

MOSFET - Power, Single N-Channel, DFN5/DFNW5 40 V, 1.7 mΩ, 185 A

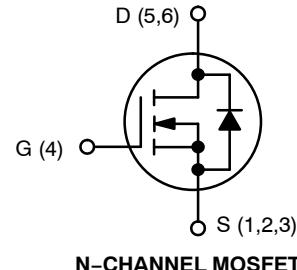
NVMFS5C430N

Features

- Small Footprint (5x6 mm) for Compact Design
- Low $R_{DS(on)}$ to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- NVMFS5C430NWF – Wettable Flank Option for Enhanced Optical Inspection
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

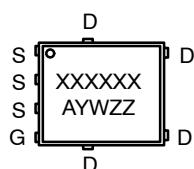
Parameter		Symbol	Value	Unit
Drain-to-Source Voltage		V _{DSS}	40	V
Gate-to-Source Voltage		V _{GS}	±20	V
Continuous Drain Current $R_{\theta JC}$ (Notes 1, 3)	Steady State	T _C = 25°C	I _D	A
		T _C = 100°C		
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	P _D	W
		T _C = 100°C		
Continuous Drain Current $R_{\theta JA}$ (Notes 1, 2, 3)	Steady State	T _A = 25°C	I _D	A
		T _A = 100°C		
Power Dissipation $R_{\theta JA}$ (Notes 1 & 2)		T _A = 25°C	P _D	W
		T _A = 100°C		
Pulsed Drain Current	T _A = 25°C, t _p = 10 µs	I _{DM}	900	A
Operating Junction and Storage Temperature		T _J , T _{stg}	-55 to + 175	°C
Source Current (Body Diode)		I _S	102	A
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 15 A)		E _{AS}	338	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		T _L	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case – Steady State	R _{θJC}	1.4	°C/W
Junction-to-Ambient – Steady State (Note 2)	R _{θJA}	40	

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.


V _{(BR)DSS}	R _{DS(ON) MAX}	I _{D MAX}
40 V	1.7 mΩ @ 10 V	185 A

DFN5 (SO-8FL)
CASE 488AA

DFNW5
(FULL-CUT SO8FL WF)
CASE 507BE

MARKING DIAGRAM

XXXXXX = 5C430N
(NVMFS5C430N) or
430NWF
(NVMFS5C430NWF)

A = Assembly Location
Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

NOTE: Some of the device on this data sheet have been DISCONTINUED. Please refer to the table on page 5

NVMFS5C430N

ELECTRICAL CHARACTERISTICS ($T_J = 25^\circ\text{C}$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Typ	Max	Unit
-----------	--------	----------------	--	-----	-----	-----	------

OFF CHARACTERISTICS

Drain-to-Source Breakdown Voltage	$V_{(\text{BR})\text{DSS}}$	$V_{\text{GS}} = 0 \text{ V}, I_D = 250 \mu\text{A}$		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$V_{(\text{BR})\text{DSS}}/T_J$				12.8		$\text{mV}/^\circ\text{C}$
Zero Gate Voltage Drain Current	I_{DSS}	$V_{\text{GS}} = 0 \text{ V}, V_{\text{DS}} = 40 \text{ V}$	$T_J = 25^\circ\text{C}$		10		μA
			$T_J = 125^\circ\text{C}$			100	
Gate-to-Source Leakage Current	I_{GSS}	$V_{\text{DS}} = 0 \text{ V}, V_{\text{GS}} = 20 \text{ V}$				100	nA

ON CHARACTERISTICS (Note 4)

Gate Threshold Voltage	$V_{\text{GS}(\text{TH})}$	$V_{\text{GS}} = V_{\text{DS}}, I_D = 250 \mu\text{A}$		2.5		3.5	V
Threshold Temperature Coefficient	$V_{\text{GS}(\text{TH})}/T_J$				-8.2		$\text{mV}/^\circ\text{C}$
Drain-to-Source On Resistance	$R_{\text{DS}(\text{on})}$	$V_{\text{GS}} = 10 \text{ V}$	$I_D = 50 \text{ A}$		1.4	1.7	$\text{m}\Omega$
Forward Transconductance	g_{FS}	$V_{\text{DS}} = 15 \text{ V}, I_D = 50 \text{ A}$			130		S

CHARGES, CAPACITANCES & GATE RESISTANCE

Input Capacitance	C_{iss}	$V_{\text{GS}} = 0 \text{ V}, f = 1 \text{ MHz}, V_{\text{DS}} = 25 \text{ V}$		3300		pF
Output Capacitance	C_{oss}			1600		
Reverse Transfer Capacitance	C_{rss}			45		
Total Gate Charge	$Q_{\text{G}(\text{TOT})}$	$V_{\text{GS}} = 10 \text{ V}, V_{\text{DS}} = 20 \text{ V}; I_D = 50 \text{ A}$		47		nC
Threshold Gate Charge	$Q_{\text{G}(\text{TH})}$			10		
Gate-to-Source Charge	Q_{GS}			16		
Gate-to-Drain Charge	Q_{GD}			7		
Plateau Voltage	V_{GP}			4.7		V

SWITCHING CHARACTERISTICS (Note 5)

Turn-On Delay Time	$t_{\text{d}(\text{ON})}$	$V_{\text{GS}} = 10 \text{ V}, V_{\text{DS}} = 20 \text{ V}, I_D = 50 \text{ A}, R_{\text{G}} = 2.5 \Omega$		13		ns
Rise Time	t_r			48		
Turn-Off Delay Time	$t_{\text{d}(\text{OFF})}$			29		
Fall Time	t_f			8		

DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	V_{SD}	$V_{\text{GS}} = 0 \text{ V}, I_S = 50 \text{ A}$	$T_J = 25^\circ\text{C}$		0.83	1.2	V
			$T_J = 125^\circ\text{C}$		0.7		
Reverse Recovery Time	t_{RR}	$V_{\text{GS}} = 0 \text{ V}, dI_S/dt = 100 \text{ A}/\mu\text{s}, I_S = 50 \text{ A}$			57		ns
Charge Time	t_a				30		
Discharge Time	t_b				27		
Reverse Recovery Charge	Q_{RR}				68		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: pulse width $\leq 300 \mu\text{s}$, duty cycle $\leq 2\%$.
5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

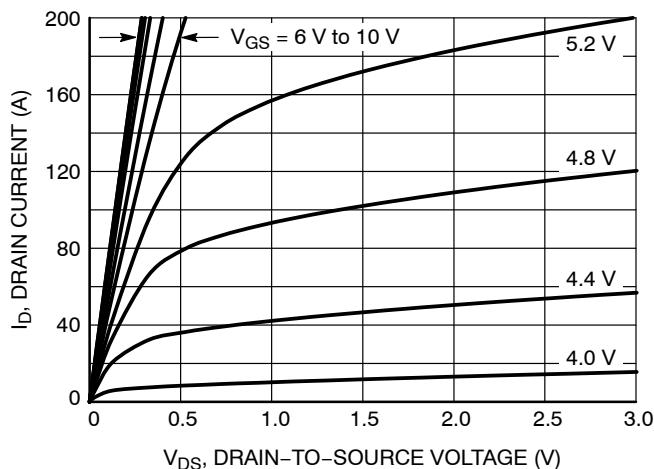


Figure 1. On-Region Characteristics

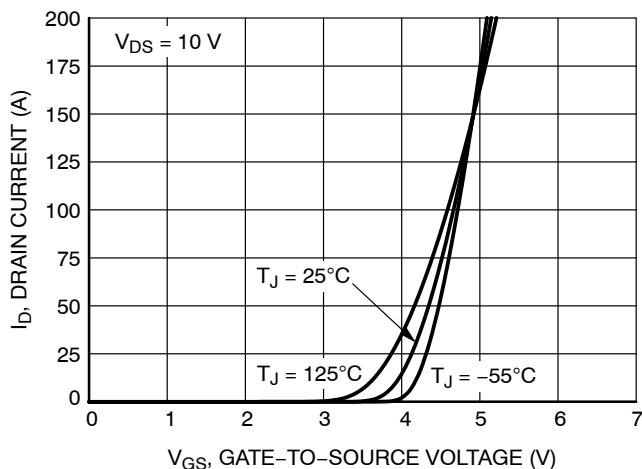


Figure 2. Transfer Characteristics

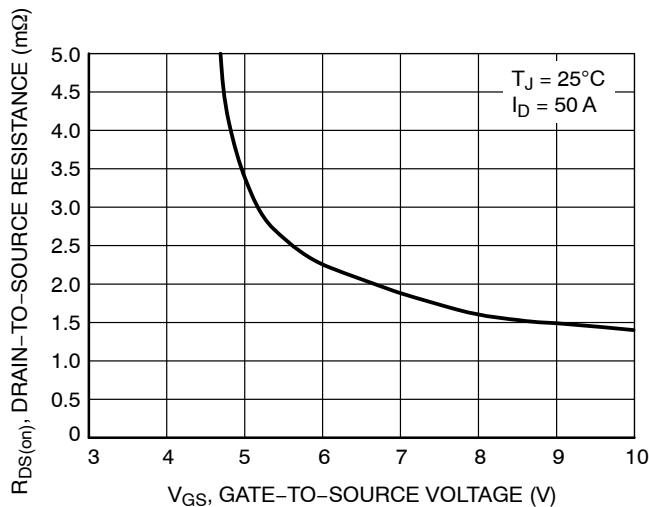


Figure 3. On-Resistance vs. Gate-to-Source Voltage

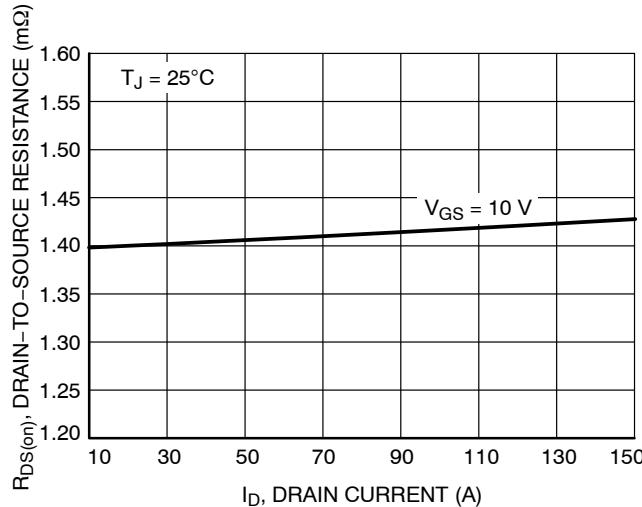


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

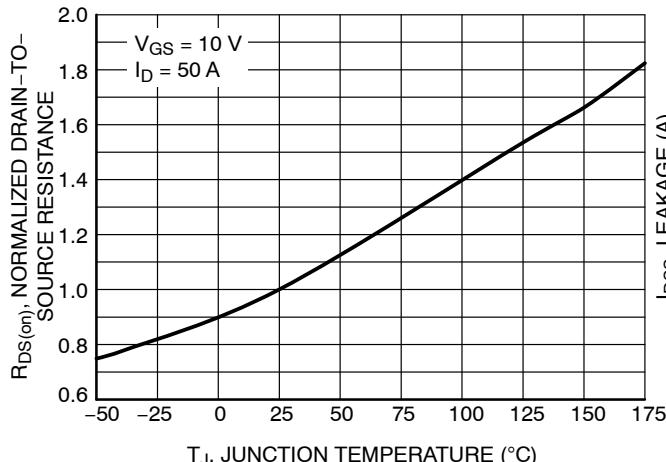


Figure 5. On-Resistance Variation with Temperature

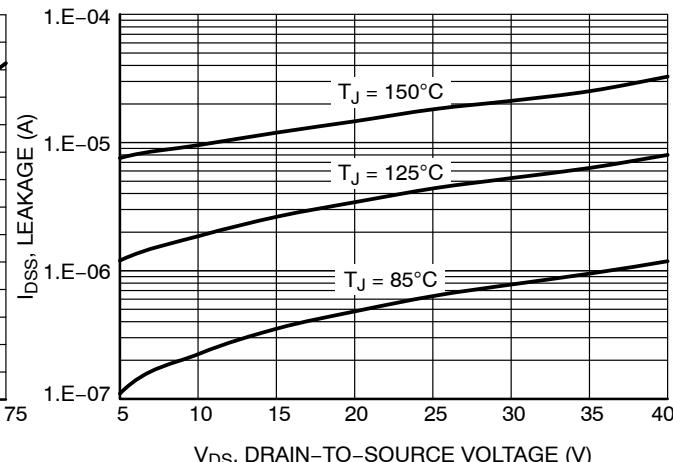
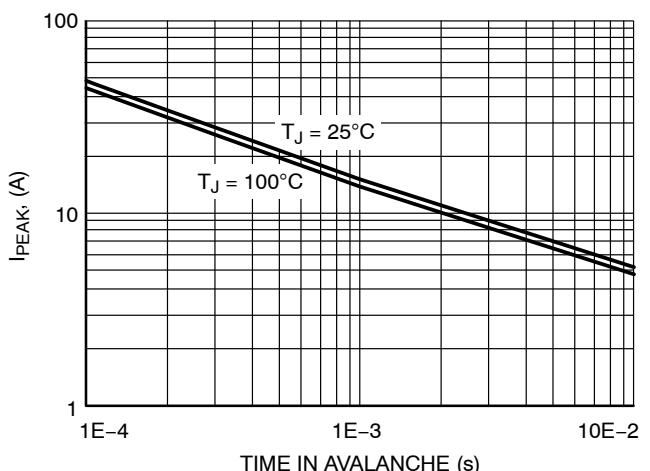
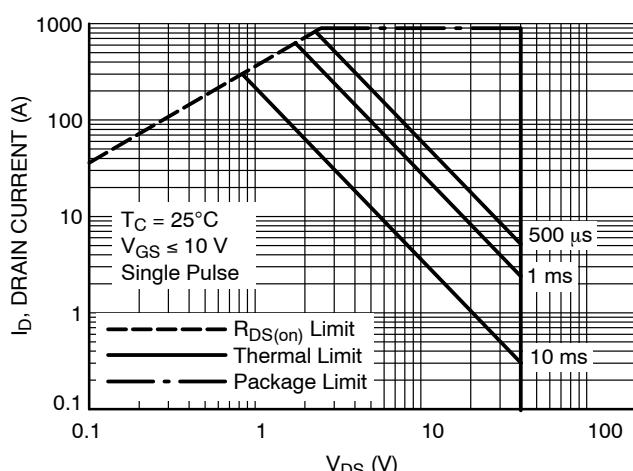
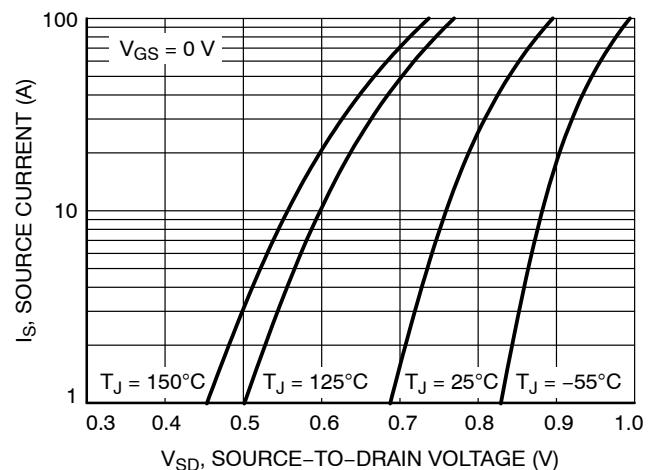
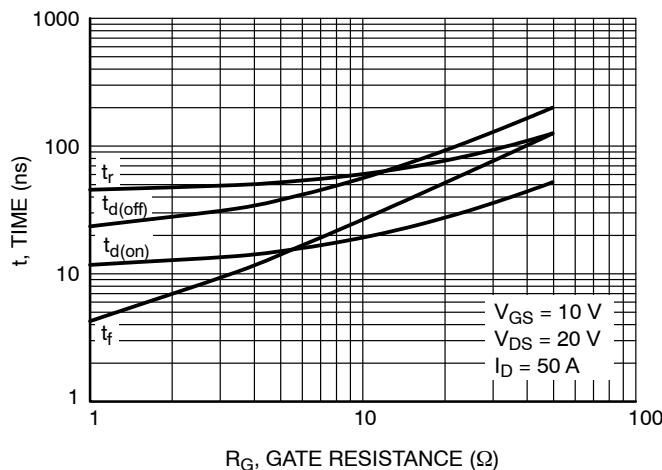
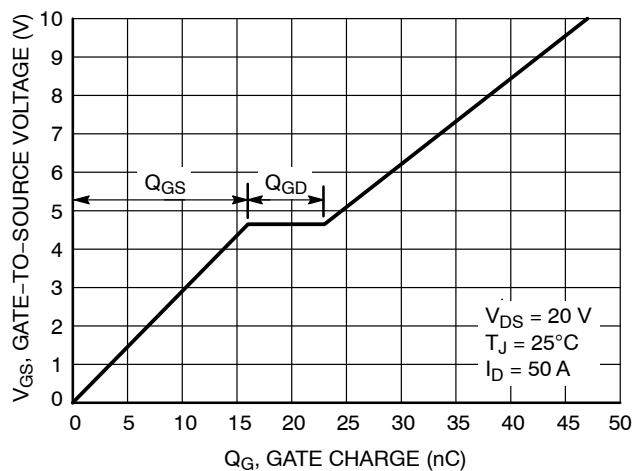
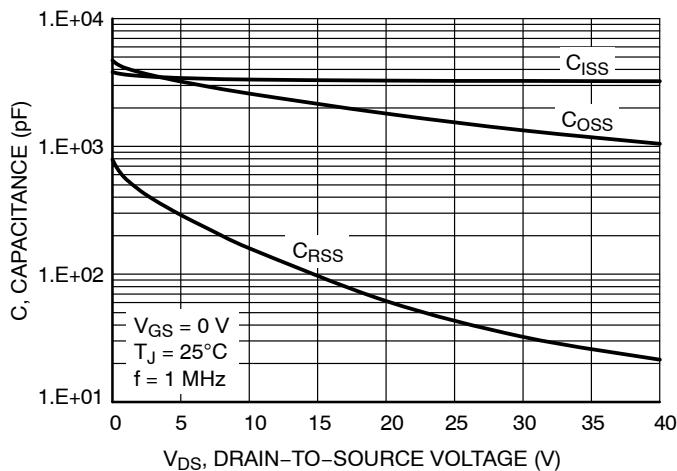








Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

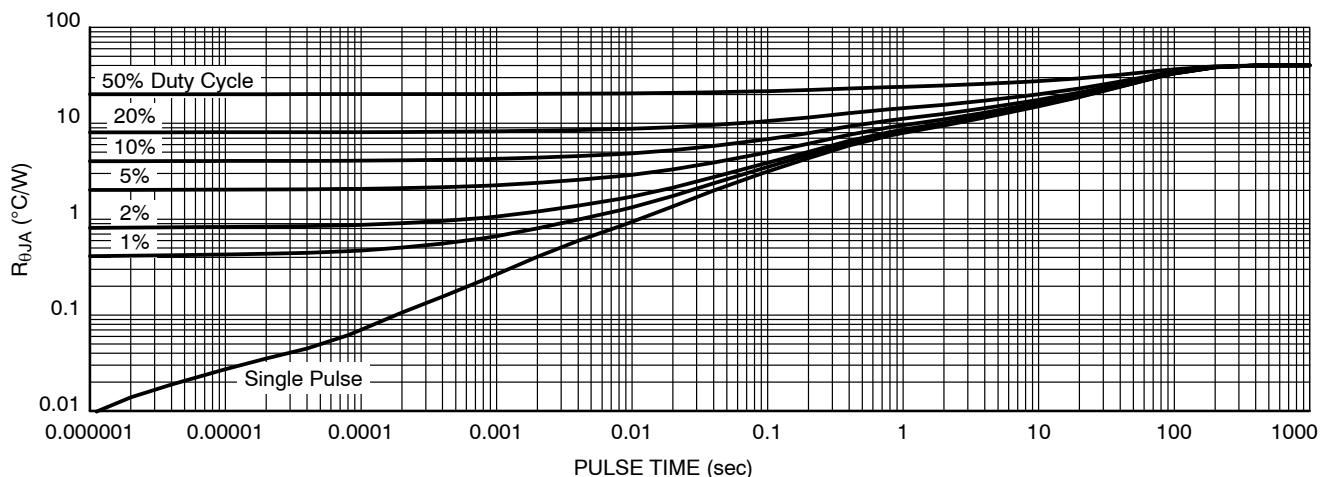
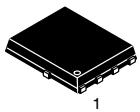


Figure 13. Thermal Characteristics

DEVICE ORDERING INFORMATION


Device	Marking	Package	Shipping [†]
NVMFS5C430NT3G	5C430N	DFN5 (Pb-Free)	5000 / Tape & Reel
NVMFS5C430NET1G-YE	5C430N	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS5C430NAFT1G	5C430	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS5C430NAFT1G-YE	5C430	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS5C430NWFAFT1G	430NWF	DFNW5 (Pb-Free, Wettable Flanks)	1500 / Tape & Reel
NVMFS5C430NWFET1G	430NWF	DFNW5 (Pb-Free, Wettable Flanks)	1500 / Tape & Reel

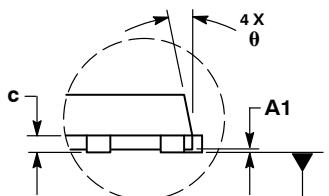
DISCONTINUED (Note 5)

Device	Package Type	Package	Shipping [†]
NVMFS5C430NT1G	5C430N	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFS5C430NWFT1G	430NWF	DFNW5 (Pb-Free, Wettable Flanks)	1500 / Tape & Reel
NVMFS5C430NWFT3G	430NWF	DFNW5 (Pb-Free, Wettable Flanks)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, [BRD8011/D](#).

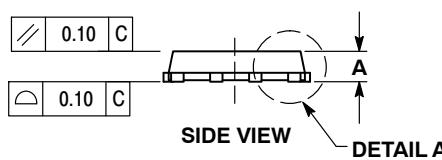
6. **DISCONTINUED:** This device is not recommended for new design. Please contact your **onsemi** representative for information. The most current information on this device may be available on www.onsemi.com.

SCALE 2:1

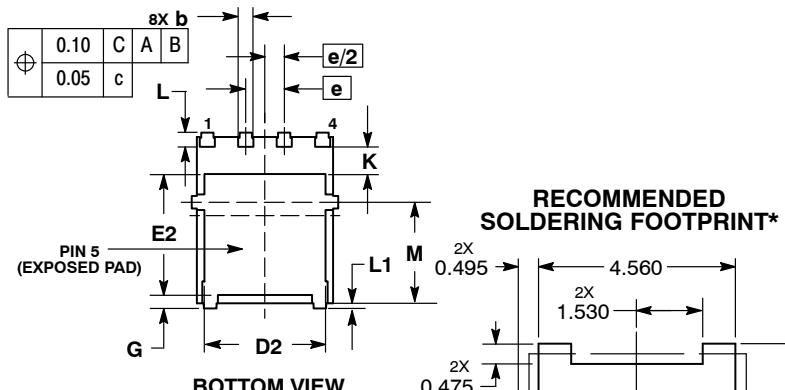

DFN5 5x6, 1.27P
(SO-8FL)
CASE 488AA
ISSUE N

DATE 25 JUN 2018

NOTES:

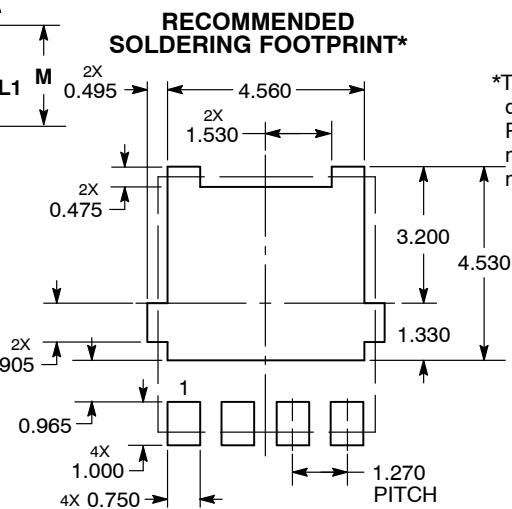

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS.

DIM	MILLIMETERS		
	MIN	NOM	MAX
A	0.90	1.00	1.10
A1	0.00	----	0.05
b	0.33	0.41	0.51
c	0.23	0.28	0.33
D	5.00	5.15	5.30
D1	4.70	4.90	5.10
D2	3.80	4.00	4.20
E	6.00	6.15	6.30
E1	5.70	5.90	6.10
E2	3.45	3.65	3.85
e	1.27 BSC		
G	0.51	0.575	0.71
K	1.20	1.35	1.50
L	0.51	0.575	0.71
L1	0.125 REF		
M	3.00	3.40	3.80
θ	0 °	----	12 °



DETAIL A

SEATING PLANE


DETAIL A

BOTTOM VIEW

STYLE 1:
PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN

STYLE 2:
PIN 1. ANODE
2. ANODE
3. ANODE
4. NO CONNECT
5. CATHODE

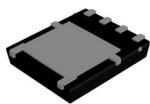
DIMENSIONS: MILLIMETERS

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

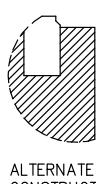
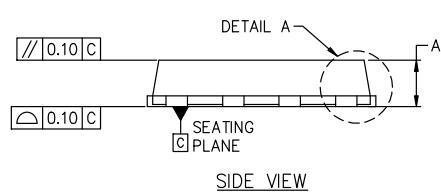
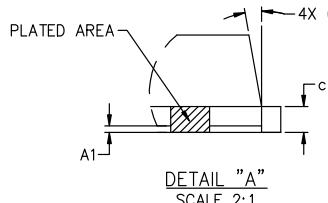
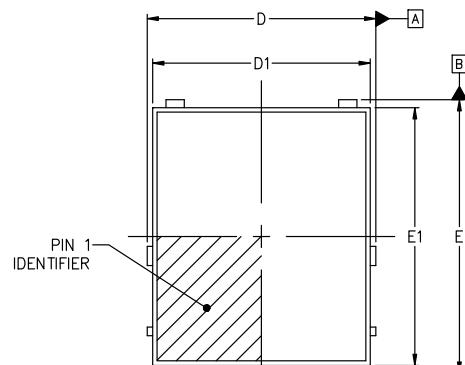
GENERIC
MARKING DIAGRAM*

XXXXXX = Specific Device Code

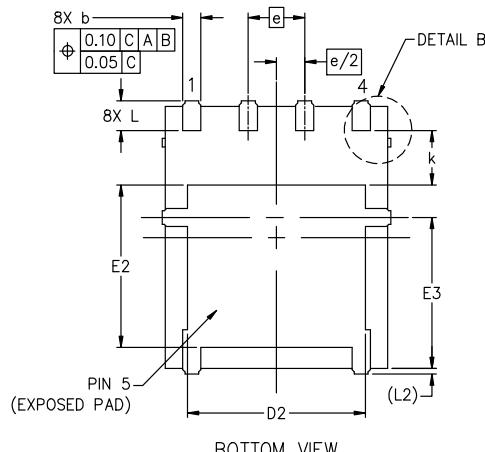
A = Assembly Location


Y = Year

W = Work Week

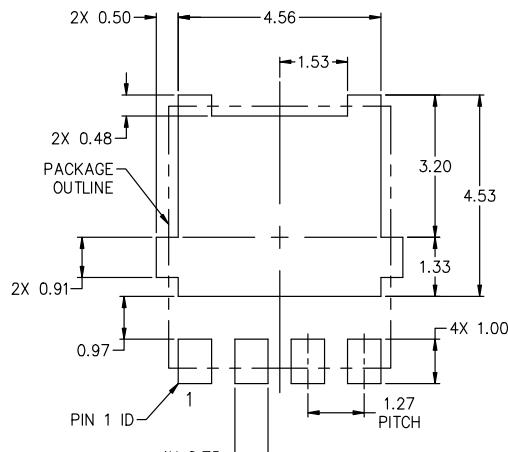




ZZ = Lot Traceability

DOCUMENT NUMBER:	98AON14036D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	DFN5 5x6, 1.27P (SO-8FL)	PAGE 1 OF 1


onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DFNW5 4.90x5.90x1.00, 1.27P
CASE 507BE
ISSUE B

DATE 19 SEP 2024


DETAIL "B" SCALE 2:1

**GENERIC
MARKING DIAGRAM***

XXXXXX = Specific Device Code
 A = Assembly Location
 Y = Year
 W = Work Week
 ZZ = Lot Traceability

*This information is generic. Please refer to device data sheet for actual part marking.
 Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DIM	MILLIMETERS		
	MIN	NOM	MAX
A	0.90	1.00	1.10
A1	0.00	---	0.05
b	0.33	0.41	0.51
c	0.23	0.28	0.33
D	5.00	5.15	5.30
D1	4.70	4.90	5.10
D2	3.80	4.00	4.20
E	6.00	6.15	6.30
E1	5.70	5.90	6.10
E2	3.45	3.65	3.85
E3	3.00	3.40	3.80
e	1.27 BSC		
k	1.20	1.35	1.50
L	0.51	0.57	0.71
L2	0.15 REF.		
θ	0°	6°	12°

RECOMMENDED MOUNTING FOOTPRINT*

*FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SODERM/D.

DOCUMENT NUMBER:	98AON33319H	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	DFNW5 4.90x5.90x1.00, 1.27P	PAGE 1 OF 1

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for [MOSFETs](#) category:

Click to view products by [ON Semiconductor](#) manufacturer:

Other Similar products are found below :

[MCH3443-TL-E](#) [MCH6422-TL-E](#) [PMV32UP215](#) [NTNS3A92PZT5G](#) [IRFD120](#) [2SK2464-TL-E](#) [2SK3818-DL-E](#) [2SJ277-DL-E](#)
[MIC4420CM-TR](#) [IRFS350](#) [IPS70R2K0CEAKMA1](#) [AON6932A](#) [TS19452CS RL](#) [2SK2614\(TE16L1,Q\)](#) [EFC2J004NUZTDG](#)
[DMN1053UCP4-7](#) [NTE2384](#) [2N7000TA](#) [743-9](#) [US6M2GTR](#) [STF5N65M6](#) [IRF40H233XTMA1](#) [STU5N65M6](#) [DMN13M9UCA6-7](#)
[STU7N60DM2](#) [2N7002W-G](#) [MCAC30N06Y-TP](#) [IPB45P03P4L11ATMA2](#) [BXP4N65F](#) [BXP2N20L](#) [BXP2N65D](#) [SLF10N65ABV2](#)
[CJAC130SN06L](#) [HSBA6054](#) [HSBB6054](#) [HSBB0210](#) [HSBA6901](#) [BSC004NE2LS5](#) [BSZ075N08NS5](#) [LBSS138DW1T1G](#)
[SSM10N954L,EFF\(S](#) [2SK3878\(STA1,E,S\)](#) [TPN6R303NC,LQ\(S](#) [AP3N5R0MT](#) [AP6NA3R2MT](#) [AP3C023AMT](#) [AP6242](#) [HSBB3909](#)
[HSBA3204](#) [HSBA0903](#)