_2}$, 200ppb $\mathrm{NO_2}$, 10ppb $\mathrm{H_2S}$,

10ppb Cl₂ / 21 days (EN 60068-2-60 (Method 4))

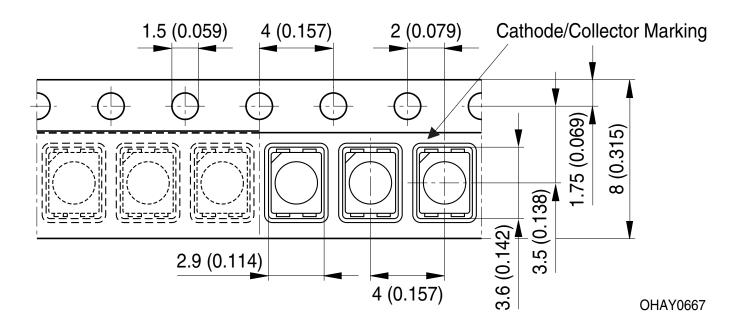
Recommended Solder Pad 8)



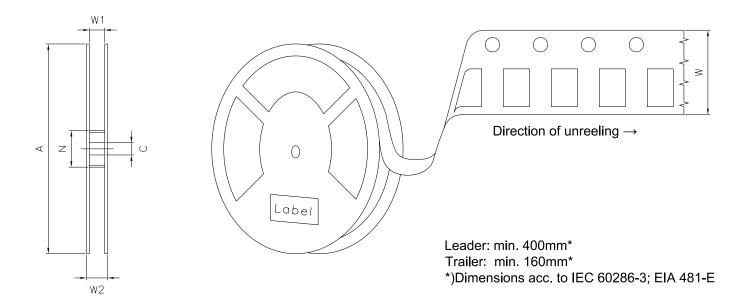
For superior solder joint connectivity results we recommend soldering under standard nitrogen atmosphere. Package not suitable for ultra sonic cleaning.

Reflow Soldering Profile

Product complies to MSL Level 2 acc. to JEDEC J-STD-020E

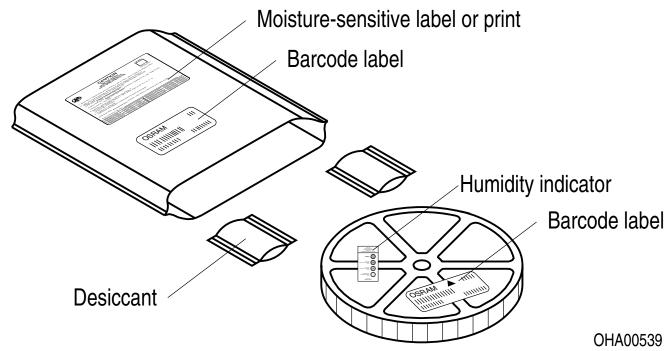

Profile Feature	Symbol	Pb	Pb-Free (SnAgCu) Assembly			
		Minimum	Recommendation	Maximum		
Ramp-up rate to preheat*)			2	3	K/s	
25 °C to 150 °C						
Time t _s	t_s	60	100	120	S	
T_{Smin} to T_{Smax}						
Ramp-up rate to peak*)			2	3	K/s	
T_{Smax} to T_{P}						
Liquidus temperature	T_L		217		°C	
Time above liquidus temperature	$t_{\scriptscriptstyle \perp}$		80	100	S	
Peak temperature	T_{P}		245	260	°C	
Time within 5 °C of the specified peak	t _P	10	20	30	S	
temperature T _P - 5 K						
Ramp-down rate*			3	6	K/s	
T _P to 100 °C						
Time				480	S	
25 °C to T _P						

All temperatures refer to the center of the package, measured on the top of the component


^{*} slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range

Taping 8)

Tape and Reel 9)


Reel Dimensions

Α	W		N_{\min}	W_1		$W_{2 \text{ max}}$	Pieces per PU
180 mm		8 + 0.3 / - 0.1 mm	60 mm		8.4 + 2 mm	14.4 mm	2000
330 mm		8 + 0.3 / - 0.1 mm	60 mm		8.4 + 2 mm	14.4 mm	8000

Barcode-Product-Label (BPL)

Dry Packing Process and Materials 8)

Moisture-sensitive product is packed in a dry bag containing desiccant and a humidity card according JEDEC-STD-033.

Type Designation System

Wavelengt (λ _{dom} typ.)	h Emiss	ion Color		coordinates 931/Emissior		
A: 617 S: 633 T: 528 Y: 587 O: 606 CP/P: 560 R: 625	nm super of true grown yellow orange on pure g	red een	W: UW: CW: CB: CR:	warm white color on dem	and blue	
B : 470				Package E: Po	Type werTOPLED	
L: Light emit diod	ting /					
L	A		E	6	7	6
6: f T: f	Package Prope olded leads olded leads, im Au-LF), w/o TiC	proved cor	rosion st	ability		
	(resin 6 S: Silicon 3: lens 30		r white vo ion)	olume convers	sion	
		5: HOF B: HOF C: ATC D: Low (e.g F: Thir	2000 DN cost Thi . 6mil) nfilm InGa	nGaN/ Thinfilr aAIP nfilm InGaN)	m	

Notes

The evaluation of eye safety occurs according to the standard IEC 62471:2006 (photo biological safety of lamps and lamp systems). Within the risk grouping system of this IEC standard, the device specified in this data sheet fall into the class **exempt group (exposure time 10000 s)**. Under real circumstances (for exposure time, conditions of the eye pupils, observation distance), it is assumed that no endangerment to the eye exists from these devices. As a matter of principle, however, it should be mentioned that intense light sources have a high secondary exposure potential due to their blinding effect. When looking at bright light sources (e.g. headlights), temporary reduction in visual acuity and afterimages can occur, leading to irritation, annoyance, visual impairment, and even accidents, depending on the situation.

Subcomponents of this device contain, in addition to other substances, metal filled materials including silver. Metal filled materials can be affected by environments that contain traces of aggressive substances. Therefore, we recommend that customers minimize device exposure to aggressive substances during storage, production, and use. Devices that showed visible discoloration when tested using the described tests above did show no performance deviations within failure limits during the stated test duration. Respective failure limits are described in the IEC60810.

For further application related information please visit www.osram-os.com/appnotes

Disclaimer

Attention please!

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version on the OSRAM OS website.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Product and functional safety devices/applications or medical devices/applications

OSRAM OS components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices.

OSRAM OS products are not qualified at module and system level for such application.

In case buyer – or customer supplied by buyer – considers using OSRAM OS components in product safety devices/applications or medical devices/applications, buyer and/or customer has to inform the local sales partner of OSRAM OS immediately and OSRAM OS and buyer and /or customer will analyze and coordinate the customer-specific request between OSRAM OS and buyer and/or customer.

Glossary

- Brightness: Brightness values are measured during a current pulse of typically 25 ms, with an internal reproducibility of ±8 % and an expanded uncertainty of ±11 % (acc. to GUM with a coverage factor of k = 3).
- Reverse Operation: This product is intended to be operated applying a forward current within the specified range. Applying any continuous reverse bias or forward bias below the voltage range of light emission shall be avoided because it may cause migration which can change the electro-optical characteristics or damage the LED.
- Wavelength: The wavelength is measured at a current pulse of typically 25 ms, with an internal reproducibility of ±0.5 nm and an expanded uncertainty of ±1 nm (acc. to GUM with a coverage factor of k =
- Forward Voltage: The forward voltage is measured during a current pulse of typically 8 ms, with an internal reproducibility of ±0.05 V and an expanded uncertainty of ±0.1 V (acc. to GUM with a coverage factor of k = 3).
- 5) **Thermal Resistance:** Rth max is based on statistic values (6σ).
- Typical Values: Due to the special conditions of the manufacturing processes of semiconductor devices, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
- Characteristic curve: In the range where the line of the graph is broken, you must expect higher differences between single devices within one packing unit.
- Tolerance of Measure: Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm.
- 9) Tape and Reel: All dimensions and tolerances are specified acc. IEC 60286-3 and specified in mm.

Revision History						
Version	Date	Change				
1.4	2021-02-11	Features Schematic Transportation Box Dimensions of Transportation Box Glossary				
1.5	2021-04-28	Features				

Published by OSRAM Opto Semiconductors GmbH EU RoHS and China RoHS compliant product Leibnizstraße 4, D-93055 Regensburg www.osram-os.com © All Rights Reserved.

此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准,不含有毒有害物质或元素。

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Standard LEDs - SMD category:

Click to view products by Osram manufacturer:

Other Similar products are found below:

LTST-C19GD2WT LTST-N683GBEW LTW-170ZDC LTW-M140SZS40 598-8110-100F 598-8170-100F 598-8610-202F 67
22VRVGC/TR8 AAAF5060QBFSEEZGS ALMD-LB36-SV002 APT1608QGW EASV1803BA0 LG M67K-H1J2-24-0-2-R18-Z LS A676
P2S1-1 SML-512VWT86A SML-LX0606SISUGC/A SML-LXL1307SRC-TR SML-LXR851SIUPGUBC LT1ED53A FAT801-S

AM27ZGC03 APB3025SGNC APFA3010SURKCGKQBDC APHK1608VGCA APT2012QGW CLX6D-FKB-CN1R1H1BB7D3D3 LTST
008BGEW LTST-C250KGKT LTW-010DCG LTW-020ZDCG LTW-21TS5 LTW-220DS5 JANTXM19500/521-02 UYGT801-S 42
21UYC/S530-A3/TR8 LO T67F-V1AB-24-1 YGFR411-H SML-LX0402IC-TR CMDA20AYAA7D1S CMDA16AYDR7A1X 339
1SURSYGW/S530-A2 598-8040-100F 598-8070-100F 598-8140-100F 598-8610-200F EAST2012GA0 SML-LXL1209SYC/ATR

EASV3020YGA0 EAST1608RGBA0 EAST16086YA5