

MOSFET - Power, Single N-Channel, Source Down 33, WDFN9 25 V, 0.58 mΩ, 310 A

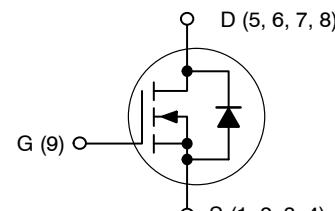
NTTFSSH0D7N02X

Features

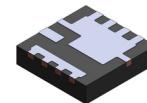
- Advanced Source-Down Package Technology (3.3 x 3.3 mm) with Excellent Thermal Conduction
- Ultra Low $R_{DS(on)}$ to Improve System Efficiency
- Low Q_G and Capacitance to Minimize Driving and Switching Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- High Switching Frequency DC-DC Conversion
- Synchronous Rectifier


MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	25	V
Gate-to-Source Voltage	V _{GS}	-12/+16	V
Continuous Drain Current (Notes 1, 2)	T _C = 25°C	I _D	A
	T _C = 100°C	196	
Power Dissipation (Note 1)	T _C = 25°C	P _D	W
Pulsed Drain Current	T _C = 25°C, t _p = 100 μs	I _{DM}	1342
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C
Source Current (Body Diode)	I _S	146	A
Single Pulse Avalanche Energy (Note 3) (I _{PK} = 62 A)	E _{AS}	192	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)	T _L	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- The entire application environment impacts the thermal resistance values shown, they are not constants and are valid for the particular conditions noted.
- Surface-mounted on FR4 board using a 1 in² pad size, 1 oz Cu pad.
- E_{AS} of 192 mJ is based on started T_J = 25°C, I_{AS} = 62 A, V_{GS} = 10 V, 100% avalanche tested.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
25 V	0.58 mΩ @ V _{GS} = 10 V	310 A
	0.80 mΩ @ V _{GS} = 4.5 V	

N-CHANNEL MOSFET

WDFN9
CASE 511EB

MARKING DIAGRAM

0D7N02 = Specific Device Code

A = Assembly Location

WL = Wafer Lot

Y = Year

WW = Work Week

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta,JC}$	1.4	$^{\circ}\text{C}/\text{W}$
Thermal Resistance, Junction-to-Ambient (Note 4)	$R_{\theta,JA}$	60	

4. Surface-mounted on FR4 board using a 1 in² pad size, 1 oz Cu pad.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}\text{C}$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
-----------	--------	-----------------	-----	-----	-----	------

OFF CHARACTERISTICS

Drain-to-Source Breakdown Voltage	$V_{(\text{BR})\text{DSS}}$	$V_{\text{GS}} = 0 \text{ V}, I_D = 1 \text{ mA}$	25			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$\Delta V_{(\text{BR})\text{DSS}}/\Delta T_J$	$I_D = 1 \text{ mA}$, Referenced to 25°C		21		$\text{mV}/^{\circ}\text{C}$
Zero Gate Voltage Drain Current	I_{DSS}	$V_{\text{DS}} = 20 \text{ V}$		10		μA
		$V_{\text{DS}} = 20 \text{ V}, T_J = 125^{\circ}\text{C}$		100		
Gate-to-Source Leakage Current	I_{GSS}	$V_{\text{DS}} = 0 \text{ V}, V_{\text{GS}} = +16 \text{ V}$		100		nA

ON CHARACTERISTICS

Drain-to-Source On Resistance	$R_{\text{DS}(\text{ON})}$	$V_{\text{GS}} = 10 \text{ V}, I_D = 24 \text{ A}$		0.51	0.58	$\text{m}\Omega$
		$V_{\text{GS}} = 6 \text{ V}, I_D = 19 \text{ A}$		0.56	0.65	
		$V_{\text{GS}} = 4.5 \text{ V}, I_D = 19 \text{ A}$		0.66	0.80	
Gate Threshold Voltage	$V_{\text{GS}(\text{TH})}$	$V_{\text{GS}} = V_{\text{DS}}, I_D = 484 \mu\text{A}$	1.1		2.0	V
Gate Threshold Voltage Temperature Coefficient	$\Delta V_{\text{GS}(\text{TH})}/\Delta T_J$	$V_{\text{GS}} = V_{\text{DS}}, I_D = 484 \mu\text{A}$		-3		$\text{mV}/^{\circ}\text{C}$
Forward Transconductance	g_{FS}	$V_{\text{DS}} = 5 \text{ V}, I_D = 24 \text{ A}$		190		S

CHARGES, CAPACITANCES & GATE RESISTANCE

Input Capacitance	C_{ISS}	$V_{\text{GS}} = 0 \text{ V}, V_{\text{DS}} = 12 \text{ V}, f = 1 \text{ MHz}$		3980		pF
Output Capacitance	C_{OSS}			1160		
Reverse Transfer Capacitance	C_{RSS}			124		
Output Charge	Q_{OSS}			22		nC
Total Gate Charge	$Q_{\text{G}(\text{TOT})}$	$V_{\text{GS}} = 4.5 \text{ V}, V_{\text{DD}} = 12 \text{ V}, I_D = 24 \text{ A}$		25		
		$V_{\text{GS}} = 6 \text{ V}, V_{\text{DD}} = 12 \text{ V}, I_D = 24 \text{ A}$		33		
		$V_{\text{GS}} = 10 \text{ V}, V_{\text{DD}} = 12 \text{ V}, I_D = 24 \text{ A}$		55		
Threshold Gate Charge	$Q_{\text{G}(\text{TH})}$			5.7		
Gate-to-Source Charge	Q_{GS}			9.7		
Gate-to-Drain Charge	Q_{GD}			4.1		
Gate Plateau Voltage	V_{GP}			2.5		V
Gate Resistance	R_{G}	$f = 1 \text{ MHz}$		0.4		Ω

SWITCHING CHARACTERISTICS

Turn-On Delay Time	$t_{\text{d}(\text{ON})}$	Resistive Load, $V_{\text{GS}} = 0/10 \text{ V}, V_{\text{DD}} = 12 \text{ V}, I_D = 24 \text{ A}, R_{\text{G}} = 2.5 \Omega$		4		ns
Rise Time	t_r			6		
Turn-Off Delay Time	$t_{\text{d}(\text{OFF})}$			26		
Fall Time	t_f			57		

SOURCE-TO-DRAIN DIODE CHARACTERISTICS

Forward Diode Voltage	V_{SD}	$V_{\text{GS}} = 0 \text{ V}, I_S = 24 \text{ A}, T_J = 25^{\circ}\text{C}$		0.76	1.2	V
		$V_{\text{GS}} = 0 \text{ V}, I_S = 24 \text{ A}, T_J = 125^{\circ}\text{C}$		0.63		

NTTFSSH0D7N02X

ELECTRICAL CHARACTERISTICS (T_J = 25 °C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
SOURCE-TO-DRAIN DIODE CHARACTERISTICS						
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V}$, $I_S = 24 \text{ A}$, $dI/dt = 700 \text{ A}/\mu\text{s}$, $V_{DD} = 12 \text{ V}$		17		ns
Charge Time	t _a			10		
Discharge Time	t _b			7		
Reverse Recovery Charge	Q _{RR}			58		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

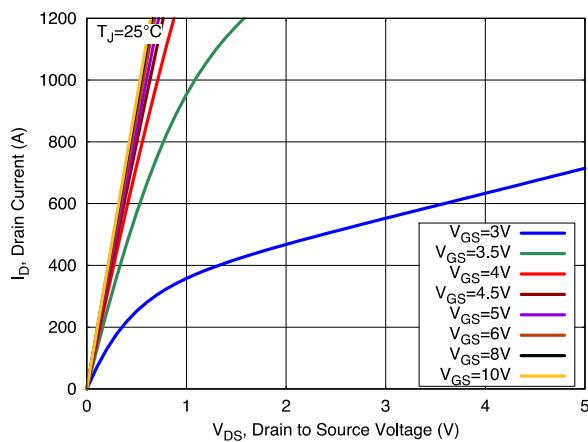


Figure 1. On-Region Characteristics

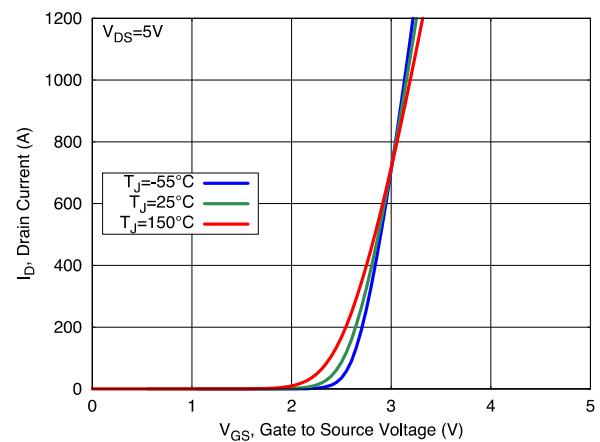


Figure 2. Transfer Characteristics

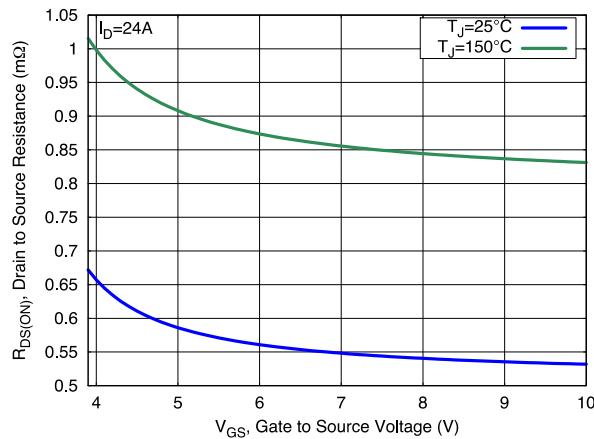


Figure 3. On-Resistance vs. Gate Voltage

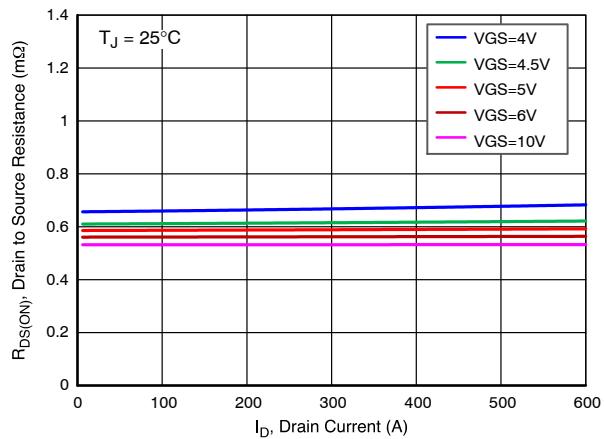


Figure 4. On-Resistance vs. Drain Current

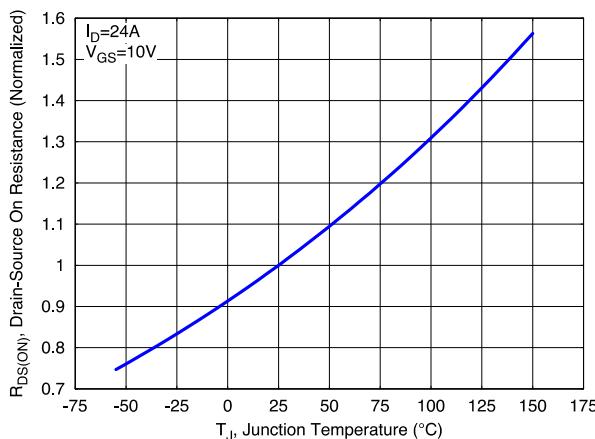


Figure 5. Normalized ON Resistance vs. Junction Temperature

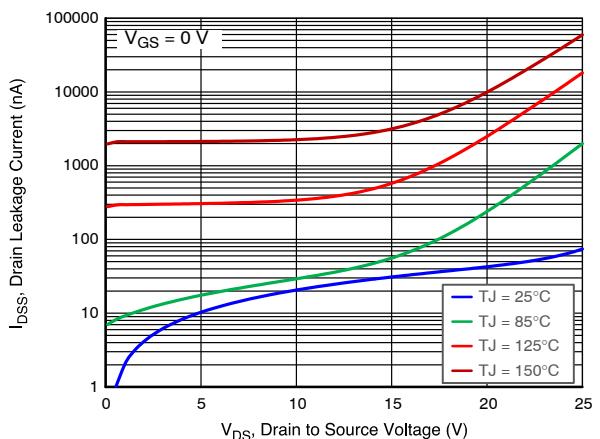
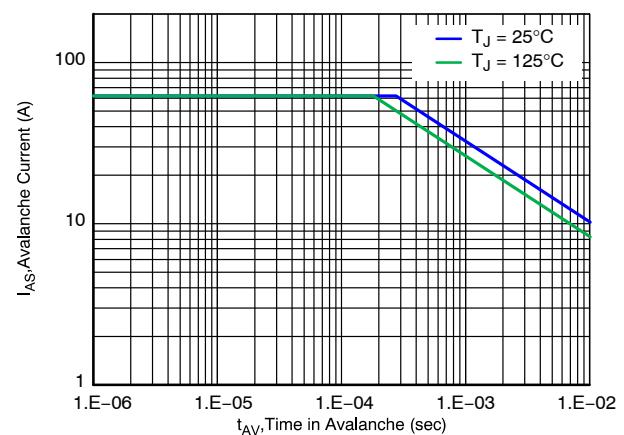
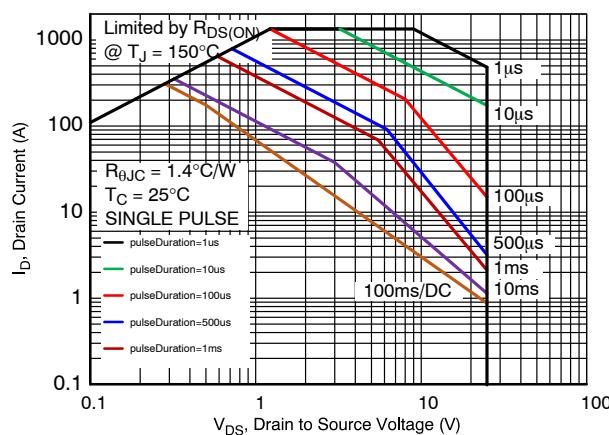
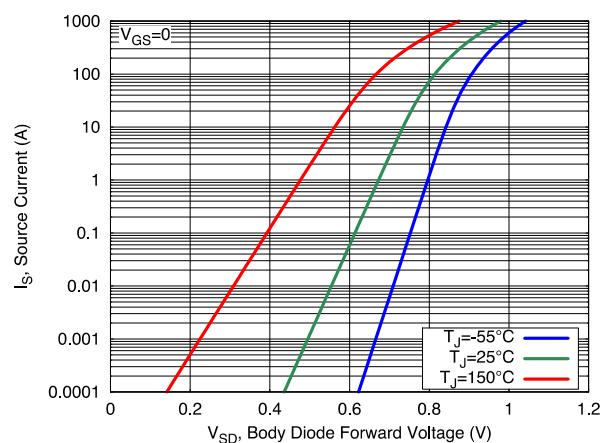
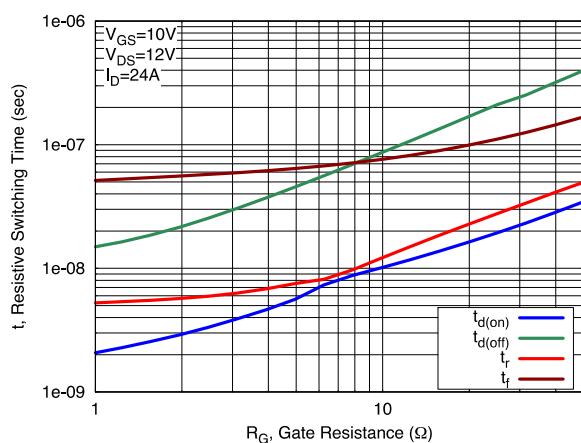
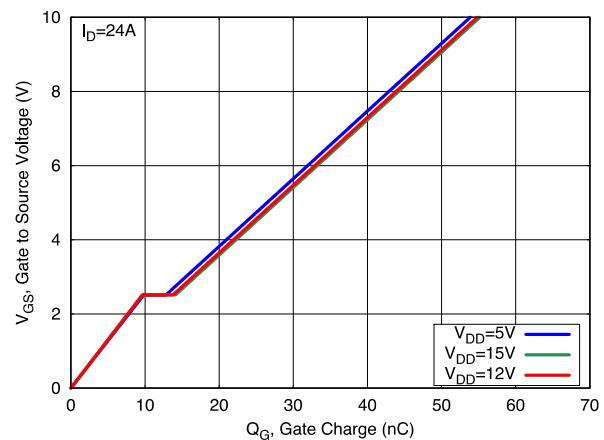








Figure 6. Drain Leakage Current vs Drain Voltage

TYPICAL CHARACTERISTICS

NTTFSSH0D7N02X

TYPICAL CHARACTERISTICS

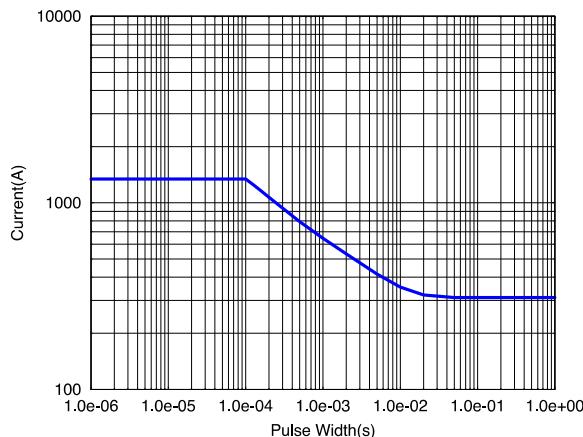


Figure 13. IDM vs Pulse Width

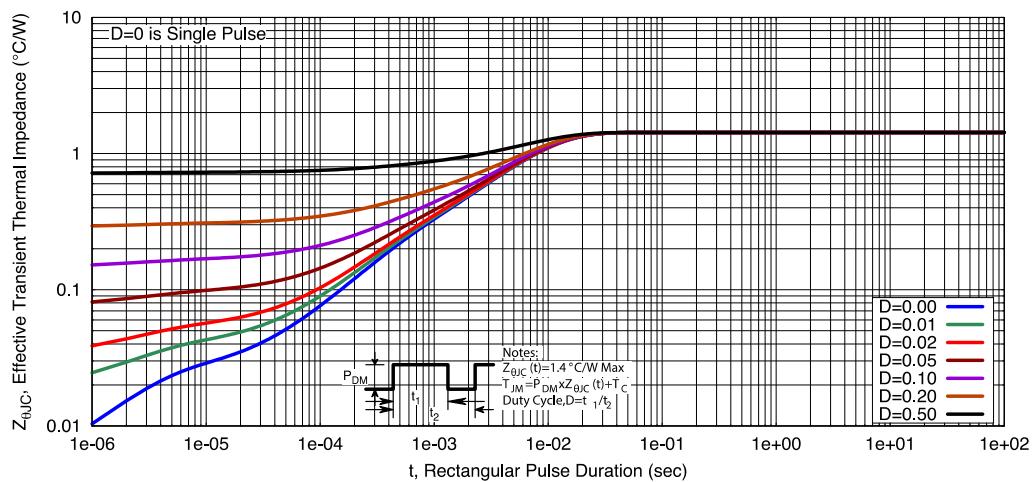
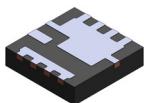
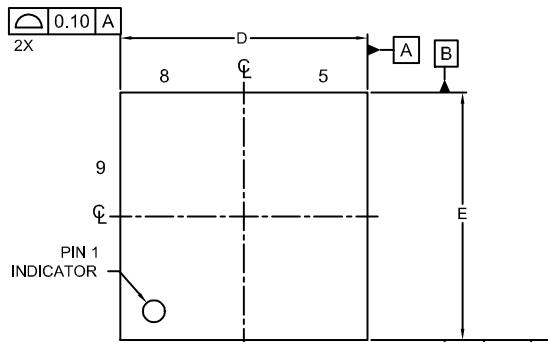



Figure 14. Transient Thermal Response

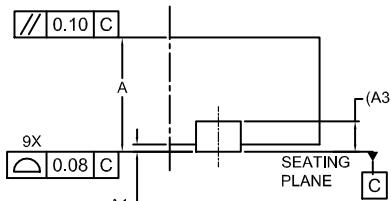
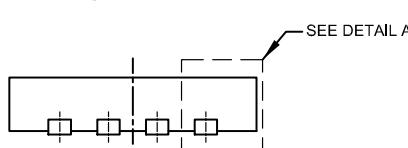
ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTTFSSH0D7N02X	0D7N02	WDFN9 (Pb-Free)	3000 / Tape & Reel

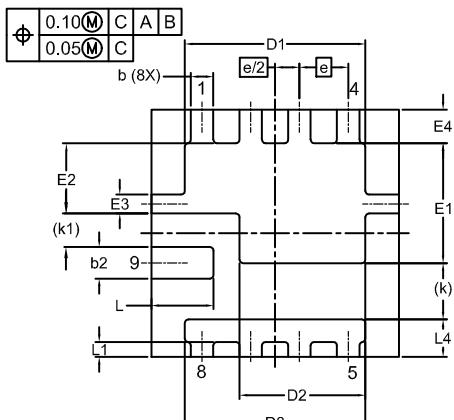
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

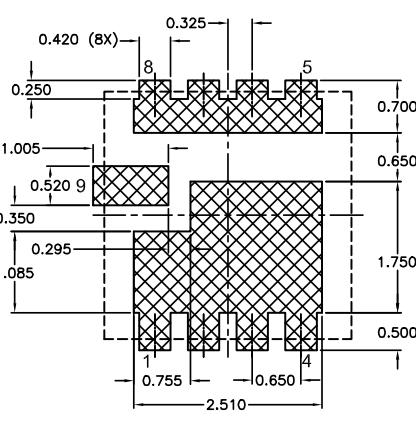


WDFN9 3.3x3.3, 0.65P



CASE 511EB

ISSUE B


DATE 21 JUL 2021


TOP VIEW

DETAIL A
SCALE: 2:1

FRONT VIEW

BOTTOM VIEW

UNIT IN MILLIMETER			
DIM	MIN	NOM	MAX
A	0.70	0.75	0.80
A1	0.00	0.02	0.05
A3	0.20 REF		
b	0.25	0.30	0.35
b2	0.37	0.42	0.47
D	3.20	3.30	3.40
D1	2.31	2.41	2.51
D2	1.58	1.68	1.78
D3	2.31	2.41	2.51
E	3.20	3.30	3.40
E1	1.50	1.60	1.70
E2	0.84	0.94	1.04
E3	0.20	0.25	0.30
E4	0.35	0.45	0.55
e	0.650 BSC		
e/2	0.325 BSC		
k	0.75 REF		
K1	0.45 REF		
L	0.73	0.83	0.93
L1	0.10	0.20	0.30
L4	0.40	0.50	0.60

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

**GENERIC
MARKING DIAGRAM***

XXXXX = Specific Device Code
A = Assembly Location
WL = Wafer Lot
Y = Year
WW = Work Week

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON08290H	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	WDFN9 3.3x3.3, 0.65P	PAGE 1 OF 1

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for [MOSFETs](#) category:

Click to view products by [ON Semiconductor](#) manufacturer:

Other Similar products are found below :

[MCH3443-TL-E](#) [MCH6422-TL-E](#) [PMV32UP215](#) [NTNS3A92PZT5G](#) [IRFD120](#) [2SK2464-TL-E](#) [2SK3818-DL-E](#) [2SJ277-DL-E](#)
[MIC4420CM-TR](#) [IRFS350](#) [IPS70R2K0CEAKMA1](#) [AON6932A](#) [TS19452CS RL](#) [2SK2614\(TE16L1,Q\)](#) [EFC2J004NUZTDG](#)
[DMN1053UCP4-7](#) [NTE2384](#) [2N7000TA](#) [743-9](#) [US6M2GTR](#) [STF5N65M6](#) [IRF40H233XTMA1](#) [STU5N65M6](#) [DMN13M9UCA6-7](#)
[STU7N60DM2](#) [2N7002W-G](#) [MCAC30N06Y-TP](#) [IPB45P03P4L11ATMA2](#) [BXP4N65F](#) [BXP2N20L](#) [BXP2N65D](#) [SLF10N65ABV2](#)
[CJAC130SN06L](#) [HSBA6054](#) [HSBB6054](#) [HSBB0210](#) [HSBA6901](#) [BSC004NE2LS5](#) [BSZ075N08NS5](#) [LBSS138DW1T1G](#) [AP0903G](#)
[SSM10N954L,EFF\(S](#) [2SK3878\(STA1,E,S\)](#) [TPN6R303NC,LQ\(S](#) [AP3N5R0MT](#) [AP6NA3R2MT](#) [AP3C023AMT](#) [AP6242](#) [HSBB3909](#)
[HSBA3204](#)