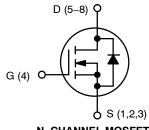


MOSFET - Power, Single N-Channel, SO-8 FL 30 V, 127 A **NVMFS4C05N**, **NVMFS4C305N**

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- NVMFS4C05NWF Wettable Flanks Option for Enhanced Optical Inspection
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

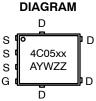
MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)


Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	30	V
Gate-to-Source Voltage			V_{GS}	±20	V
Continuous Drain Current Raja		T _A = 25°C		27.2	Α
(Notes 1, 2 and 4)		T _A = 80°C	I _D	21.6	
Power Dissipation $R_{\theta JA}$ (Notes 1, 2 and 4)		T _A = 25°C	P _D	3.61	W
Continuous Drain Current R _{0JC} (Notes 1, 2, 3 and 4)	Steady State	T _C = 25°C		127	•
Continuous Drain Current R ₀ JC (Notes 1, 2, 3 and 4)		T _C = 80°C	l _D	101	А
Power Dissipation $R_{\theta JC}$ (Notes 1, 2, 3 and 4)		T _C = 25°C	P _D	79	W
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \ \mu s$		I _{DM}	174	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to +175	°C
Source Current (Body Diode)			I _S	72	Α
Single Pulse Drain-to-Source Avalanche Energy ($T_J = 25$ °C, $I_L = 29 A_{pk}$, $L = 0.1$ mH)			E _{AS}	42	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- Surface-mounted on FR4 board using 650 mm², 2 oz Cu pad.
- 3. Assumes heat-sink sufficiently large to maintain constant case temperature independent of device power.
- Continuous DC current rating. Maximum current for pulses as long as one second is higher but dependent on pulse duration and duty cycle.

1


V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
30 V	2.8 mΩ @ 10 V	127 A
30 V	4.0 mΩ @ 4.5 V	127 A

N-CHANNEL MOSFET

STYLE 1

MARKING

4C05N = Specific Device Code for NVMFS4C05N

4C05WF= Specific Device Code of NVMFS4C05NWF

= Assembly Location

= Year

W = Work Week ZZ = Lot Traceabililty

ORDERING INFORMATION

Device	Package	Shipping [†]
NVMFS4C05NT1G, NVMFS4C305NT1G-YE, NVMFS4C305NET1G-YE	SO-8 FL (Pb-Free)	1500 / Tape & Reel
NVMFS4C05NT3G	SO-8 FL (Pb-Free)	5000 / Tape & Reel
NVMFS4C05NWFT1G, NVMFS4C05NWFET1G	SO-8 FL (Pb-Free)	1500 / Tape & Reel
NVMFS4C05NWFT3G	SO-8 FL (Pb-Free)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit	
Junction-to-Case (Drain)	$R_{ heta JC}$	1.9	°C ///	
Junction-to-Ambient - Steady State (Note 5)	$R_{ heta JA}$	41.6	°C/W	

^{5.} Surface-mounted on FR4 board using 650 mm², 2 oz Cu pad.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit	
OFF CHARACTERISTICS		<u>I</u>						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		30			V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /				12		mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 24 V	T _J = 25°C			1.0	I.0 μΑ	
			13 - 120 0			10	μΛ	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±20 V				±100	nA	
ON CHARACTERISTICS (Note 6)								
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= 250 μΑ	1.3		2.2	V	
Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-5.1		mV/°C	
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		2.3	2.8	~ 0	
		V _{GS} = 4.5 V	I _D = 30 A		3.3	4.0	mΩ	
Forward Transconductance	9FS	V _{DS} = 1.5 V, I	_D = 15 A		68		S	
Gate Resistance	R_{G}	T _A = 25°	C	0.3	1.0	2.0	Ω	
CHARGES AND CAPACITANCES					•	•	•	
Input Capacitance	C _{ISS}				1972			
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 15 V			1215		pF	
Reverse Transfer Capacitance	C _{RSS}				59			
Capacitance Ratio	C _{RSS} /C _{ISS}	V _{GS} = 0 V, V _{DS} = 15	5 V, f = 1 MHz		0.030			
Total Gate Charge	Q _{G(TOT)}				14			
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 15 V; I _D = 30 A			3.3		nC	
Gate-to-Source Charge	Q _{GS}				6.0			
Gate-to-Drain Charge	Q_{GD}				5.0			
Gate Plateau Voltage	V_{GP}				3.1		V	
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 15 V; I _D = 30 A			30		nC	
SWITCHING CHARACTERISTICS (Note 7				•	•	•	•	
Turn-On Delay Time	t _{d(ON)}				11			
Rise Time	t _r	$V_{GS} = 4.5 \text{ V}, V_{D}$	_S = 15 V,		32		1	
Turn-Off Delay Time	t _{d(OFF)}	V_{GS} = 4.5 V, V_{DS} = 15 V, I_{D} = 15 A, R_{G} = 3.0 Ω			21		ns	
Fall Time	t _f				7.0			
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 15 A, R_{G} = 3.0 Ω			8.0			
Rise Time	t _r				26		ns	
Turn-Off Delay Time	t _{d(OFF)}				26			
Fall Time	t _f				5.0			
DRAIN-SOURCE DIODE CHARACTERIS	STICS	-		-	-	-	-	
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V$,	T _J = 25°C		0.77	1.1	V	
		I _S = 10 A T _J = 125°C			0.62			
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } dI_{S}/dt = 100 \text{ A}/\mu\text{s,}$ $I_{S} = 30 \text{ A}$			40.2			
Charge Time	t _a				20.3		ns	
Discharge Time	t _b				19.9			
Reverse Recovery Charge	Q_{RR}				30.2		nC	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.

7. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

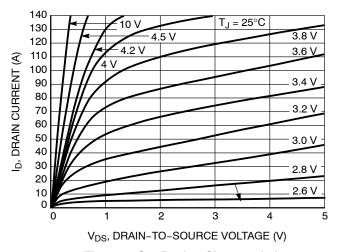


Figure 1. On-Region Characteristics

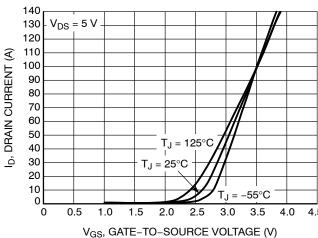


Figure 2. Transfer Characteristics

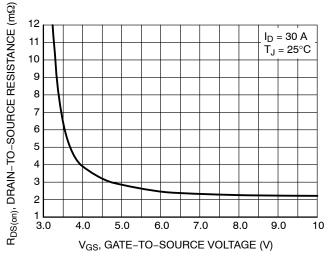


Figure 3. On-Resistance vs. V_{GS}

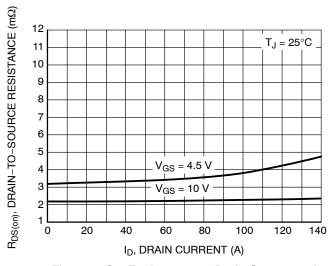


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

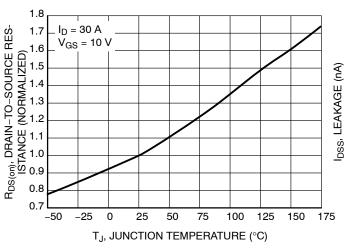


Figure 5. On–Resistance Variation with Temperature

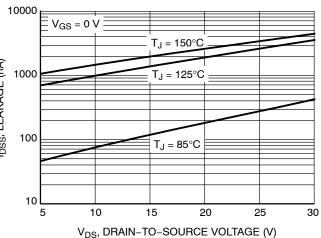


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

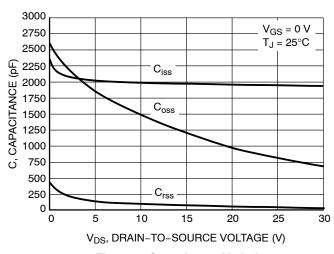


Figure 7. Capacitance Variation

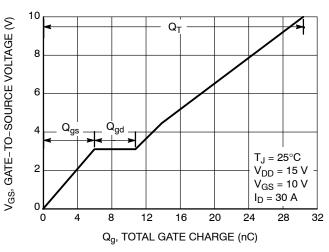


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

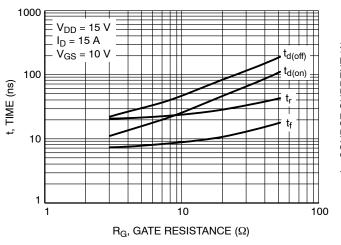


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

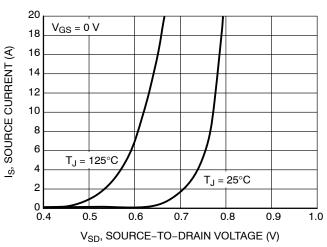


Figure 10. Diode Forward Voltage vs. Current

Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

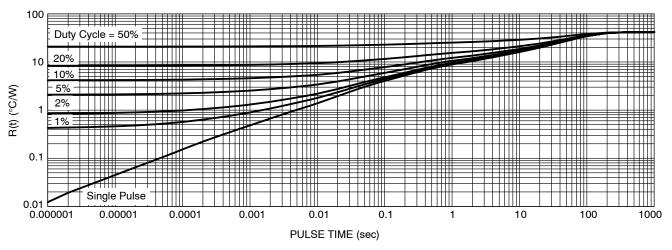


Figure 12. Thermal Response

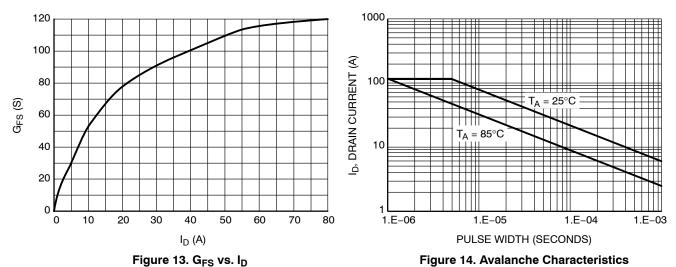


Figure 14. Avalanche Characteristics

DFN5 5x6, 1.27P (SO-8FL) CASE 488AA ISSUE N

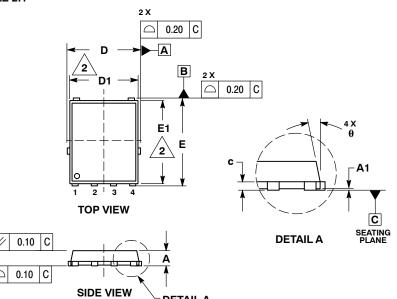
DATE 25 JUN 2018

NOTES:

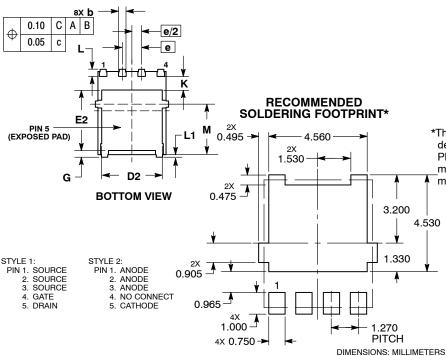
- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETER. DIMENSION D1 AND E1 DO NOT INCLUDE
- MOLD FLASH PROTRUSIONS OR GATE BURRS

	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	0.90	1.00	1.10		
A1	0.00		0.05		
b	0.33	0.41	0.51		
С	0.23	0.28	0.33		
D	5.00	5.15	5.30		
D1	4.70	4.90	5.10		
D2	3.80	4.00	4.20		
E	6.00	6.15	6.30		
E1	5.70	5.90	6.10		
E2	3.45	3.65	3.85		
е	1.27 BSC				
G	0.51	0.575	0.71		
K	1.20	1.35	1.50		
L	0.51	0.575	0.71		
L1	0.125 REF				
M	3.00	3.40	3.80		
θ	0 °		12 °		

GENERIC MARKING DIAGRAM*



XXXXXX = Specific Device Code


= Assembly Location Α

Υ = Year W = Work Week = Lot Traceability ZZ

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DETAIL A

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON14036D	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DFN5 5x6, 1.27P (SO-8FL)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFETs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

MCH3443-TL-E MCH6422-TL-E NTNS3A92PZT5G IRFD120 2SK2464-TL-E 2SK3818-DL-E 2SJ277-DL-E 2SK2267(Q) MIC4420CM-TR IRFS350 IPS70R2K0CEAKMA1 AON6932A TS19452CS RL 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG NTE2384 2N7000TA DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 DMP22D4UFO-7B DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 IRF40H233XTMA1 STU5N65M6 DMN6022SSD-13 DMN13M9UCA6-7 STU7N60DM2 DMTH10H4M6SPS-13 DMN2990UFB-7B 2N7002W-G MCQ7328-TP IPB45P03P4L11ATMA2 BXP4N65F BXP2N20L BXP2N65D TSM60NB380CP ROG SLF10N65ABV2 IRF9395MTRPBF FCMT080N65S3 NTD5C632NLT4G NTMFS0D55N03CGT1G NTMFS1D15N03CGT1G NTMTS0D4N04CTXG NTMTS1D6N10MCTXG NTMYS2D1N04CLTWG NVD360N65S3T4G