<u>MOSFET</u> – Power, Single N-Channel 60 V, 15.0 mΩ, 36 A

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- NVMFS5C677NLWF Wettable Flank Option for Enhanced Optical Inspection
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	60	V
Gate-to-Source Voltage	e		V _{GS}	±20	V
Continuous Drain		$T_C = 25^{\circ}C$	۱ _D	36	А
Current R _{θJC} (Notes 1, 3)	Steady	T _C = 100°C		25	
Power Dissipation	State	$T_C = 25^{\circ}C$	PD	37	W
R _{θJC} (Note 1)		$T_{C} = 100^{\circ}C$		18	
Continuous Drain		$T_A = 25^{\circ}C$	I _D	11	А
Current R _{θJA} (Notes 1, 2, 3)	Steady	T _A = 100°C		7.8	
Power Dissipation	State T _A = 25°C		PD	3.5	W
R _{θJA} (Notes 1 & 2)		$T_A = 100^{\circ}C$		1.8	
Pulsed Drain Current	$T_A = 25^\circ C$, $t_p = 10 \ \mu s$		I _{DM}	166	А
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to + 175	°C
Source Current (Body Diode)			۱ _S	31	А
Single Pulse Drain-to-Source Avalanche Energy ($I_{L(pk)} = 2.87 \text{ A}$)			E _{AS}	65	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State	$R_{\theta JC}$	4.1	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	43	

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
60 V	15.0 m Ω @ 10 V	36 A
00 V	21.5 m Ω @ 4.5 V	007

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Parameter	Symbol	Test Condi	tion	Min	Тур	Max	Unit
$ \begin{array}{ c c c c c c } \hline Drain-to-Source Breakdown Voltage Temperature Coefficient Tury (V_T_1) = 10 \\ T_1 = 25 \ C & 10 \\ T_2 = 25 \ C & 250 \\ \hline T_2 = 25 \ C & 250 \\ \hline T_2 = 25 \ C & 250 \\ \hline T_2 = 25 \ C & 250 \\ \hline T_2 = 25 \ C & 250 \\ \hline T_2 = 25 \ C & 250 \\ \hline T_2 = 25 \ C & 250 \\ \hline T_2 = 25 \ C & 250 \\ \hline T_2 = 25 \ C & 250 \\ \hline Drain - 10 \\ \hline OR CHARACTERISTICS (Note 4) \\ \hline Gate Threshold Voltage Vos (Th) \\ \hline OR CHARACTERISTICS (Note 4) \\ \hline Gate Threshold Voltage Vos (Th) \\ \hline Or an - to-Source Con Resistance \\ \hline Postore I - Source On Resistance \\ \hline Postore I - Source Charge \\ \hline Output Capacitance \\ \hline Cald Gate Charge \\ Qa(Ttr) \\ \hline Vale = 10 \ V_{OS} = 10 \ V, V_{DS} = 48 \ V; \ I_D = 10 \ A \\ \hline I = $	OFF CHARACTERISTICS					•		
$ \begin{array}{ c c c c c c } \hline Drain-to-Source Breakdown Voltage Temperature Coefficient Tury (V_T_1) = 10 \\ T_1 = 25 \ C & 10 \\ T_2 = 25 \ C & 250 \\ \hline T_2 = 25 \ C & 250 \\ \hline T_2 = 25 \ C & 250 \\ \hline T_2 = 25 \ C & 250 \\ \hline T_2 = 25 \ C & 250 \\ \hline T_2 = 25 \ C & 250 \\ \hline T_2 = 25 \ C & 250 \\ \hline T_2 = 25 \ C & 250 \\ \hline T_2 = 25 \ C & 250 \\ \hline Drain - 10 \\ \hline OR CHARACTERISTICS (Note 4) \\ \hline Gate Threshold Voltage Vos (Th) \\ \hline OR CHARACTERISTICS (Note 4) \\ \hline Gate Threshold Voltage Vos (Th) \\ \hline Or an - to-Source Con Resistance \\ \hline Postore I - Source On Resistance \\ \hline Postore I - Source Charge \\ \hline Output Capacitance \\ \hline Cald Gate Charge \\ Qa(Ttr) \\ \hline Vale = 10 \ V_{OS} = 10 \ V, V_{DS} = 48 \ V; \ I_D = 10 \ A \\ \hline I = $	Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 250 μA		60			V
$\begin{tabular}{ c c c c c c } \hline $V_{DS} = 0 \ V $V_{DS} = 0 \ V $V_{DS} = 2 \ V $V_{OS} $V_$						26		mV/°C
$ \begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25 °C			10	
$ \begin{array}{ c c c c c c } \hline On CHARACTERISTICS (Note 4) \\ \hline Gate Threshold Voltage V_{GS(TH)} & V_{GS} = V_{DS}, \ _{D} = 25 \ \mu A & 1.2 & 2.0 & V \\ \hline Threshold Temperature Coefficient V_{GS(TH)} / J & -5.0 & mV^{/2} \\ \hline Threshold Temperature Coefficient & V_{GS(TH)} / J & -5.0 & mV^{/2} \\ \hline Threshold Temperature Coefficient & V_{GS(TH)} / J & U_{GS} = 10 V & I_{D} = 10 A & 12.5 & 15.0 \\ \hline Threshold Temperature Coefficient & 0 \\ \hline Threshold CAPACITANCES & \\ \hline Threshold Capacitance & C_{ISS} & V_{DS} = 15 V, \ I_{D} = 15 A & 27.5 & S \\ \hline CHARGES AND CAPACITANCES & \\ \hline Total Gate Charge & C_{GSS} & V_{GS} = 0 V, \ f = 1 \ MHz, \ V_{DS} = 25 V & 3440 & PF \\ \hline Total Gate Charge & Q_{G(TO)} & V_{GS} = 4.5 V, \ V_{DS} = 48 \ V; \ I_{D} = 10 A & 4.5 & nC \\ \hline Total Gate Charge & Q_{G(TO)} & V_{GS} = 4.5 \ V, \ V_{DS} = 48 \ V; \ I_{D} = 10 A & 4.5 & nC \\ \hline Total Gate Charge & Q_{G(TO)} & V_{GS} = 10 \ V, \ V_{DS} = 48 \ V; \ I_{D} = 10 \ A & 1 & 0 \\ \hline Threshold Gate Charge & Q_{G(TO)} & V_{GS} = 10 \ V, \ V_{DS} = 48 \ V; \ I_{D} = 10 \ A & 1 & 0 \\ \hline Threshold Gate Charge & Q_{GB} & V_{GP} \\ \hline Turn-On Delay Time & t_{d(OH)} \\ \hline Turn-On Delay Time & t_{d(OH)} \\ \hline Tall Time & t_{T} & V_{GS} = 10 \ V, \ V_{DS} = 48 \ V; \ I_{D} = 10 \ A, \ R_{G} = 1 \ \Omega & 0 \ DEL \\ \hline Turn-On Delay Time & t_{d(OFF)} & 0 \ Occup & 0 \ DEL \\ \hline Turn-On Delay Time & t_{d(OFF)} & V_{SD} \ DEL \$			V _{DS} = 60 V	T _J = 125°C			250	μA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS}	₆ = 20 V			100	nA
$\begin{array}{ c c c c c } \hline \mbox{Threshold Temperature Coefficient} & V_{GS(TH)}'I & \begin{tabular}{ c c c c } \hline \mbox{Threshold Temperature Coefficient} & V_{GS(TH)}'I & \begin{tabular}{ c c c c } \hline \mbox{Threshold Temperature Coefficient} & V_{GS}(TH)'I & \begin{tabular}{ c c c c } \hline \mbox{Threshold Temperature Coefficient} & V_{GS}(TH)'I & \begin{tabular}{ c c c c } \hline \mbox{Threshold Capacitance} & G_{FS} & V_{DS} = 15 V, I_{D} = 10 A & 12.5 & 15.0 & mQ' \\ \hline \mbox{Threshold Capacitance} & g_{FS} & V_{DS} = 15 V, I_{D} = 10 A & 27.5 & S \\ \hline \mbox{CHARGES AND CAPACITANCES} & & & & & & & & & & & & & & & & & & &$	ON CHARACTERISTICS (Note 4)						1	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D = 25 μA		1.2		2.0	V
$ \begin{array}{ c c c c } \hline V_{GS} = 4.5 \ V & I_D = 10 \ A & 17.9 & 21.5 \\ \hline V_{GS} = 4.5 \ V & I_D = 15 \ A & 27.5 & S \\ \hline \hline Provemond Transconductance & $9FS$ & $V_{DS} = 15 \ V, I_D = 15 \ A & 27.5 & S \\ \hline \hline CHARGES AND CAPACITANCES & $V_{GS} = 0 \ V, f = 1 \ HHz, \ V_{DS} = 25 \ V & 340 & P \\ \hline Provemond Transfer Capacitance & C_{RSS} & $V_{GS} = 0 \ V, f = 1 \ HHz, \ V_{DS} = 25 \ V & 340 & P \\ \hline \hline Total Gate Charge & $Q_{G(TO)}$ & $V_{GS} = 45 \ V, V_{DS} = 48 \ V; I_D = 10 \ A & 4.5 & 0 \\ \hline Total Gate Charge & $Q_{G(TO)}$ & $V_{GS} = 10 \ V, \ V_{DS} = 48 \ V; I_D = 10 \ A & 9.7 & 0 \\ \hline \hline Total Gate Charge & $Q_{G(TH)}$ & $V_{GS} = 10 \ V, \ V_{DS} = 48 \ V; I_D = 10 \ A & 9.7 & 0 \\ \hline \hline Threshold Gate Charge & $Q_{G(TH)}$ & $V_{GS} = 10 \ V, \ V_{DS} = 48 \ V; I_D = 10 \ A & 9.7 & 0 \\ \hline \hline Tata Gate - Dorain \ Charge & Q_{GD} & $V_{GS} = 10 \ V, \ V_{DS} = 48 \ V; \ I_D = 10 \ A & 1 & 0 \\ \hline \hline Tata Gate - Drain \ Charge & V_{QD} & $V_{GS} = 10 \ V, \ V_{DS} = 48 \ V; \ I_D = 10 \ A & $1.3 \ D \\ \hline \hline Tur-On \ Delay \ Time & $t_{d(ON)}$ & $V_{GS} = 10 \ V, \ V_{DS} = 48 \ V; \ I_D = 10 \ A \ R_G = 1 \ \Omega & \hline \hline Tata \ Disc \ Arge \ Disc \ Arge \ Arg$	Threshold Temperature Coefficient					-5.0		mV/°C
$ \begin{array}{ c c c c c } \hline V_{GS} = 4.5 \ V & _{D} = 10 \ A & 17.9 & 21.5 \\ \hline \end{tabular} \begin{tabular}{ c c c c c } \hline \end{tabular} \\ \hline \end{tabular} \begin{tabular}{ c c c c c c } \hline \end{tabular} \begin{tabular}{ c c c c c c } \hline \end{tabular} \begin{tabular}{ c c c c c c } \hline \end{tabular} \begin{tabular}{ c c c c c c } \hline \end{tabular} \begin{tabular}{ c c c c c } \hline \end{tabular} \begin{tabular}{ c c c c c c c } \hline \end{tabular} \begin{tabular}{ c c c c c c c } \hline \end{tabular} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 10 A		12.5	15.0	
			V _{GS} = 4.5 V	I _D = 10 A		17.9	21.5	mΩ
$ \begin{array}{ c c c c c } Input Capacitance & C_{ISS} \\ \hline Output Capacitance & C_{OSS} \\ \hline Output Capacitance & C_{RSS} \\ \hline V_{GS} = 0 \ V, \ f = 1 \ MHz, \ V_{DS} = 25 \ V \\ \hline Max \\ Interest \ I$	Forward Transconductance	9 _{FS}				27.5		S
$ \begin{array}{ c c c c c c } \hline Output Capacitance & C_{OSS} \\ \hline Peverse Transfer Capacitance & C_{RSS} \\ \hline Peverse Transfer Capacitance & C_{RSS} \\ \hline Total Gate Charge & Q_{G(TOT)} & V_{GS} = 4.5 \ V, \ V_{DS} = 48 \ V; \ I_D = 10 \ A & 4.5 & 0 \\ \hline Total Gate Charge & Q_{G(TOT)} & V_{GS} = 10 \ V, \ V_{DS} = 48 \ V; \ I_D = 10 \ A & 9.7 & 0 \\ \hline Threshold Gate Charge & Q_{G(TH)} \\ \hline Gate-to-Source Charge & Q_{GS} \\ \hline Gate-to-Drain Charge & Q_{GD} \\ \hline Plateau \ Votage & V_{GP} \\ \hline \\ \hline Plateau \ Votage & V_{GP} \\ \hline \\ $	CHARGES AND CAPACITANCES							
$ \begin{array}{ c c c c c c } \hline Output Capacitance & C_{OSS} \\ \hline Peverse Transfer Capacitance & C_{RSS} \\ \hline Peverse Transfer Capacitance & C_{RSS} \\ \hline Total Gate Charge & Q_{G(TOT)} & V_{GS} = 4.5 \ V, \ V_{DS} = 48 \ V; \ I_D = 10 \ A & 4.5 & 0 \\ \hline Total Gate Charge & Q_{G(TOT)} & V_{GS} = 10 \ V, \ V_{DS} = 48 \ V; \ I_D = 10 \ A & 9.7 & 0 \\ \hline Threshold Gate Charge & Q_{G(TH)} \\ \hline Gate-to-Source Charge & Q_{GS} \\ \hline Gate-to-Drain Charge & Q_{GD} \\ \hline Plateau \ Votage & V_{GP} \\ \hline \\ \hline Plateau \ Votage & V_{GP} \\ \hline \\ $	Input Capacitance	C _{ISS}				620		
$ \begin{array}{ c c c c c c } \hline Reverse Transfer Capacitance & C_{RSS} & & & & & & & & & & & & & & & & & & $	Output Capacitance					340		pF
$ \begin{array}{ c c c c } \hline V_{GS} = 10 \ V, \ V_{DS} = 48 \ V; \ I_D = 10 \ A \\ \hline P_{1} \ I_{1} \ I_{1}$	Reverse Transfer Capacitance					7		
$ \begin{array}{ c c c c } \hline Total Gate Charge & Q_G(TOT) & V_{GS} = 10 \ V, \ V_{DS} = 48 \ V; \ I_D = 10 \ A & 9.7 & nC \\ \hline Threshold Gate Charge & Q_G(TH) & \\ \hline Gate-to-Source Charge & Q_{GS} & \\ \hline Gate-to-Drain Charge & Q_{GD} & \\ \hline Plateau \ Voltage & V_{GP} & \\ \hline & 1 & 1 & & \\ \hline & 1 & & \\ \hline & 1 & 1 & & \\ \hline & 1$	Total Gate Charge	Q _{G(TOT)}				4.5		nC
$ \begin{array}{ c c c c c c } \hline Gate-to-Source Charge & Q_{GS} \\ \hline Gate-to-Drain Charge & Q_{GD} \\ \hline Plateau Voltage & V_{GP} \\ \hline \\ \hline Plateau Voltage & V_{GP} \\ \hline \\ $	Total Gate Charge					9.7		nC
$ \begin{array}{ c c c c c c } \hline Gate-to-Drain Charge & Q_{GD} & V_{GS} = 10 \ V, \ V_{DS} = 48 \ V; \ I_D = 10 \ A & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _{DS} = 48 V; I _D = 10 A			1.3		
$ \begin{array}{c c c c c c c c c } \hline Gate-to-Drain Charge & Q_{GD} & & & & & & & & & & & & & & & & & & &$	Gate-to-Source Charge	Q _{GS}				2.1		nC
$\begin{tabular}{ c c c c c c c } \hline SWITCHING CHARACTERISTICS (Note 5) \\ \hline Turn-On Delay Time & t_{d(ON)} \\ \hline Rise Time & t_r & & & & & & & & & & & & & & & & & & &$	Gate-to-Drain Charge	Q _{GD}				1		
$\begin{tabular}{ c c c c c c c c c c c } \hline Turn-On Delay Time & t_d(ON) & & & & & & & & & & & & & & & & & & &$	Plateau Voltage	V _{GP}				3.0		V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SWITCHING CHARACTERISTICS (Note 5	5)					1	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Turn–On Delay Time	t _{d(ON)}	V _{GS} = 10 V, V _{DS} = 48 V, I _D = 10 A, R _G = 1 Ω			7		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time					13		ns
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Turn-Off Delay Time	t _{d(OFF)}				25		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fall Time					6		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DRAIN-SOURCE DIODE CHARACTERIS	STICS						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Forward Diode Voltage	V _{SD}	$v_{GS} = 0 v$,			0.85	1.2	
Charge Time t _a V _{GS} = 0 V, dls/dt = 100 A/μs, 11.9 ns Discharge Time t _b IS = 10 A 11.8 IS = 10 A IS						0.72		V
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dls/dt = 100 A/µs,			23.8		
Discharge Time t_b $l_S = 10 \text{ A}$ 11.8	Charge Time					11.9		ns
Reverse Recovery Charge Q _{RR} 11.6 nC	Discharge Time					11.8		1
	Reverse Recovery Charge	Q _{RR}				11.6		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: pulse width $\leq 300 \ \mu$ s, duty cycle $\leq 2\%$. 5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Figure 13. Thermal Characteristics

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMFS5C677NLT1G	5C677L	DFN5 (Pb–Free)	1500 / Tape & Reel
NVMFS5C677NLWFT1G	677LWF	DFN5 (Pb-Free, Wettable Flanks)	1500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE222 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UF0-7B