ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

MOSFET – Power, N-Channel, SUPERFET[®] III, Automotive, Easy Drive 650 V, 30 A, 99 mΩ

Description

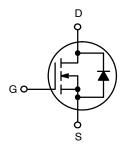
SUPERFET III MOSFET is ON Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This advanced technology is tailored to minimize conduction loss, provides superior switching performance, and withstand extreme dv/dt rate.

Consequently, SUPERFET III MOSFET Easy drive series helps manage EMI issues and allows for easier design implementation.

Features

- AEC-Q101 Qualified
- 700 V @ T_J = 150°C
- Typ. $R_{DS(on)} = 79 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Q_g = 61 nC)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 544 pF)
- 100% Avalanche Tested
- These Devices are Pb-Free and are RoHS Compliant

Applications


- Automotive On Board Charger
- Automotive DC/DC Converter for HEV

ON Semiconductor®

www.onsemi.com

V _{DSS}	R _{DS(ON)} MAX	I _D MAX
650 V	99 mΩ @ 10 V	30 A

POWER MOSFET

MARKING DIAGRAM

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = Data Code (Year & Week)

&K = Lot

NVB099N65S3 = Specific Device Code

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS ($T_C = 25^{\circ}C$, Unless otherwise noted)

Symbol	Parameter	Value	Unit	
V _{DSS}	Drain to Source Voltage	650	V	
V_{GSS}	Gate to Source Voltage	- DC	±30	V
		- AC (f > 1 Hz)	±30	
I _D	Drain Current	– Continuous (T _C = 25°C)	30	А
		- Continuous (T _C = 100°C)	19	
I _{DM}	Drain Current	- Pulsed (Note 1)	75	А
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	145	mJ	
I _{AS}	Avalanche Current (Note 2)		4.4	А
E _{AR}	Repetitive Avalanche Energy (Note 1)		2.27	mJ
dv/dt	dv/dt MOSFET dv/dt Peak Diode Recovery dv/dt (Note 3)		100	V/ns
			20	
P_{D}	Power Dissipation	(T _C = 25°C)	227	W
		- Derate Above 25°C	1.82	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 seconds		300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Repetitive rating: pulse–width limited by maximum junction temperature.
 2. $I_{AS}=4.4$ A, $R_{G}=25$ Ω , starting $T_{J}=25^{\circ}C$.
 3. $I_{SD}\leq15$ A, di/dt ≤200 A/ μ s, $V_{DD}\leq400$ V, starting $T_{J}=25^{\circ}C$.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case, Max.	0.55	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient, Max.	40	

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Reel Size	Tape Width	Shipping [†]
NVB099N65S3	NVB099N65S3	D ² -PAK	330 mm	24 mm	800 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
OFF CHARACT	ERISTICS		•			
BV _{DSS}	Drain to Source Breakdown Voltage	$V_{GS} = 0 \text{ V, } I_D = 1 \text{ mA, } T_J = 25^{\circ}\text{C}$	650			V
		V _{GS} = 0 V, I _D = 1 mA, T _J = 150°C	700			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = 1 mA, Referenced to 25°C		0.68		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 650 V, V _{GS} = 0 V			1	μΑ
		V _{DS} = 520 V, T _C = 125°C		1.4		
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
ON CHARACTE	RISTICS					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 0.74$ mA	2.5		4.5	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 15 A		79	99	mΩ
9 _{FS}	Forward Transconductance	V _{DS} = 20 V, I _D = 15 A		19		S
DYNAMIC CHAI	RACTERISTICS					
C _{iss}	Input Capacitance	V _{DS} = 400 V, V _{GS} = 0 V, f = 1 MHz		2480		pF
C _{oss}	Output Capacitance			55		pF
C _{oss(eff.)}	Effective Output Capacitance	V _{DS} = 0 V to 400 V, V _{GS} = 0 V		544		pF
C _{oss(er.)}	Energy Related Output Capacitance	V _{DS} = 0 V to 400 V, V _{GS} = 0 V		78		pF
Q _{g(tot)}	Total Gate Charge at 10 V	V _{DS} = 400 V, I _D = 15 A, V _{GS} = 10 V		61		nC
Q_{gs}	Gate to Source Gate Charge	(Note 4)		15		nC
Q_{gd}	Gate to Drain "Miller" Charge			25		nC
ESR	Equivalent Series Resistance	f = 1 MHz		0.4		Ω
SWITCHING CH	ARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 400 \text{ V}, I_D = 15 \text{ A}, V_{GS} = 10 \text{ V},$		23		ns
t _r	Turn-On Rise Time	$R_g = 4.7 \Omega$ (Note 4)		24		ns
t _{d(off)}	Turn-Off Delay Time			60		ns
t _f	Turn-Off Fall Time			5		ns
SOURCE-DRAII	N DIODE CHARACTERISTICS					
I _S	Maximum Continuous Source to Drain Diode Forward Current				30	Α
I _{SM}	Maximum Pulsed Source to Drain Diode Forward Current				75	Α
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 15 A			1.2	V
t _{rr}	Reverse Recovery Time	V _{DD} = 400 V, I _{SD} = 15 A,		408		ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 100 A/μs		8.4		μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Essentially independent of operating temperature typical characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

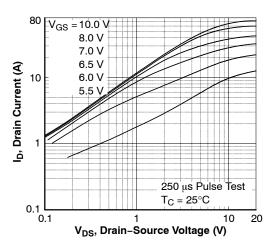


Figure 1. On-Region Characteristics (25°C)

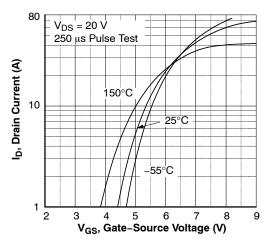


Figure 3. Transfer Characteristics

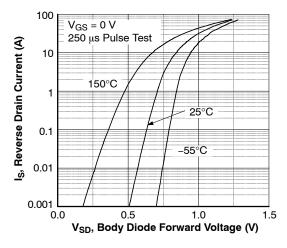


Figure 5. Body Diode Forward Voltage Variation vs. Source Current and Temperature

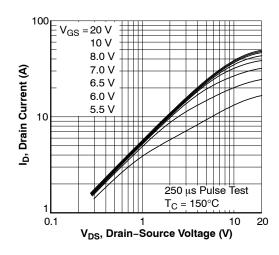


Figure 2. On-Region Characteristics (150°C)

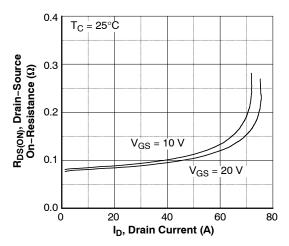


Figure 4. On-Resistance Variation vs. Drain Current and Gate Voltage

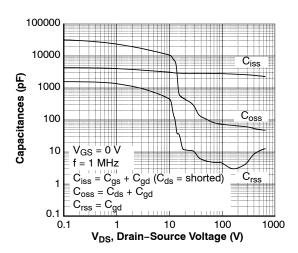


Figure 6. Capacitance Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

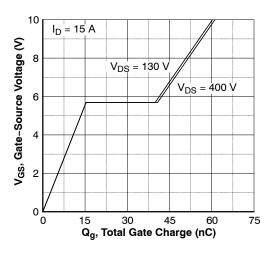


Figure 7. Gate Charge Characteristics

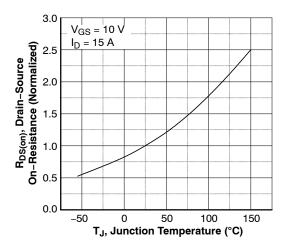


Figure 9. On–Resistance Variation vs. Temperature

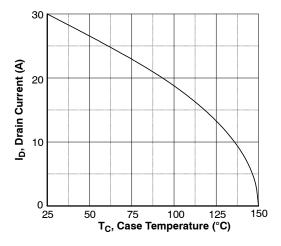


Figure 11. Maximum Drain Current vs. Case Temperature

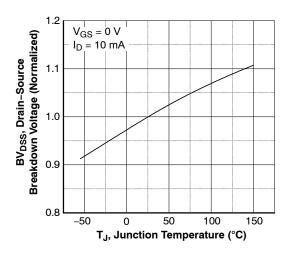


Figure 8. Breakdown Voltage Variation vs. Temperature

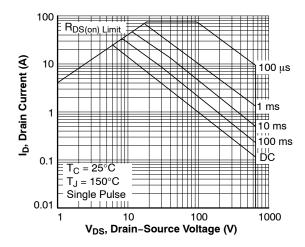


Figure 10. Maximum Safe Operating Area

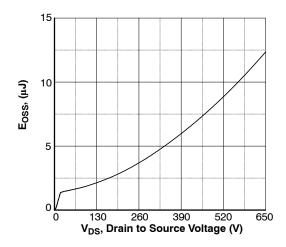


Figure 12. E_{OSS} vs. Drain to Source Voltage

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

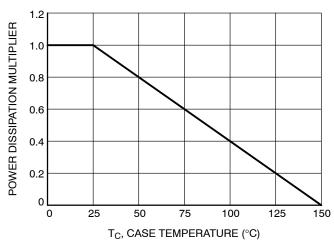


Figure 13. Normalized Power Dissipation vs.

Case Temperature

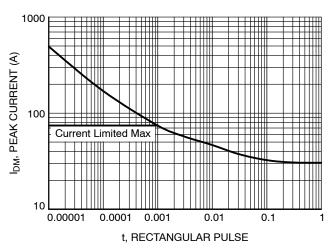


Figure 14. Peak Current Capability

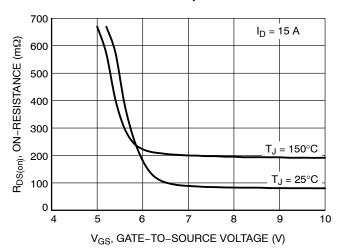


Figure 15. R_{DS(on)} vs. Gate Voltage

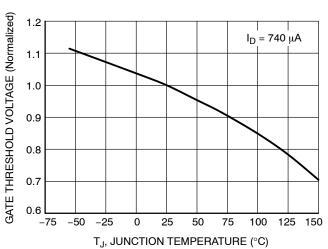


Figure 16. Normalized Gate Threshold Voltage vs. Temperature

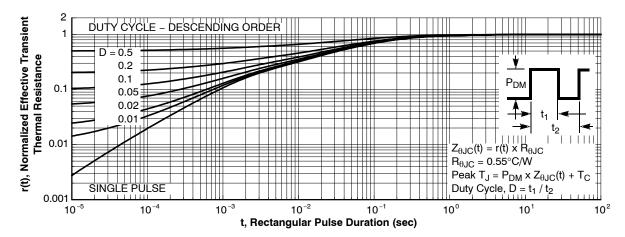


Figure 17. Transient Thermal Response Curve

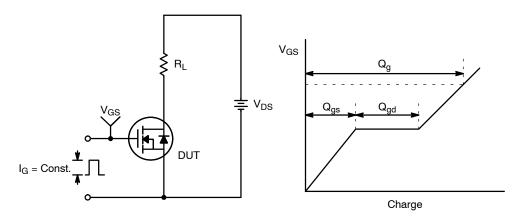


Figure 18. Gate Charge Test Circuit & Waveform

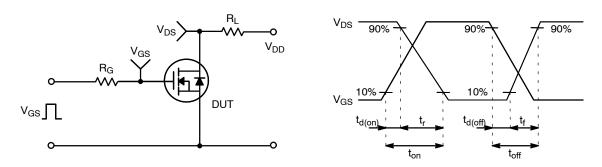


Figure 19. Resistive Switching Test Circuit & Waveforms

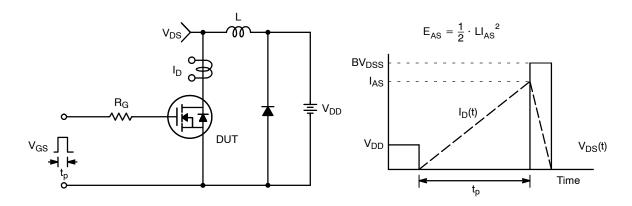


Figure 20. Unclamped Inductive Switching Test Circuit & Waveforms

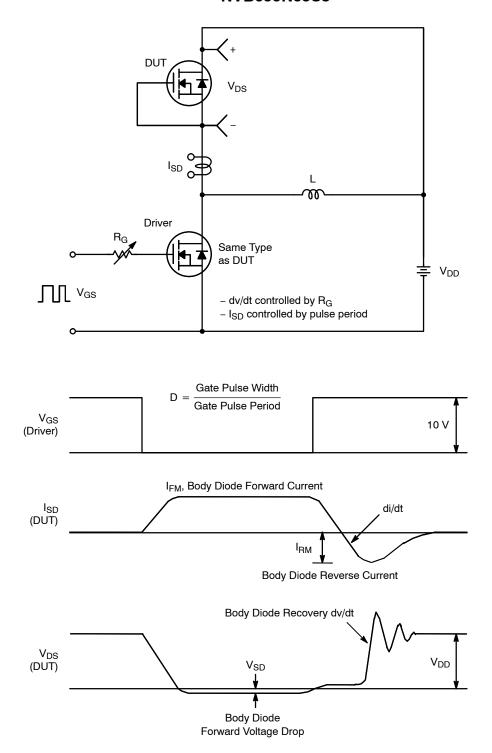
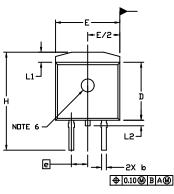


Figure 21. Peak Diode Recovery dv/dt Test Circuit & Waveforms

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

PACKAGE DIMENSIONS


D²PAK-3 (TO-263, 3-LEAD) CASE 418AJ

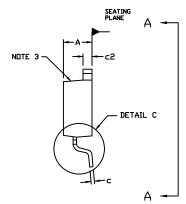
ISSUE E

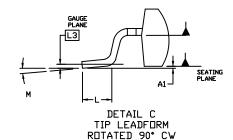
NOTES

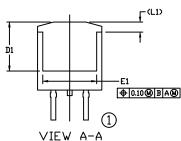
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. CHAMFER OPTIONAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.005 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
- THERMAL PAD CONTOUR IS OPTIONAL WITHIN DIMENSIONS E, L1, D1, AND E1.
- 6. OPTIONAL MOLD FEATURE.
- 7. ①,② ... OPTIONAL CONSTRUCTION FEATURE CALL DUTS.

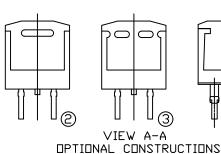
	INC	HES	MILLIN	ETERS	
DIM	MIN.	MAX.	MIN.	MAX.	
Α	0.160	0.190	4.06	4.83	
A1	0.000	0.010	0.00	0.25	
b	0.020	0.039	0.51	0.99	
c	0.012	0.029	0.30	0.74	
c2	0.045	0.065	1.14	1.65	
D	0.330	0.380	8.38	9.65	
D1	0.260		6.60		
E	0.380	0.420	9.65	10.67	
E1	0.245		6.22		
e	0.100 BSC		2.54 BSC		
Н	0.575	0.625	14.60	15.88	
L	0.070	0.110	1.78	2.79	
L1		0.066		1.68	
L2		0.070		1.78	
L3	0.010 BSC		0.010 BSC 0.25 BSC		BSC
М	-8*	8*	-8*	å	

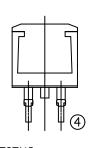
RECOMMENDED MOUNTING FOOTPRINT


0.436


0.653


2x 0.063


0.366


0.169

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.nsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFETs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

MCH3443-TL-E MCH6422-TL-E NTNS3A92PZT5G IRFD120 2SK2464-TL-E 2SK3818-DL-E 2SJ277-DL-E 2SK2267(Q) MIC4420CM-TR IRFS350 IPS70R2K0CEAKMA1 AON6932A 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG SCM040600 NTE2384 2N7000TA DMN2080UCB4-7 US6M2GTR DMN31D5UDJ-7 DMP22D4UFO-7B DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 IRF40H233XTMA1 STU5N65M6 DMN13M9UCA6-7 STU7N60DM2 DMTH10H4M6SPS-13 2N7002W-G MCQ7328-TP IPB45P03P4L11ATMA2 BXP4N65F BXP2N20L BXP2N65D TSM60NB380CP ROG SLF10N65ABV2 IRF9395MTRPBF FCMT080N65S3 NTD5C632NLT4G NTMFS0D55N03CGT1G NTMFS1D15N03CGT1G NTMTS1D6N10MCTXG NTMYS2D1N04CLTWG NVD360N65S3T4G NVD5C464NLT4G NVMTS001N06CLTXG NVMTS1D1N04CTXG CJAC130SN06L