

MOSFET - Power, Single N-Channel, STD Gate, μ 8FL 40 V, 1.43 m Ω , 178 A

NVTFWS1D3N04XM

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Small Footprint (3.3 x 3.3 mm) for Compact Design
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

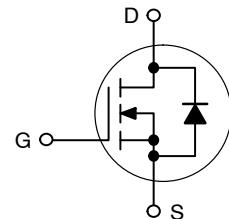
Applications

- Motor Drive
- Battery Protection
- Synchronous Rectification

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

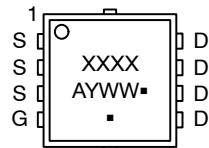
Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	40	V
Gate-to-Source Voltage	V _{GS}	± 20	V
Continuous Drain Current	T _C = 25°C	I _D	A
	T _C = 100°C	126	
Power Dissipation	T _A = 25°C	P _D	W
Pulsed Drain Current	T _C = 25°C, t _p = 10 μ s	I _{DM}	895
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)	I _S	71	A
Single Pulse Avalanche Energy (I _{LPK} = 17.2 A)	E _{AS}	281	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)	T _L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case (Note 2)	R _{θJC}	1.8	°C/W
Thermal Resistance, Junction-to-Ambient (Notes 1, 2)	R _{θJA}	46.4	

1. Surface mounted on FR4 board using 650 mm², 2 oz Cu pad.
2. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.


V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
40 V	1.43 m Ω @ 10 V	178 A

N-CHANNEL MOSFET

WDFN8
(μ 8FL)
CASE 515AP

MARKING DIAGRAM

XXXX = Specific Device Code
 A = Assembly Location
 Y = Year
 WW = Work Week
 ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

NVTFWS1D3N04XM

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1 mA, T _J = 25°C	40	–	–	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	ΔV _{(BR)DSS} / ΔT _J	I _D = 1 mA, Referenced to 25°C	–	15	–	mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 40 V, T _J = 25°C	–	–	1	μA
		V _{DS} = 40 V, T _J = 125°C	–	–	100	μA
Gate-to-Source Leakage Current	I _{GS}	V _{GS} = 20 V, V _{DS} = 0 V	–	–	100	nA
ON CHARACTERISTICS						
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 20 A, T _J = 25°C	–	1.24	1.43	mΩ
Gate Threshold Voltage	V _{GS(th)}	V _{GS} = V _{DS} , I _D = 90 μA, T _J = 25°C	2.5	3	3.5	V
Gate Threshold Voltage Temperature Coefficient	ΔV _{GS(th)} / ΔT _J	V _{GS} = V _{DS} , I _D = 90 μA	–	–7.34	–	mV/°C
Forward Transconductance	g _{FS}	V _{DS} = 5 V, I _D = 20 A	–	103	–	S
CHARGES, CAPACITANCES & GATE RESISTANCE						
Input Capacitance	C _{ISS}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz	–	2288	–	pF
Output Capacitance	C _{OSS}		–	1449	–	
Reverse Transfer Capacitance	C _{RSS}		–	22	–	
Total Gate Charge	Q _{G(tot)}	V _{DD} = 32 V, I _D = 50 A, V _{GS} = 10 V	–	36	–	nC
Threshold Gate Charge	Q _{G(th)}		–	7	–	
Gate-to-Source Charge	Q _{GS}		–	11	–	
Gate-to-Drain Charge	Q _{GD}		–	7	–	
Gate Resistance	R _G	f = 1 MHz	–	0.7	–	Ω
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(on)}	V _{GS} = 0/10 V, I _D = 50 A, V _{DD} = 32 V, R _G = 0 Ω	–	21	–	ns
Rise Time	t _r		–	8	–	
Turn-Off Delay Time	t _{d(off)}		–	34	–	
Fall Time	t _f		–	8	–	
SOURCE-TO-DRAIN DIODE CHARACTERISTICS						
Forward Diode Voltage	V _{SD}	I _S = 20 A, V _{GS} = 0 V, T _J = 25°C	–	0.79	1.2	V
		I _S = 20 A, V _{GS} = 0 V, T _J = 125°C	–	0.64	–	
Reverse Recovery Time	t _{rr}	V _{GS} = 0 V, I _S = 50 A, dI/dt = 100 A/μs, V _{DD} = 32 V	–	48	–	ns
Charge Time	t _a		–	20	–	
Discharge Time	t _b		–	28	–	
Reverse Recovery Charge	Q _{RR}		–	48	–	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL PERFORMANCE CHARACTERISTICS

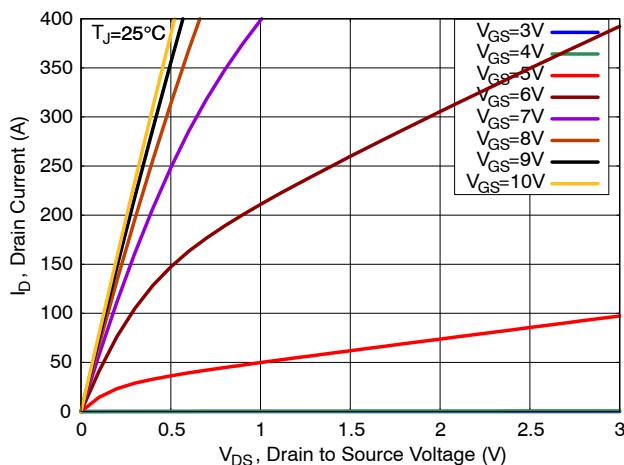


Figure 1. On-Region Characteristics

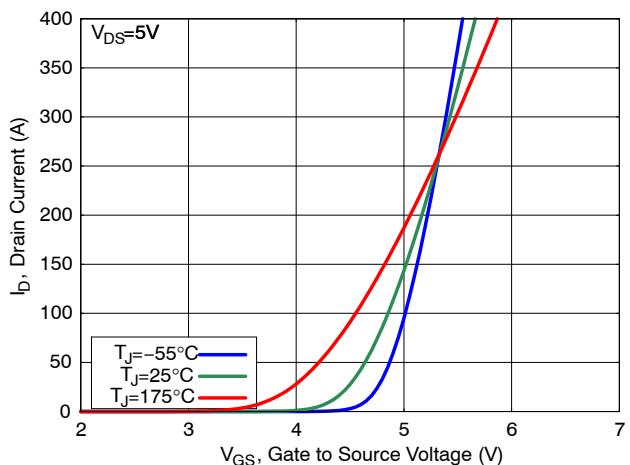


Figure 2. Transfer Characteristics

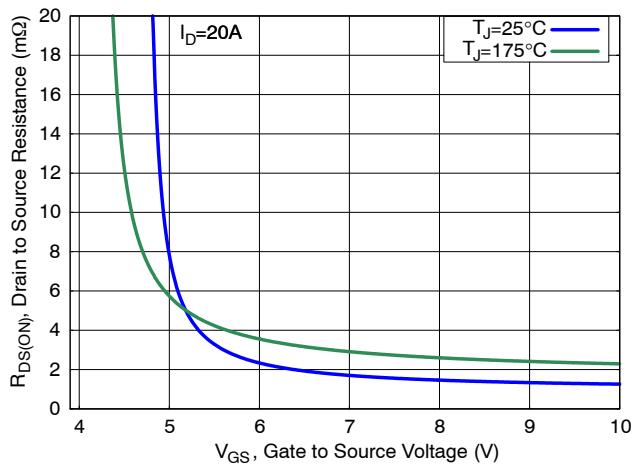


Figure 3. On-Resistance vs. Gate Voltage

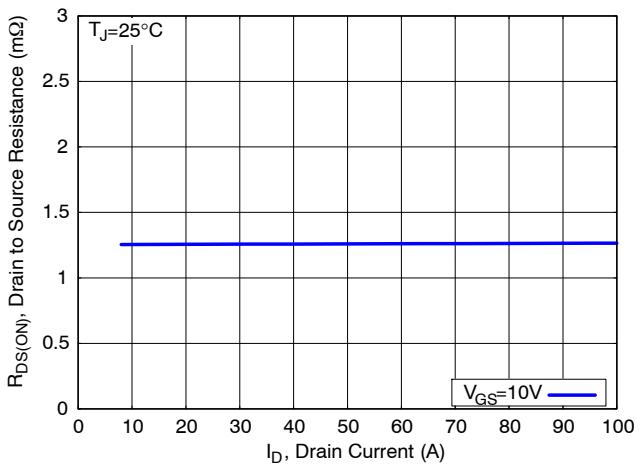


Figure 4. On-Resistance vs. Drain Current

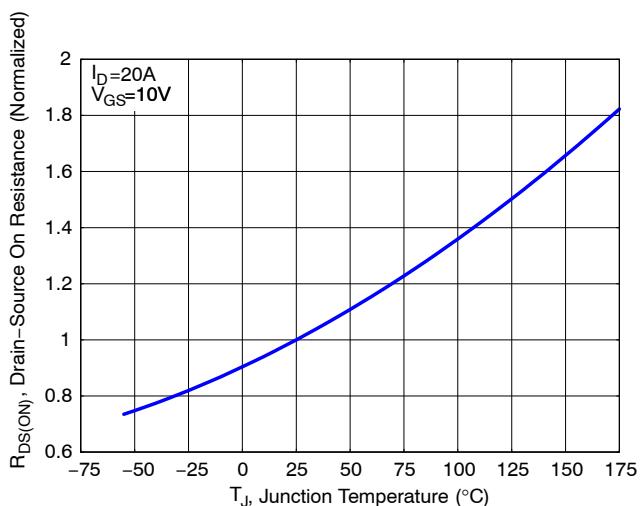


Figure 5. Normalized ON Resistance vs. Junction Temperature

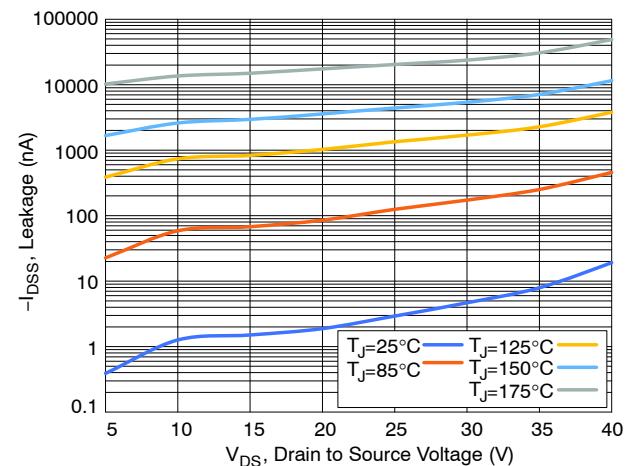
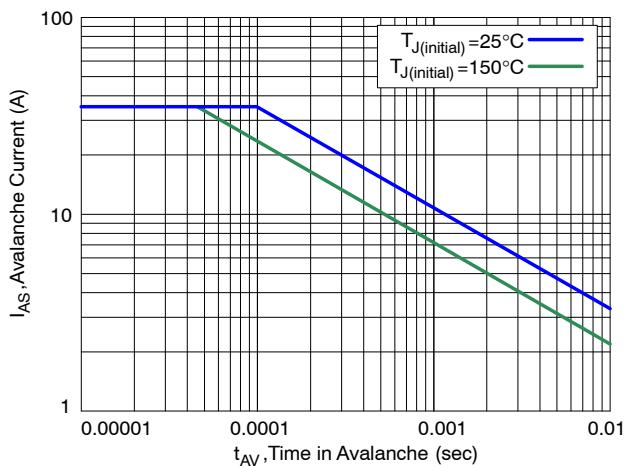
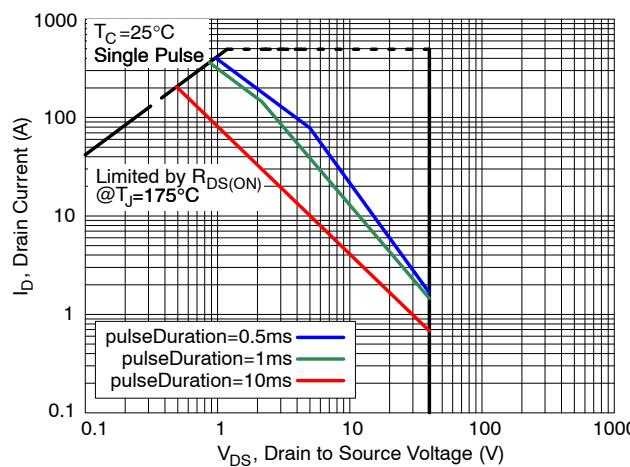
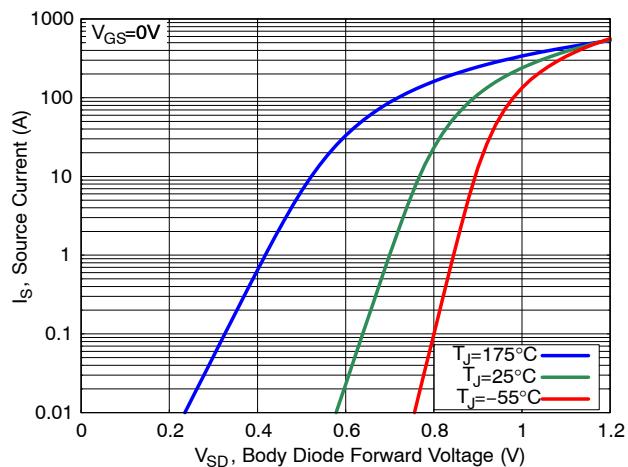
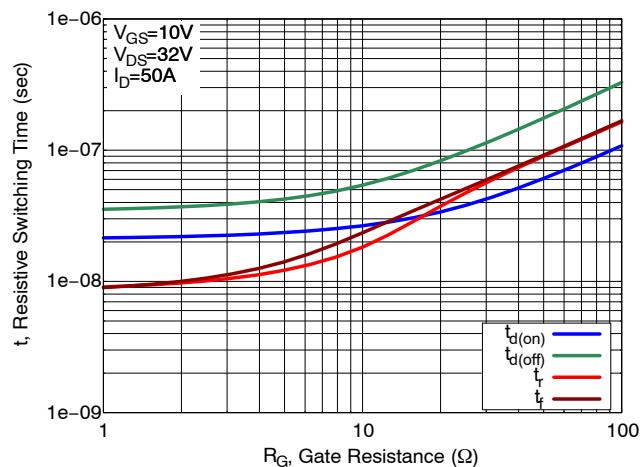
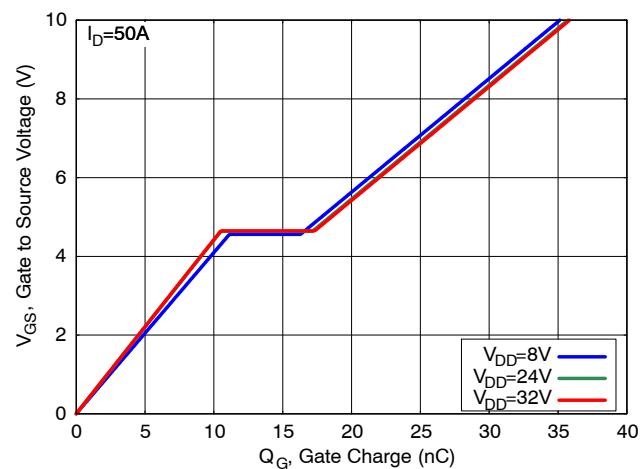
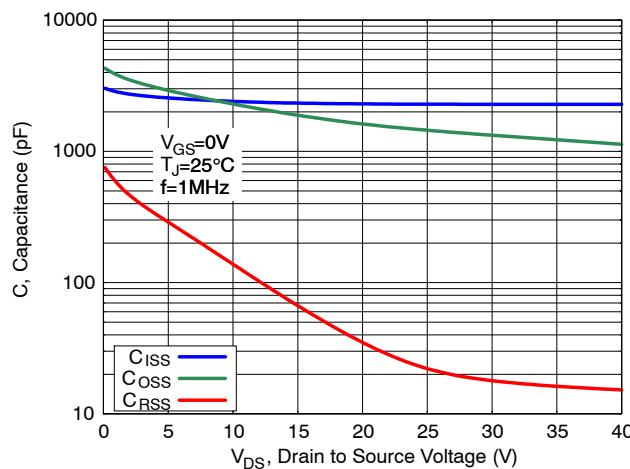








Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CHARACTERISTICS

NVTFWS1D3N04XM

TYPICAL PERFORMANCE CHARACTERISTICS

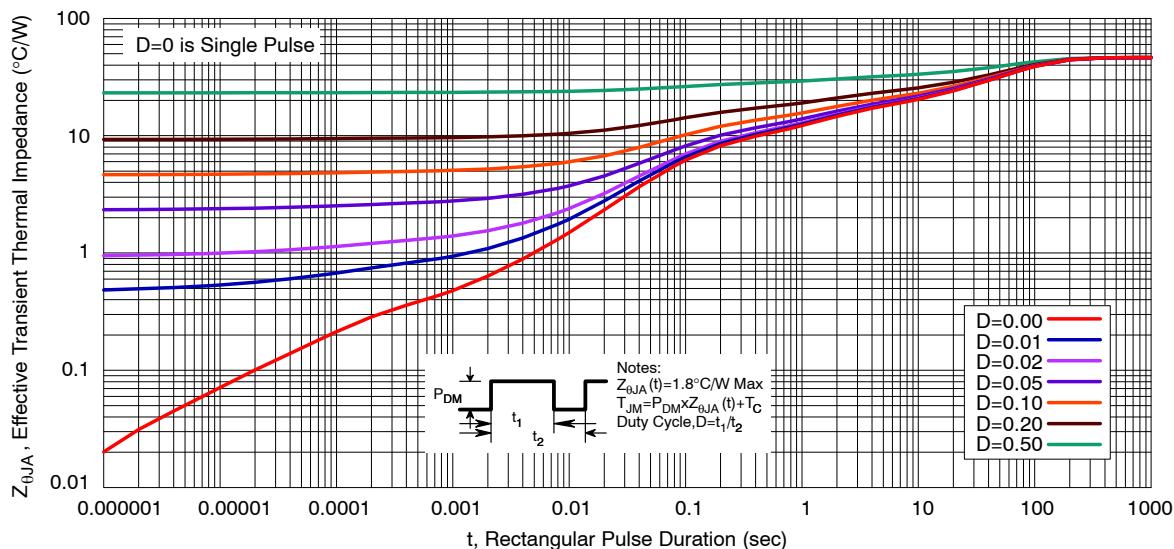
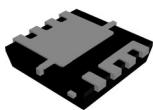
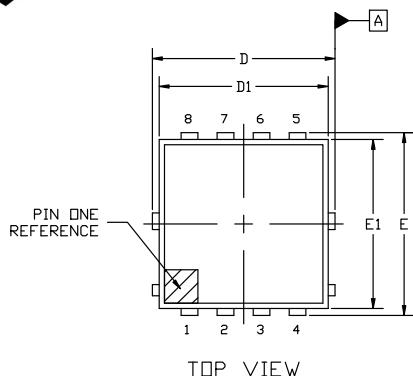
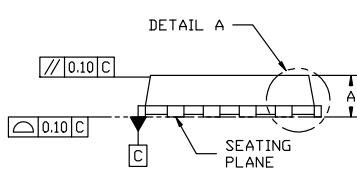



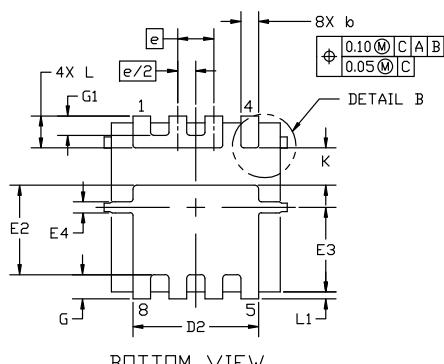
Figure 13. Transient Thermal Response

PACKAGE MARKING AND ORDERING INFORMATION

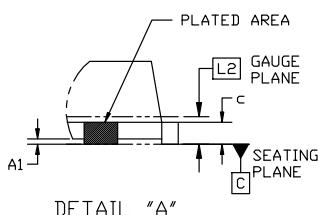
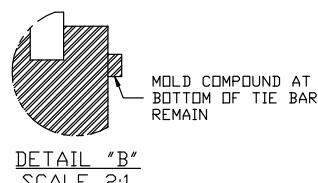

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
NVTFWS1D3N04XMTAG	1D3W	WDFN8	Tape & Reel	N/A	N/A	1500 Units

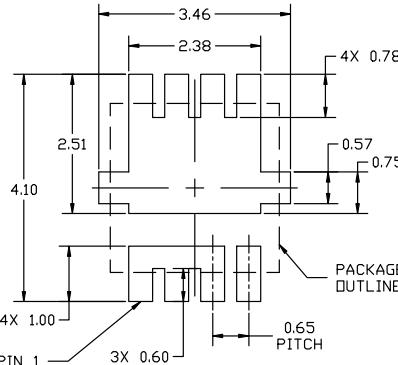

WDFNW8 3.30x3.30x0.75, 0.65P

CASE 515AP
ISSUE A


DATE 07 NOV 2023

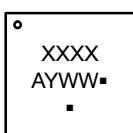
TOP VIEW



SIDE VIEW


BOTTOM VIEW

NOTES:

1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018.
2. ALL DIMENSION ARE IN MILLIMETERS.
3. DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
4. FULL-CUT uF/F FUSED WF.


DETAIL "A"
SCALE 2:1DETAIL "B"
SCALE 2:1

DIM	MILLIMETERS		
	MIN.	NOM.	MAX.
A	0.70	0.75	0.80
A1	0.00	-----	0.05
b	0.23	0.33	0.43
c	0.15	0.20	0.25
D	3.20	3.30	3.40
D1	2.95	3.13	3.30
D2	1.98	2.20	2.40
E	3.20	3.30	3.40
E1	2.80	3.00	3.15
E2	1.40	1.60	1.80
E3	1.35	1.50	1.60
E4	0.15	0.25	0.40
e	0.65 BSC		
G	0.30	0.43	0.55
G1	0.25	0.35	0.45
K	0.55	0.75	0.95
L	0.35	0.52	0.65
L1	0.06	0.15	0.30
L2	0.25 BSC		

RECOMMENDED MOUNTING FOOTPRINT*

* FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

GENERIC
MARKING DIAGRAM*

XXXX = Specific Device Code
A = Assembly Location
Y = Year
WW = Work Week
■ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

(Note: Microdot may be in either location)

DOCUMENT NUMBER:	98AON24557H	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	WDFNW8 3.30x3.30x0.75, 0.65P	PAGE 1 OF 1

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, **ONSEMI**, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation
onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at
www.onsemi.com/support/sales

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for [MOSFETs](#) category:

Click to view products by [ON Semiconductor](#) manufacturer:

Other Similar products are found below :

[MCH3443-TL-E](#) [MCH6422-TL-E](#) [PMV32UP215](#) [NTNS3A92PZT5G](#) [IRFD120](#) [2SK2464-TL-E](#) [2SK3818-DL-E](#) [2SJ277-DL-E](#)
[MIC4420CM-TR](#) [IRFS350](#) [IPS70R2K0CEAKMA1](#) [AON6932A](#) [TS19452CS RL](#) [2SK2614\(TE16L1,Q\)](#) [EFC2J004NUZTDG](#)
[DMN1053UCP4-7](#) [NTE2384](#) [2N7000TA](#) [743-9](#) [US6M2GTR](#) [STF5N65M6](#) [IRF40H233XTMA1](#) [STU5N65M6](#) [DMN13M9UCA6-7](#)
[STU7N60DM2](#) [2N7002W-G](#) [MCAC30N06Y-TP](#) [IPB45P03P4L11ATMA2](#) [BXP4N65F](#) [BXP2N20L](#) [BXP2N65D](#) [SLF10N65ABV2](#)
[CJAC130SN06L](#) [HSBA6054](#) [HSBB6054](#) [HSBB0210](#) [HSBA6901](#) [BSC004NE2LS5](#) [BSZ075N08NS5](#) [LBSS138DW1T1G](#) [AP0903G](#)
[SSM10N954L,EFF\(S](#) [2SK3878\(STA1,E,S\)](#) [TPN6R303NC,LQ\(S](#) [AP3N5R0MT](#) [AP6NA3R2MT](#) [AP3C023AMT](#) [AP6242](#) [HSBB3909](#)
[HSBA3204](#)