

General Purpose Transistors

PNP, 65 V, 100 mA

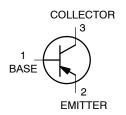
NST856MTWFT

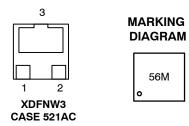
The NST856MTWFT is designed for general purpose amplifier applications. It is housed in an ultra-compact DFN1010-3 with wettable flanks, recommended for the automotive industry's optical inspection methods. The transistor is ideal for low-power surface mount applications where board space and reliability are at a premium.

Features

- Wettable Flank Package for Optimal Automated Optical Inspection (AOI)
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_A = 25°C)


Rating	Symbol	Max	Unit
Collector - Emitter Voltage	V_{CEO}	-65	Vdc
Collector - Base Voltage	V_{CBO}	-80	Vdc
Emitter – Base Voltage	V_{EBO}	-5.0	Vdc
Collector Current – Continuous	Ic	-100	mA
Collector Current - Peak	I _{CM}	200	mA


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance Junction-to-Ambient (Note 1)	$R_{\theta JA}$	191	°C/W
Total Power Dissipation per Device @T _A = 25°C (Note 1)	P _D	650	mW
Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +150	°C

1. Per JESD51-7 with standard PCB footprint and 2 oz. Cu.

56 = Specific Device Code
M = Month Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NST856MTWFTBG	XDFNW3 (Pb-Free)	3000 / Tape & Reel
NSVT856MTWFTBG	XDFNW3 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (I _C = −10 mA)	V _{(BR)CEO}	-65	-	-	V
Collector – Emitter Breakdown Voltage (I _C = -10 μA, V _{EB} = 0)	V _{(BR)CES}	-80	_	_	V
Collector – Base Breakdown Voltage (I _C = -10 μA)	V _{(BR)CBO}	-80	-	-	V
Emitter – Base Breakdown Voltage ($I_E = -0.1 \mu A, I_C = 0$)	V _{(BR)EBO}	-5.0	-	_	V
Collector Cutoff Current $(V_{CB} = -30 \text{ V})$ $(V_{CB} = -30 \text{ V}, T_A = 150^{\circ}\text{C})$	I _{CBO}	- -	- -	-15.0 -5.0	nΑ μΑ
Emitter – Base Cutoff Current (V _{BE} = -6 V, I _C = 0)	I _{EBO}	-	-	-0.1	μΑ
ON CHARACTERISTICS					
DC Current Gain (Note 2) $ \begin{pmatrix} I_C = -10 \ \mu\text{A}, \ V_{CE} = -5.0 \ \text{V}) \\ (I_C = -2.0 \ \text{mA}, \ V_{CE} = -5.0 \ \text{V}) \end{pmatrix} $	h _{FE}	- 220	150 290	- 450	
Collector – Emitter Saturation Voltage (Note 2) (I_C = -10 mA, I_B = -0.5 mA) (I_C = -100 mA, I_B = -5.0 mA)	V _{CE(sat)}	- -	- -	-0.25 -0.60	V
Base – Emitter Saturation Voltage (Note 2) (I_C = -10 mA, I_B = -0.5 mA) (I_C = -100 mA, I_B = -5.0 mA)	V _{BE(sat)}	-	-0.7 -0.9	-	V
Base – Emitter Turn–on Voltage (Note 2) $ (I_C = -2.0 \text{ mA}, V_{CE} = -5.0 \text{ V}) $ $ (I_C = -10 \text{ mA}, V_{CE} = -5.0 \text{ V}) $	V _{BE(on)}	-0.6 -	- -	-0.75 -0.82	V
SMALL-SIGNAL CHARACTERISTICS					
Transition Frequency ($I_C = -10$ mA, $V_{CE} = -5.0$ V, $f = 100$ MHz)	f _T	100	-	_	MHz
Output Capacitance $(V_{CB} = -10 \text{ V}, f = 1.0 \text{ MHz})$	C _{obo}	-	1.8	4.0	pF
Noise Figure (I _C = -0.2 mA, V _{CE} = -5.0 Vdc, R _S = 2.0 k Ω , f = 1.0 kHz, BW = 200 Hz)	NF	-	1.0	-	dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{2.} Pulse Condition: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2%.

TYPICAL CHARACTERISTICS

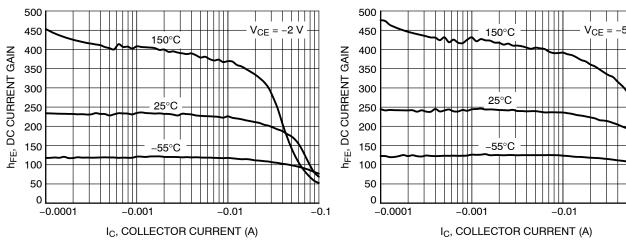


Figure 1. DC Current Gain

Figure 2. DC Current Gain

-0.1

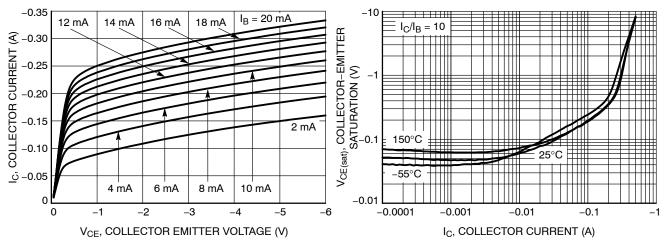


Figure 3. Collector Current as a Function of Collector Emitter Voltage

Figure 4. Collector-Emitter Saturation Voltage

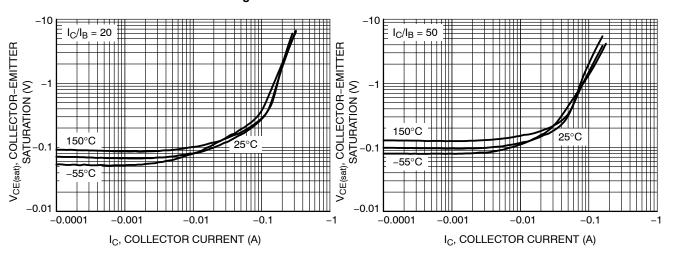
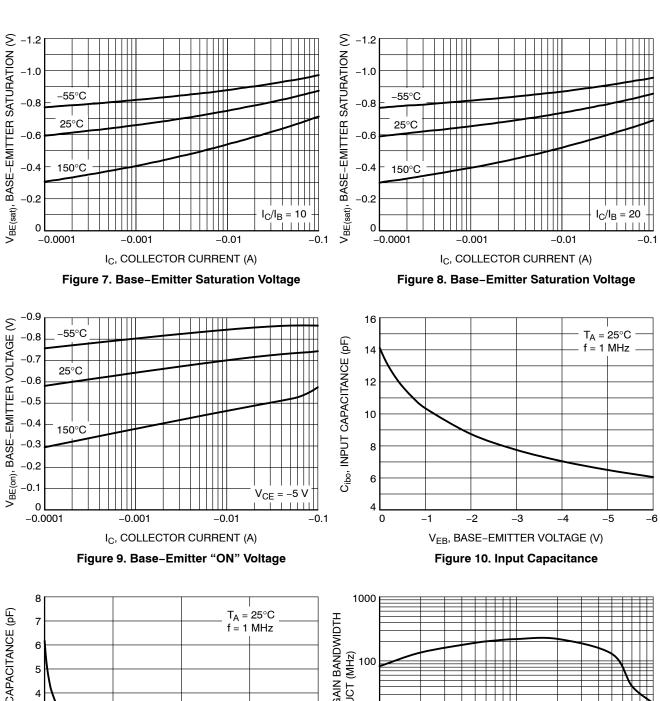



Figure 5. Collector-Emitter Saturation Voltage

Figure 6. Collector-Emitter Saturation Voltage

TYPICAL CHARACTERISTICS

Cobo, OUTPUT CAPACITANCE (pF) f_T, CURRENT GAIN BANDWIDTH PRODUCT (MHz) 3 2 $T_J = 25^{\circ}C$ V_{CE} = −2 V 1 f_{test} = 100 MHz 0 0 -20 -40 -10 -100 V_{CB}, COLLECTOR-BASE REVERSE VOLTAGE (V) I_C, COLLECTOR CURRENT (mA)

Figure 11. Output Capacitance

Figure 12. f_T, Current Gain Bandwidth Product

TYPICAL CHARACTERISTICS

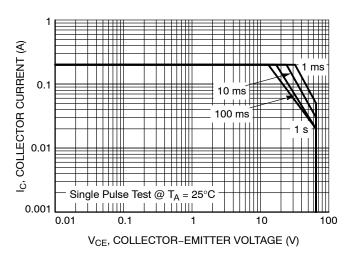


Figure 13. Safe Operating Area

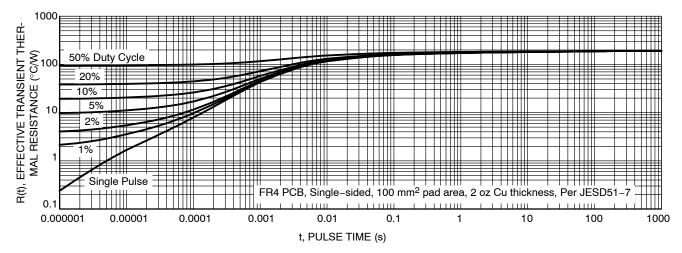
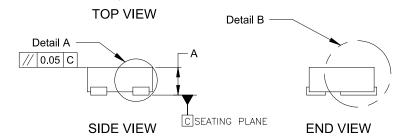
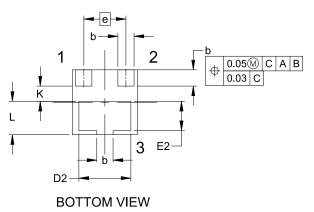


Figure 14. Thermal Resistance

PIN 1 REFERENCE


XDFNW3 1.00x1.00x0.38 0.65P CASE 521AC ISSUE B

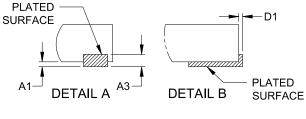
DATE 07 MAY 2024

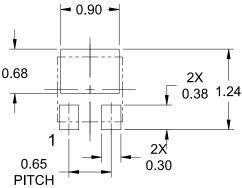

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 2. CONTROLLING DIMENSION: MILLIMETERS

	MILLIMETERS		
DIM	MIN.	NOM.	MAX.
Α	0.32	0.38	0.44
A1	0.00		0.04
А3	0.125 REF		
b	0.20	0.25	0.30
D	0.90	1.00	1.10
D1	0.00		0.04
D2	0.75	0.80	0.85
Е	0.90	1.00	1.10
E2	0.40	0.45	0.50
е		0.65 BSC	
L	0.465	0.515	0.565
K		0.23 REF	

В





XX = Specific Device CodeM = Month Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED MOUNTING FOOTPRINT*

 For additional information on our Pb-Free strategy and soldering details, please download the ONSEMI Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	Thinked versions are uncontrolled except when stamped CONTROLLED O		
I DESCRIPTION: I	XDFNW3 1.00x1.00x0.38 0.65P		PAGE 1 OF 1

onsemi and ONSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

BC559C MCH4017-TL-H MMBT-2369-TR BC546/116 NJVMJD148T4G NTE16 NTE195A IMX9T110 2N4401-A 2N6728 2SB1204S-TL-E 2SC5488A-TL-H FMC5AT148 2N2369ADCSM 2N2907A 2N3904-NS 2N5769 2SC4618TLN CPH6501-TL-E Jantx2N5416 US6T6TR BAX18/A52R BC556/112 IMZ2AT108 UMX21NTR MCH6102-TL-E 2N3879 30A02MH-TL-E NTE13 NTE282 NTE350 NTE81 JANTX2N2920L JANSR2N2907AUB JANSR2N2222AUB CMLT3946EG TR SNSS40600CF8T1G CMLT3906EG TR GRP-DATA-JANS2N2907AUB GRP-DATA-JANS2N2222AUA MMDT3946FL3-7 2N4240 JANS2N3019 MSB30KH-13 2N2221AUB 2SD1815T-TL-E Jantxv2N3810 2N6678 2N2907Ae4 JAN2N3507