

MOSFET - Power, Single N-Channel, SUPERFET®, FAST, TO220

600 V, 125 mΩ, 22 A

NTP125N60S5H

Description

The SUPERFET V MOSFET FAST series helps maximize system efficiency by the extremely low switching losses in hard switching application.

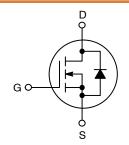
Features

- 650 V @ $T_J = 150^{\circ}C / Typ. R_{DS(on)} = 100 \text{ m}\Omega$
- 100% Avalanche Tested
- Pb-Free, Halogen Free / BFR Free and RoHS Compliant

Applications

- Telecom / Server Power Supplies
- EV Charger / UPS / Solar / Industrial Power Supplies

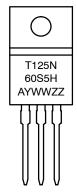
MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)


Parameter		Symbol	Value	Unit
Drain-to-Source Voltage		V_{DSS}	600	V
Gate-to-Source Voltage	DC	V _{GS}	±30	V
	AC (f > 1 Hz)		±30	
Continuous Drain Current	T _C = 25°C	I _D	22	Α
	T _C = 100°C		13	
Power Dissipation	T _C = 25°C	P_{D}	152	W
Pulsed Drain Current (Note 1)	T _C = 25°C	I _{DM}	77	Α
Pulsed Source Current (Body Diode) (Note 1)		I _{SM}	77	Α
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +150	°C
Source Current (Body Diode)		I _S	22	Α
Single Pulse Avalanche Energy	$I_L = 4.5 \text{ A},$ $R_G = 25 \Omega$	E _{AS}	184	mJ
Avalanche Current		I _{AS}	4.5	Α
Repetitive Avalanche Energy (Note 1)		E _{AR}	1.52	mJ
MOSFET dv/dt		dv/dt	120	V/ns
Peak Diode Recovery dv/dt (Note 2)			20	
Lead Temperature for Soldering Purposes (1/8" from case for 10 seconds)		T_L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1

- 1. Repetitive rating: pulse-width limited by maximum junction temperature.
- 2. $I_{SD} \le 11$ A, di/dt ≤ 200 A/ μ s, $V_{DD} \le 400$ V, starting $T_J = 25$ °C.


V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
600 V	125 mΩ @ 10 V	22 A

N-CHANNEL MOSFET

MARKING DIAGRAM

T125N60S5H = Specific Device Code

= Assembly Location

YWW = Date Code (Year & Week)

ZZ = Assembly Lot

ORDERING INFORMATION

Device	Package	Shipping
NTP125N60S5H	TO220	50 Units / Tube

THERMAL CHARACTERISTICS

Parameter		Value	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	0.82	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	62.5	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS				•	•	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 10 \text{ mA}, T_J = 25^{\circ}\text{C}$	600	-	_	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$\Delta V_{(BR)DSS}/ \Delta T_J$	I _D = 10 mA, Referenced to 25°C	-	630	-	mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 600 V, T _J = 25°C	-	-	1	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±100	nA
ON CHARACTERISTICS						
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 11 A, T _J = 25°C	-	100	125	mΩ
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 2.1 \text{ mA}, T_J = 25^{\circ}\text{C}$	2.7	-	4.3	V
Forward Transconductance	9 _{FS}	V _{DS} = 20 V, I _D = 11 A	-	21.7	-	S
CHARGES, CAPACITANCES & GATE RESI	STANCE					
Input Capacitance	C _{ISS}	$V_{DS} = 400 \text{ V}, V_{GS} = 0 \text{ V}, f = 250 \text{ kHz}$	-	2036	-	pF
Output Capacitance	C _{OSS}]	-	31.4	-	
Time Related Output Capacitance	C _{OSS(tr)}	I_D = Constant, V_{DS} = 0 to 400 V, V_{GS} = 0 V	-	485	-	
Energy Related Output Capacitance	C _{OSS(er)}	V _{DS} = 0 to 400 V, V _{GS} = 0 V	-	52.5	-	
Total Gate Charge	Q _{G(TOT)}	V _{DD} = 400 V, I _D = 11 A,	-	37.3	-	nC
Gate-to-Source Charge	Q_{GS}	V _{GS} = 10 V	-	9.92	-	
Gate-to-Drain Charge	Q_{GD}		-	10.4	-	1
Gate Resistance	R_{G}	f = 1 MHz	-	1.08	-	Ω
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 0/10 \text{ V}, V_{DD} = 400 \text{ V},$	-	21	_	ns
Rise Time	t _r	I_D = 11 A, R_G = 7.5 Ω	-	6.02	-	
Turn-Off Delay Time	t _{d(OFF)}]	-	59.8	-	
Fall Time	t _f]	-	2.66	-	
SOURCE-TO-DRAIN DIODE CHARACTER	ISTICS			_		
Forward Diode Voltage	V_{SD}	I _{SD} = 11 A, V _{GS} = 0 V, T _J = 25°C	-	-	1.2	V
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V}, I_{SD} = 11 \text{ A},$	-	337	-	ns
Reverse Recovery Charge	Q _{RR}	dI/dt = 100 A/μs, V _{DD} = 400 V	-	4529	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

TYPICAL CHARACTERISTICS

1000

V_{DS}=20V

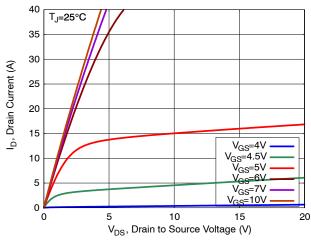
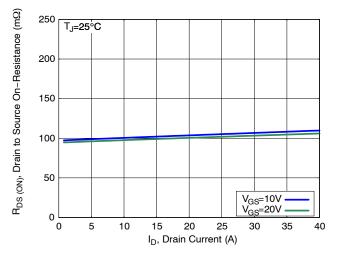



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

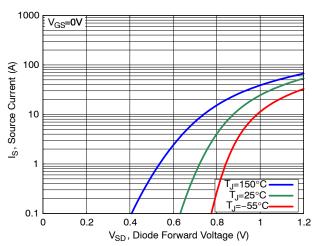
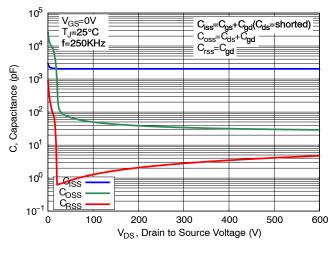



Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

Figure 4. Diode Forward Voltage vs. Source Current

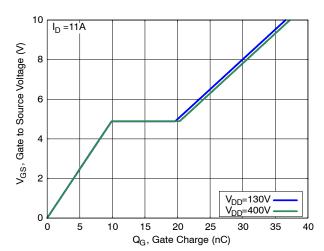


Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics

TYPICAL CHARACTERISTICS

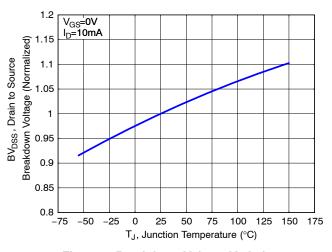


Figure 7. Breakdown Voltage Variation vs. Temperature

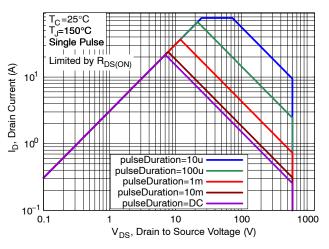


Figure 9. Maximum Safe Operating Area

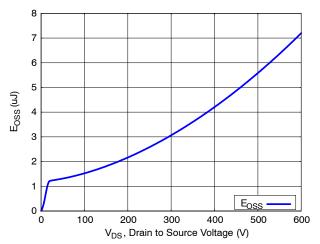


Figure 11. Eoss vs. Drain-to-Source Voltage

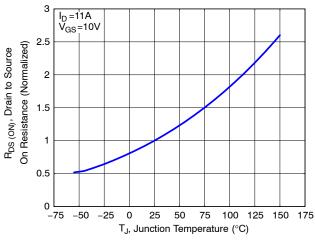


Figure 8. On–Resistance Variation vs.
Temperature

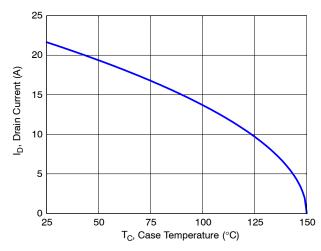


Figure 10. Maximum Drain Current vs. Case Temperature

TYPICAL CHARACTERISTICS

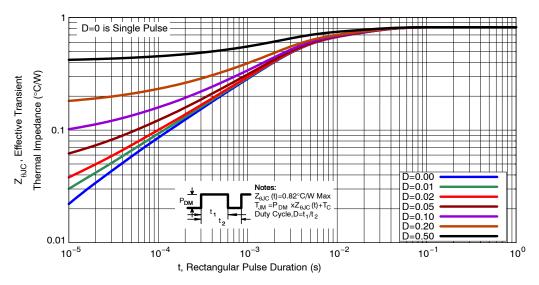
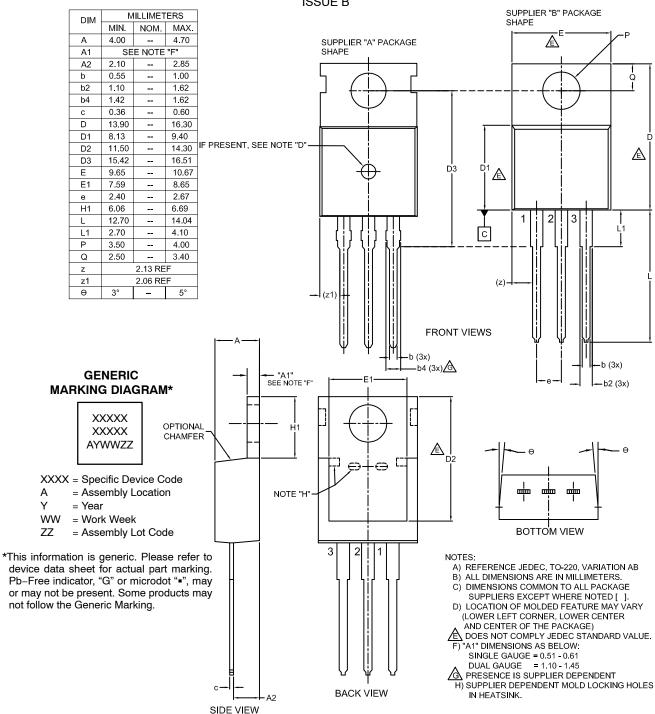



Figure 12. Transient Thermal Impedance

PACKAGE DIMENSIONS

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFETs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

MCH6422-TL-E IRFD120 IRFY240C JANTX2N5237 2SJ277-DL-E 2SK2267(Q) BUK455-60A/B TK100A10N1,S4X(S MIC4420CM-TR IRFS350 VN1206L NDP4060 IPS70R2K0CEAKMA1 AON6932A 2N4352 TS19452CS RL TK31J60W5,S1VQ(O TK16J60W,S1VQ(O 2SK2614(TE16L1,Q) JANTX2N6798 DMN1017UCP3-7 EFC2J004NUZTDG DMN1053UCP4-7 SCM040600 NTE2384 2N7000TA DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 DMP22D4UFO-7B DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 IRF40H233XTMA1 STU5N65M6 DMN6022SSD-13 DMN13M9UCA6-7 DMTH10H4M6SPS-13 DMN2990UFB-7B 2N7002W-G MCAC30N06Y-TP MCQ7328-TP IPB45P03P4L11ATMA2 BXP2N20L BXP2N65D BXT330N06D TSM60NB380CP ROG RQ7L055BGTCR SLF10N65ABV2