

MOSFET - Power, Single N-Channel, DFN5/DFNW5 40 V, 3.3 m Ω , 102 A

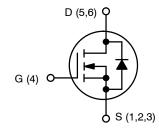
NVMFS5C450N

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- NVMFS5C450NWF Wettable Flank Option for Enhanced Optical Inspection
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	40	V
Gate-to-Source Voltage	9		V_{GS}	±20	V
Continuous Drain		T _C = 25°C	I _D	102	Α
Current R _{θJC} (Notes 1, 3)	Steady	T _C = 100°C		72	
Power Dissipation	State	T _C = 25°C	P_{D}	68	W
R _{θJC} (Note 1)		T _C = 100°C		34	
Continuous Drain		T _A = 25°C	I _D	24	Α
Current R _{0JA} (Notes 1, 2, 3)	Steady	T _A = 100°C		17	
Power Dissipation	State	T _A = 25°C	P_{D}	3.6	W
R _{θJA} (Notes 1 & 2)		T _A = 100°C		1.8	
Pulsed Drain Current	$T_A = 25$	°C, t _p = 10 μs	I _{DM}	554	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	-55 to + 175	°C
Source Current (Body Diode)			I _S	65	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 7.0 A)			E _{AS}	215	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

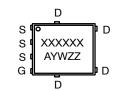
THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State	$R_{\theta JC}$	2.2	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	41	

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX	
40 V	3.3 m Ω @ 10 V	102 A	

N-CHANNEL MOSFET



DFNW5 (FULL-CUT SO8FL WF) CASE 507BA

MARKING DIAGRAM

XXXXXX = 5C450N

(NVMFS5C450N) or

450NWF

(NVMFS5C450NWF)

A = Assembly Location

Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 5.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS				•		•	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				20		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			10	
		V _{DS} = 40 V	T _J = 125°C			100	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS}	; = 20 V			100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 65 μΑ	2.5		3.5	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-9.1		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 50 A		2.7	3.3	mΩ
Forward Transconductance	9 _{FS}	V _{DS} =15 V, I _D	= 50 A		93		S
CHARGES, CAPACITANCES & GATE RE	SISTANCE						
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 25 V			1600		
Output Capacitance	C _{OSS}				830		pF
Reverse Transfer Capacitance	C _{RSS}				28		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 20 V; I _D = 50 A			23		
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _{DS} = 20 V; I _D = 50 A			5.1		nC
Gate-to-Source Charge	Q _{GS}				9.0		
Gate-to-Drain Charge	Q_{GD}				3.5		
Plateau Voltage	V _{GP}				5.3		V
SWITCHING CHARACTERISTICS (Note 5	5)						
Turn-On Delay Time	t _{d(ON)}				10		
Rise Time	t _r	V _{GS} = 10 V, V _{DS}	s = 20 V,		47		ns
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 50 \text{ A}, R_G =$	= 2.5 Ω		19		
Fall Time	t _f				3.0		1
DRAIN-SOURCE DIODE CHARACTERIS	TICS						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V, I _S = 50 A	$T_J = 25^{\circ}C$		0.9	1.2	
			T _J = 125°C		0.78		V
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, dIS/dt = 100 A/ μ s, I_{S} = 50 A			37		ns
Charge Time	t _a				18		
Discharge Time	t _b				19		
Reverse Recovery Charge	Q _{RR}				23		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

^{5.} Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

100

90

V_{DS} = 10 V

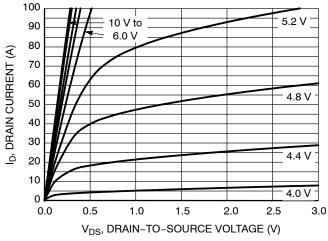
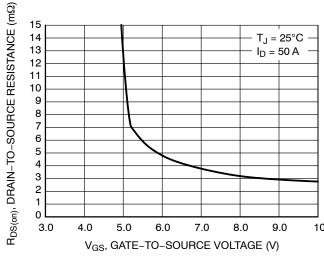



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

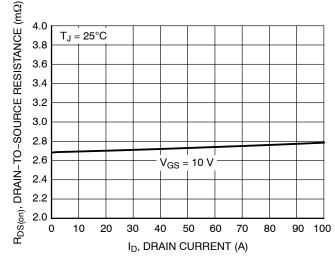
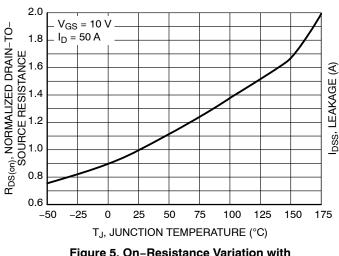



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

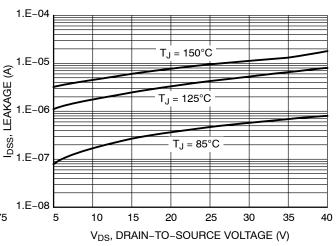


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS (continued)

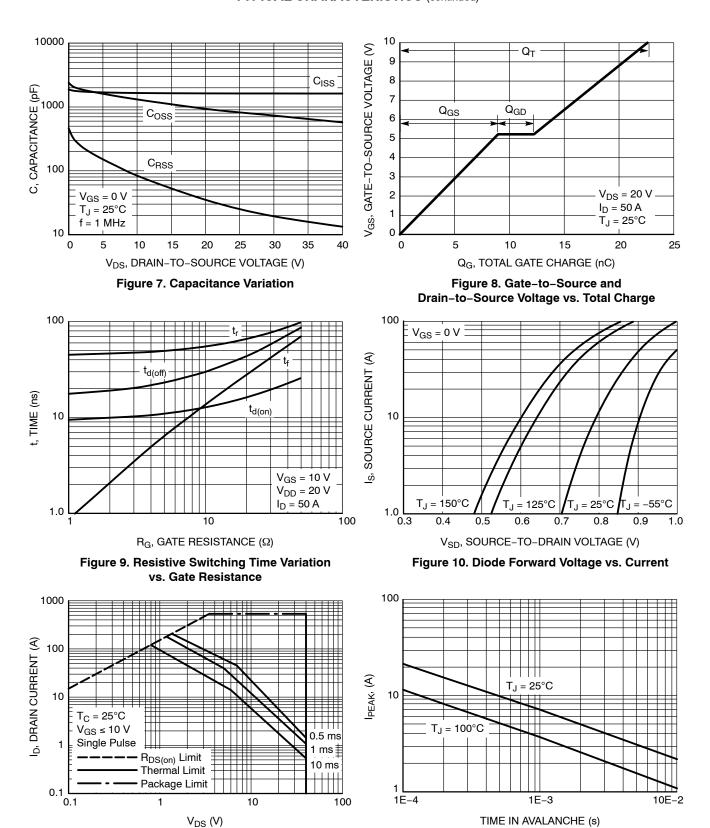


Figure 12. I_{PEAK} vs. Time in Avalanche

Figure 11. Safe Operating Area

TYPICAL CHARACTERISTICS (continued)

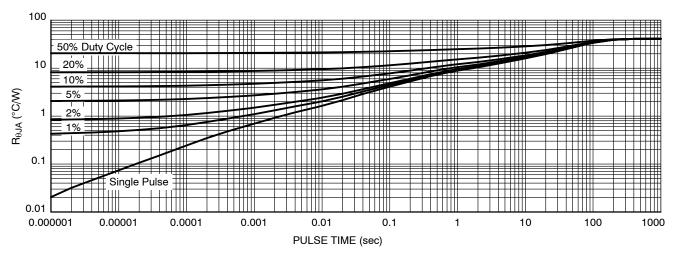


Figure 13. Thermal Characteristics

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMFS5C450NET1G-YE	5C450N	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS5C450NWFT1G	450NWF	DFNW5 (Pb-Free, Wettable Flanks)	1500 / Tape & Reel
NVMFS5C450NAFT1G	5C450N	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS5C450NAFT1G-YE	5C450N	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS5C450NWFAFT1G	450NWF	DFNW5 (Pb-Free, Wettable Flanks)	1500 / Tape & Reel
NVMFS5C450NWFET1G	450NWF	DFNW5 (Pb-Free, Wettable Flanks)	1500 / Tape & Reel
NVMFS5C450NWFET3G	450NWF	DFNW5 (Pb-Free, Wettable Flanks)	5000 / Tape & Reel

DISCONTINUED (Note 6)

Discontinued (Mais s)			
NVMFS5C450NWFT3G	450NWF	DFNW5 (Pb-Free, Wettable Flanks)	5000 / Tape & Reel
NVMFS5C450NT1G	5C450N	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS5C450NT3G	5C450N	DFN5 (Pb-Free)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D.</u>

^{6.} **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The most current information on these devices may be available on www.onsemi.com.

DFN5 5x6, 1.27P (SO-8FL) CASE 488AA **ISSUE N**

DATE 25 JUN 2018

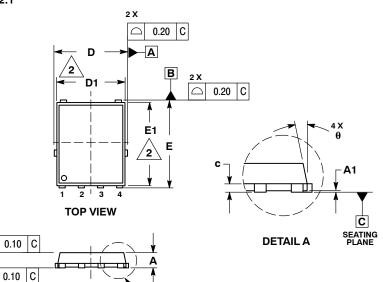
NOTES:

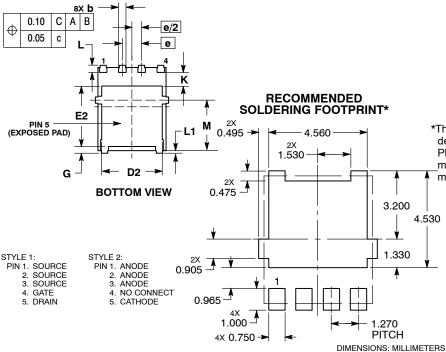
- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION D1 AND E1 DO NOT INCLUDE
- MOLD FLASH PROTRUSIONS OR GATE BURRS

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.90	1.00	1.10	
A1	0.00		0.05	
b	0.33	0.41	0.51	
С	0.23	0.28	0.33	
D	5.00	5.15	5.30	
D1	4.70	4.90	5.10	
D2	3.80	4.00	4.20	
E	6.00	6.15	6.30	
E1	5.70	5.90	6.10	
E2	3.45	3.65	3.85	
е	1.27 BSC			
G	0.51	0.575	0.71	
K	1.20	1.35	1.50	
L	0.51	0.575	0.71	
L1	0.125 REF			
М	3.00	3.40	3.80	
θ	0 °		12 °	

GENERIC MARKING DIAGRAM*

XXXXXX = Specific Device Code


= Assembly Location Α


= Lot Traceability

Υ = Year W = Work Week

ZZ

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DETAIL A

SIDE VIEW

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON14036D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DFN5 5x6, 1.27P (SO-8FL)		PAGE 1 OF 1	

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

MILLIMETERS

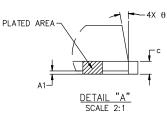
PIN 1

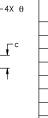
IDENTIFIER

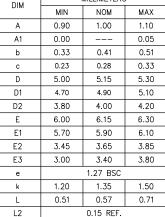
DFNW5 4.90x5.90x1.00, 1.27P

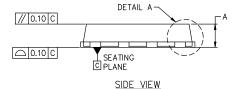
CASE 507BE **ISSUE B**

A

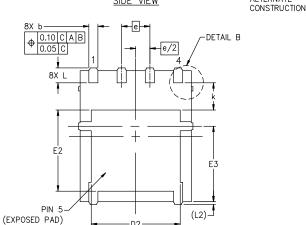

DATE 19 SEP 2024


12°


6


NOTES:

- DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M-2018. 1.
- ALL DIMENSIONS ARE IN MILLIMETERS.
- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- THIS PACKAGE CONTAINS WETTABLE FLANK DESIGN FEATURES TO AID IN FILLET FORMATION ON THE LEADS DURING MOUNTING.



TOP VIEW

ALTERNATE

THE BOTTOM OF TIE BAR.

-D2

BOTTOM VIEW

2X 0.50-4.56 -1.53-2X 0.48 PACKAGE 3.20 OUTLINE 1.33 2X 0.91-4X 1.00 0.97 1.27 PIN 1 ID PITCH 4X 0.75

θ

0.

RECOMMENDED MOUNTING FOOTPRINT* *FOR ADDITIONAL INFORMATION ON OUR Pb—FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

= Assembly Location Α Υ

= Year W = Work Week 77 = Lot Traceability

XXXXXX = Specific Device Code *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER: 98AON33319H Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION: DFNW5 4.90x5.90x1.00, 1.27P **PAGE 1 OF 1**

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFETs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

MCH3443-TL-E MCH6422-TL-E PMV32UP215 NTNS3A92PZT5G IRFD120 2SK2464-TL-E 2SK3818-DL-E 2SJ277-DL-E 2SK2267(Q)
MIC4420CM-TR IRFS350 IPS70R2K0CEAKMA1 AON6932A TS19452CS RL 2SK2614(TE16L1,Q) EFC2J004NUZTDG

DMN1053UCP4-7 NTE2384 2N7000TA 743-9 US6M2GTR STF5N65M6 IRF40H233XTMA1 STU5N65M6 DMN13M9UCA6-7

STU7N60DM2 2N7002W-G MCAC30N06Y-TP IPB45P03P4L11ATMA2 BXP4N65F BXP2N20L BXP2N65D SLF10N65ABV2

NVMTS1D1N04CTXG CJAC130SN06L HSBA6054 HSBB6054 HSBB0210 HSBA6901 BSC004NE2LS5 BSZ075N08NS5

LBSS138DW1T1G AP0903G SSM10N954L,EFF(S 2SK3878(STA1,E,S) TPN6R303NC,LQ(S AP3N5R0MT AP6NA3R2MT

AP3C023AMT AP6242