

NTJS3151P, NVJS3151P

MOSFET – Power, Single, P-Channel, Trench, ESD Protected, SC-88

12 V, 3.3 A

Features

- Leading Trench Technology for Low $R_{DS(ON)}$ Extending Battery Life
- SC-88 Small Outline (2x2 mm, SC70-6 Equivalent)
- Gate Diodes for ESD Protection
- NV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- High Side Load Switch
- Cell Phones, Computing, Digital Cameras, MP3s and PDAs

MAXIMUM RATINGS ($T_J = 25^\circ\text{C}$ unless otherwise stated)

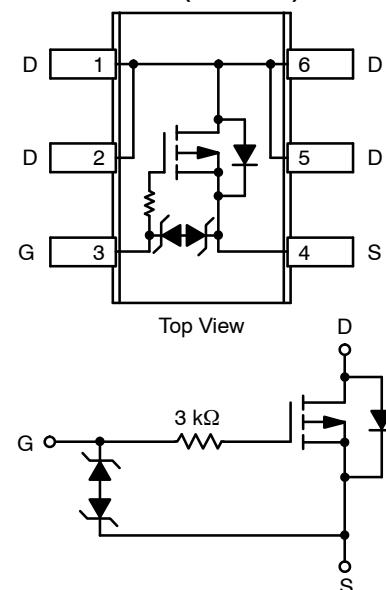
Parameter		Symbol	Value	Units
Drain-to-Source Voltage		V_{DSS}	-12	V
Gate-to-Source Voltage		V_{GS}	± 12	V
Continuous Drain Current (Note 1)	Steady State	$T_A = 25^\circ\text{C}$	I_D	A
		$T_A = 85^\circ\text{C}$		
	$t \leq 5\text{ s}$	$T_A = 25^\circ\text{C}$		
Power Dissipation (Note 1)	Steady State	$T_A = 25^\circ\text{C}$	P_D	0.625 W
Pulsed Drain Current	$t_p = 10\text{ }\mu\text{s}$	I_{DM}	-8.0	A
Operating Junction and Storage Temperature		T_J, T_{STG}	-55 to 150	$^\circ\text{C}$
Source Current (Body Diode)		I_S	-0.8	A
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		T_L	260	$^\circ\text{C}$

THERMAL RESISTANCE RATINGS (Note 1)

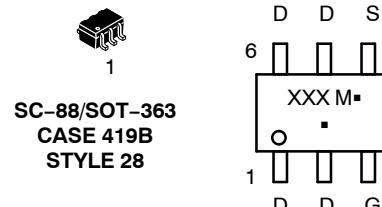
Parameter	Symbol	Max	Units
Junction-to-Ambient – Steady State	$R_{\theta JA}$	200	$^\circ\text{C/W}$
Junction-to-Ambient – $t \leq 5\text{ s}$	$R_{\theta JA}$	141	
Junction-to-Lead – Steady State	$R_{\theta JL}$	102	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).



ON Semiconductor®


www.onsemi.com

$V_{(BR)DSS}$	$R_{DS(on)} \text{ Typ}$	$I_D \text{ Max}$
-12 V	45 m Ω @ -4.5 V	-3.3 A
	67 m Ω @ -2.5 V	
	133 m Ω @ -1.8 V	

SC-88 (SOT-363)

MARKING DIAGRAM & PIN ASSIGNMENT

XXX = Device Code
 M = Date Code
 ▪ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

NTJS3151P, NVJS3151P

ELECTRICAL CHARACTERISTICS (T_J=25°C unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Typ	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = -250 μA		-12			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS/T_J}				10		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = -9.6 V, V _{DS} = 0 V	T _J = 25°C			-1.0	μA
			T _J = 125°C		-2.5		
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±4.5 V				±1.5	μA
		V _{DS} = 0 V, V _{GS} = ±12 V				±10	mA

ON CHARACTERISTICS (Note 2)

Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D = 100 μA	-0.40		-1.2	V
Negative Threshold Temperature Coefficient	V _{GS(TH)/T_J}			3.4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -4.5 V, I _D = -3.3 A		45	60	mΩ
		V _{GS} = -2.5 V, I _D = -2.9 A		67	90	
		V _{GS} = -1.8 V, I _D = -1.0 A		133	160	
Forward Transconductance	g _{FS}	V _{GS} = -10 V, I _D = -3.3 A		15		S

CHARGES AND CAPACITANCES

Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = -12 V		850		pF
Output Capacitance	C _{OSS}			170		
Reverse Transfer Capacitance	C _{RSS}			110		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = -4.5 V, V _{DS} = -5.0 V, I _D = -3.3 A		8.6		nC
Gate-to-Source Charge	Q _{GS}			1.3		
Gate-to-Drain Charge	Q _{GD}			2.2		
Gate Resistance	R _G			3000		Ω

SWITCHING CHARACTERISTICS (Note 3)

Turn-On Delay Time	t _{d(ON)}	V _{GS} = -4.5 V, V _{DD} = -6.0 V, I _D = -1.0 A, R _G = 6.0 Ω		0.86		μs
Rise Time	t _r			1.5		
Turn-Off Delay Time	t _{d(OFF)}			3.5		
Fall Time	t _f			3.9		

DRAIN-SOURCE DIODE CHARACTERISTICS (Note 2)

Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = -3.3 A	T _J = 25°C		-0.85	-1.2	V
			T _J = 125°C		-0.7		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: pulse width ≤ 300μs, duty cycle ≤ 2%.

3. Switching characteristics are independent of operating junction temperatures.

NTJS3151P, NVJS3151P

TYPICAL PERFORMANCE CURVES ($T_J = 25^\circ\text{C}$ unless otherwise noted)

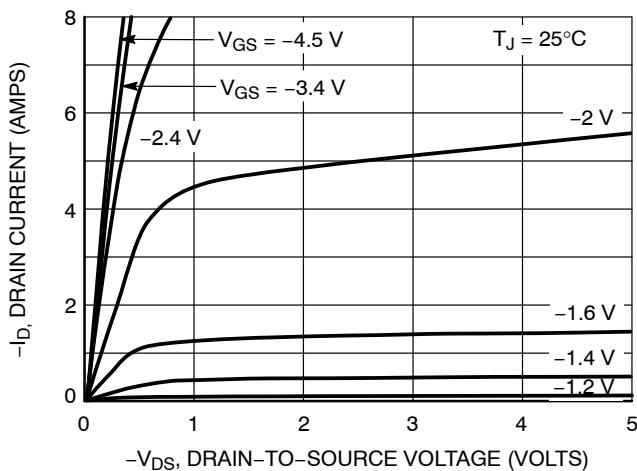


Figure 1. On-Region Characteristics

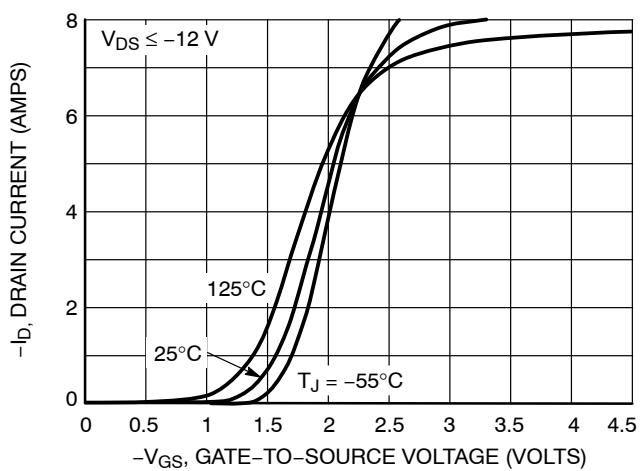


Figure 2. Transfer Characteristics

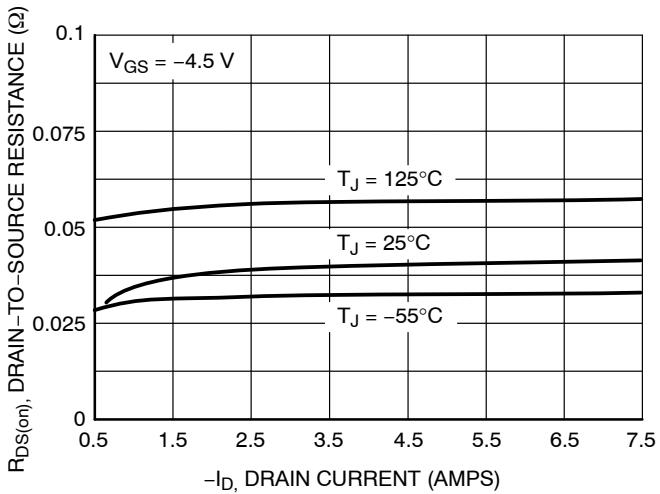


Figure 3. On-Resistance vs. Drain Current and Temperature

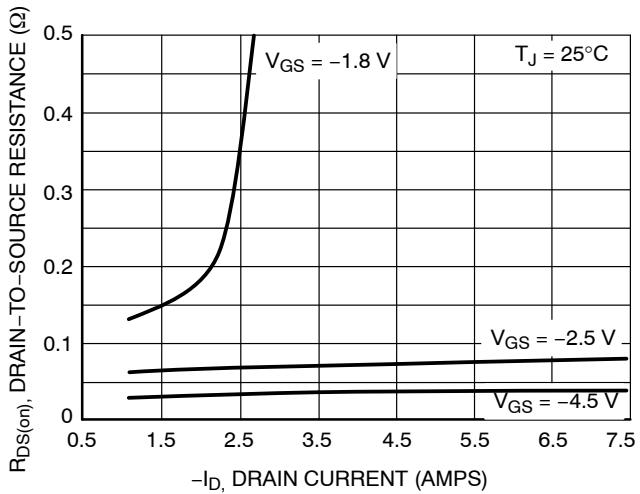


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

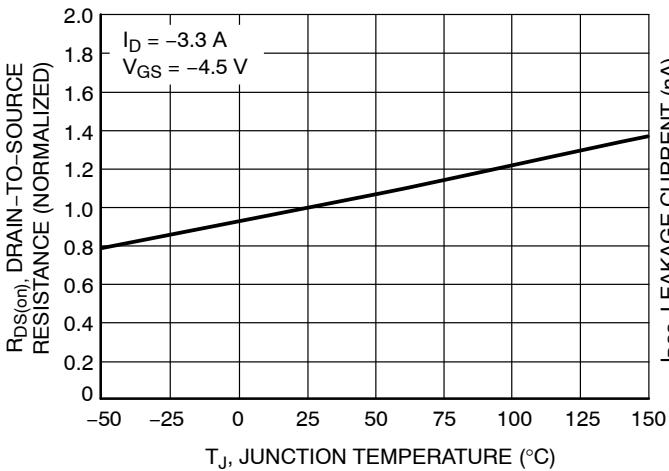


Figure 5. On-Resistance Variation with Temperature

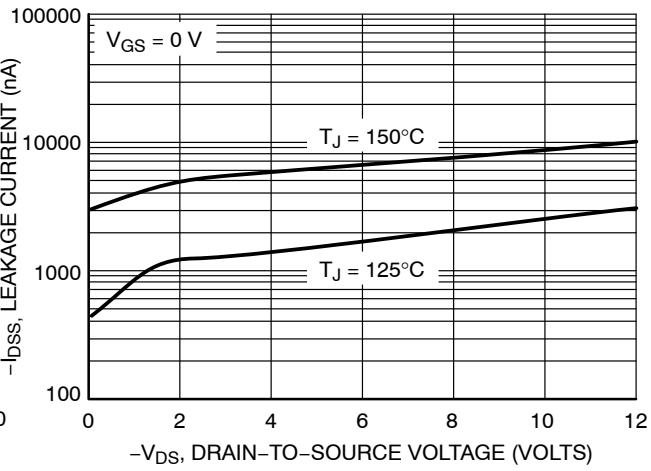


Figure 6. Drain-to-Source Leakage Current vs. Voltage

NTJS3151P, NVJS3151P

TYPICAL PERFORMANCE CURVES ($T_J = 25^\circ\text{C}$ unless otherwise noted)

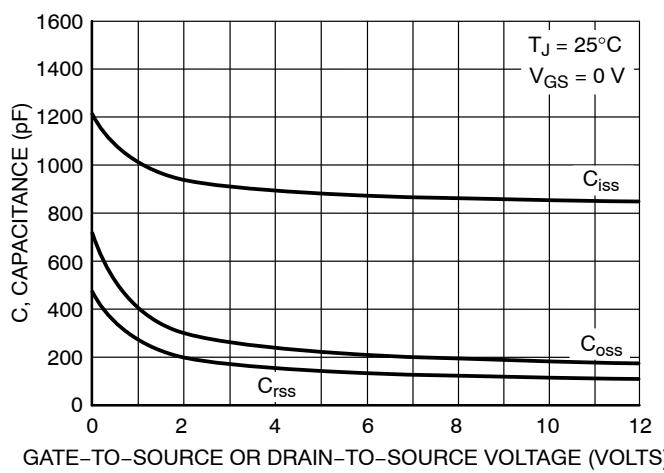


Figure 7. Capacitance Variation

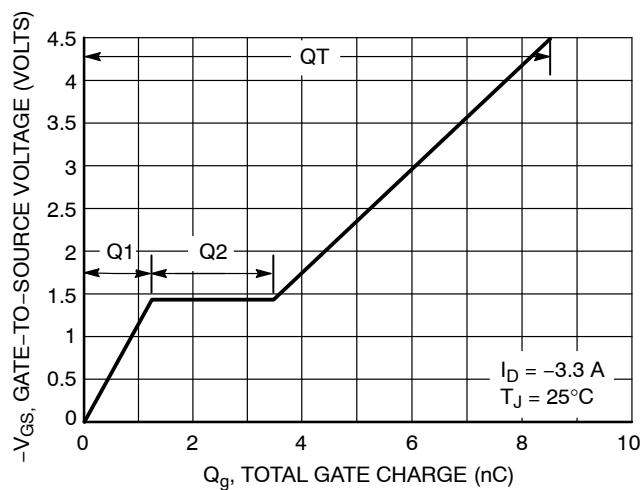


Figure 8. Gate-to-Source Voltage vs. Total Gate Charge

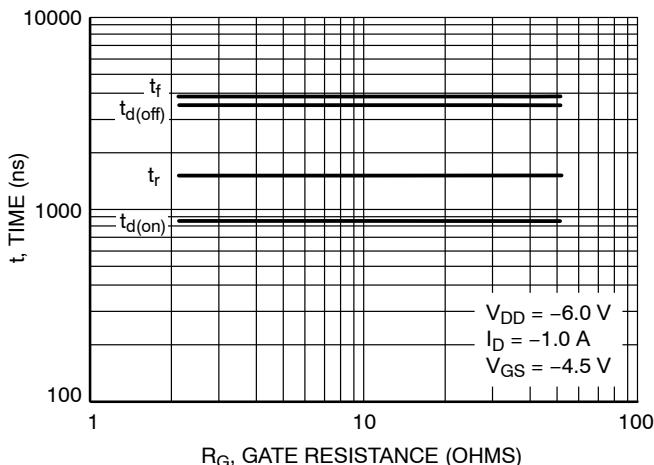


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

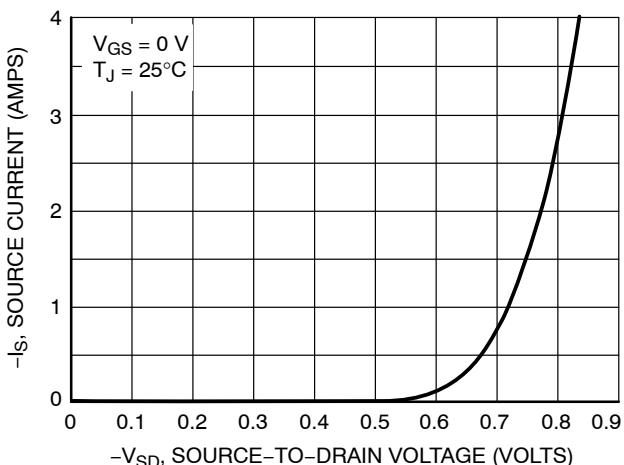


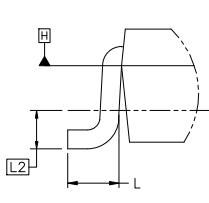
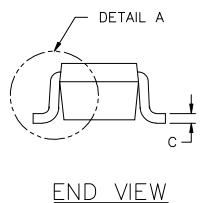
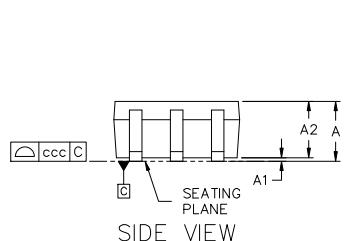
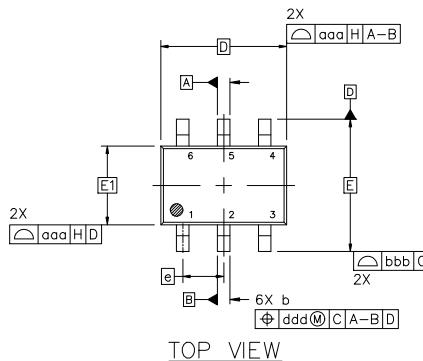
Figure 10. Diode Forward Voltage vs. Current

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTJS3151PT1G	TJ	SC-88 (Pb-Free)	3000 / Tape & Reel
NTJS3151PT2G	TJ		
NVJS3151PT1G*	VTJ		

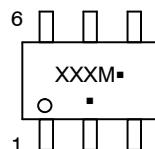
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

SC-88 2.00x1.25x0.90, 0.65P
CASE 419B-02
ISSUE Z

DATE 18 APR 2024


NOTES:

1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018.
2. ALL DIMENSION ARE IN MILLIMETERS.
3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.
4. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H.
5. DATUM A AND B ARE DETERMINED AT DATUM H.
6. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
7. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

DIM	MILLIMETERS		
	MIN.	NOM.	MAX.
A	---	---	1.10
A1	0.00	---	0.10
A2	0.70	0.90	1.00
b	0.15	0.20	0.25
c	0.08	0.15	0.22
D	2.00	BSC	
E	2.10	BSC	
E1	1.25	BSC	
e	0.65	BSC	
L	0.26	0.36	0.46
L2	0.15	BSC	
aaa	0.15		
bbb	0.30		
ccc	0.10		
ddd	0.10		

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

XXX = Specific Dev
M = Date Code*

■ = Pb-Free Package

RECOMMENDED MOUNTING FOOTPRINT*

* FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERFM1D.

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42985B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SC-88 2.00x1.25x0.90, 0.65P	PAGE 1 OF 2

onsemi and **ONSEMI** are trademarks of Semiconductor Components Industries, LLC dba **onsemi** or its subsidiaries in the United States and/or other countries. **onsemi** reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

SC-88 2.00x1.25x0.90, 0.65P
CASE 419B-02
ISSUE Z

DATE 18 APR 2024

STYLE 1: PIN 1. Emitter 2 2. Base 2 3. Collector 1 4. Emitter 1 5. Base 1 6. Collector 2	STYLE 2: Cancelled	STYLE 3: Cancelled	STYLE 4: PIN 1. Cathode 2. Cathode 3. Collector 4. Emitter 5. Base 6. Anode	STYLE 5: PIN 1. Anode 2. Anode 3. Collector 4. Emitter 5. Base 6. Cathode	STYLE 6: PIN 1. Anode 2 2. N/C 3. Cathode 1 4. Anode 1 5. N/C 6. Cathode 2
STYLE 7: PIN 1. Source 2 2. Drain 2 3. Gate 1 4. Source 1 5. Drain 1 6. Gate 2	STYLE 8: Cancelled	STYLE 9: PIN 1. Emitter 2 2. Emitter 1 3. Collector 1 4. Base 1 5. Base 2 6. Collector 2	STYLE 10: PIN 1. Source 2 2. Source 1 3. Collector 1 4. Drain 1 5. Drain 2 6. Gate 2	STYLE 11: PIN 1. Cathode 2 2. Cathode 2 3. Anode 1 4. Cathode 1 5. Cathode 1 6. Anode 2	STYLE 12: PIN 1. Anode 2 2. Anode 2 3. Cathode 1 4. Anode 1 5. Anode 1 6. Cathode 2
STYLE 13: PIN 1. Anode 2. N/C 3. Collector 4. Emitter 5. Base 6. Cathode	STYLE 14: PIN 1. Vref 2. GND 3. GND 4. Iout 5. Ven 6. Vcc	STYLE 15: PIN 1. Anode 1 2. Anode 2 3. Anode 3 4. Cathode 3 5. Cathode 2 6. Cathode 1	STYLE 16: PIN 1. Base 1 2. Emitter 2 3. Collector 2 4. Base 2 5. Emitter 1 6. Collector 1	STYLE 17: PIN 1. Base 1 2. Emitter 1 3. Collector 2 4. Base 2 5. Emitter 2 6. Collector 1	STYLE 18: PIN 1. Vin1 2. Vcc 3. Vout2 4. Vin2 5. Gnd 6. Vout1
STYLE 19: PIN 1. Iout 2. Gnd 3. Gnd 4. Vcc 5. Ven 6. Vref	STYLE 20: PIN 1. Collector 2. Collector 3. Base 4. Emitter 5. Collector 6. Collector	STYLE 21: PIN 1. Anode 1 2. N/C 3. Anode 2 4. Cathode 2 5. N/C 6. Cathode 1	STYLE 22: PIN 1. D1 (l) 2. Gnd 3. D2 (l) 4. D2 (c) 5. Vbus 6. D1 (c)	STYLE 23: PIN 1. Vn 2. Ch1 3. Vp 4. N/C 5. Ch2 6. N/C	STYLE 24: PIN 1. Cathode 2. Anode 3. Cathode 4. Cathode 5. Cathode 6. Cathode
STYLE 25: PIN 1. Base 1 2. Cathode 3. Collector 2 4. Base 2 5. Emitter 6. Collector 1	STYLE 26: PIN 1. Source 1 2. Gate 1 3. Drain 2 4. Source 2 5. Gate 2 6. Drain 1	STYLE 27: PIN 1. Base 2 2. Base 1 3. Collector 1 4. Emitter 1 5. Emitter 2 6. Collector 2	STYLE 28: PIN 1. Drain 2. Drain 3. Gate 4. Source 5. Drain 6. Drain	STYLE 29: PIN 1. Anode 2. Anode 3. Collector 4. Emitter 5. Base/Anode 6. Cathode	STYLE 30: PIN 1. Source 1 2. Drain 2 3. Drain 2 4. Source 2 5. Gate 1 6. Drain 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:	98ASB42985B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SC-88 2.00x1.25x0.90, 0.65P	PAGE 2 OF 2

onsemi and **Onsemi** are trademarks of Semiconductor Components Industries, LLC dba **onsemi** or its subsidiaries in the United States and/or other countries. **onsemi** reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for [MOSFETs](#) category:

Click to view products by [ON Semiconductor](#) manufacturer:

Other Similar products are found below :

[MCH3443-TL-E](#) [MCH6422-TL-E](#) [PMV32UP215](#) [NTNS3A92PZT5G](#) [IRFD120](#) [2SK2464-TL-E](#) [2SK3818-DL-E](#) [2SJ277-DL-E](#)
[MIC4420CM-TR](#) [IRFS350](#) [IPS70R2K0CEAKMA1](#) [AON6932A](#) [TS19452CS RL](#) [2SK2614\(TE16L1,Q\)](#) [EFC2J004NUZTDG](#)
[DMN1053UCP4-7](#) [NTE2384](#) [2N7000TA](#) [743-9](#) [US6M2GTR](#) [STF5N65M6](#) [IRF40H233XTMA1](#) [STU5N65M6](#) [DMN13M9UCA6-7](#)
[STU7N60DM2](#) [2N7002W-G](#) [MCAC30N06Y-TP](#) [IPB45P03P4L11ATMA2](#) [BXP4N65F](#) [BXP2N20L](#) [BXP2N65D](#) [SLF10N65ABV2](#)
[CJAC130SN06L](#) [HSBA6054](#) [HSBB6054](#) [HSBB0210](#) [HSBA6901](#) [BSC004NE2LS5](#) [BSZ075N08NS5](#) [LBSS138DW1T1G](#) [AP0903G](#)
[SSM10N954L,EFF\(S](#) [2SK3878\(STA1,E,S\)](#) [TPN6R303NC,LQ\(S](#) [AP3N5R0MT](#) [AP6NA3R2MT](#) [AP3C023AMT](#) [AP6242](#) [HSBB3909](#)
[HSBA3204](#)