Low Noise Transistor

PNP Silicon

Features

- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	-50	Vdc
Collector-Base Voltage	V _{CBO}	-50	Vdc
Emitter-Base Voltage	V _{EBO}	-3.0	Vdc
Collector Current – Continuous	Ι _C	-50	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR–5 Board, (Note 1) T _A = 25°C Derate above 25°C	PD	225 1.8	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	417	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $FR-5 = 1.0 \times 0.75 \times 0.062$ in.

2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.

ON Semiconductor®

www.onsemi.com

SOT-23 (TO-236) **CASE 318 STYLE 6**

MARKING DIAGRAM

2Q = Device Code M = Date Code*

• = Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT5087LT1G,	SOT–23	3,000 / Tape &
NSVMMBT5087LT1G	(Pb–Free)	Reel
MMBT5087LT3G,	SOT-23	10,000 / Tape &
NSVMMBT5087LT3G	(Pb-Free)	Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Мах	Unit
OFF CHARACTERISTICS				
Collector–Emitter Breakdown Voltage ($I_C = -1.0 \text{ mAdc}, I_B = 0$)	V _{(BR)CEO}	-50	_	Vdc
Collector–Base Breakdown Voltage ($I_C = -100 \ \mu Adc, I_E = 0$)	V _{(BR)CBO}	-50	-	Vdc
Collector Cutoff Current $(V_{CB} = -10 \text{ Vdc}, I_E = 0)$ $(V_{CB} = -35 \text{ Vdc}, I_E = 0)$	I _{CBO}		-10 -50	nAdc
ON CHARACTERISTICS	·			•
DC Current Gain $(I_C = -100 \ \mu Adc, \ V_{CE} = -5.0 \ Vdc)$ $(I_C = -1.0 \ m Adc, \ V_{CE} = -5.0 \ Vdc)$ $(I_C = -10 \ m Adc, \ V_{CE} = -5.0 \ Vdc)$	h _{FE}	250 250 250	800 - -	-
Collector–Emitter Saturation Voltage ($I_c = -10$ mAdc, $I_B = -1.0$ mAdc)	V _{CE(sat)}	-	-0.3	Vdc
Base–Emitter Saturation Voltage ($I_c = -10 \text{ mAdc}, I_B = -1.0 \text{ mAdc}$)	V _{BE(sat)}	-	0.85	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current–Gain — Bandwidth Product ($I_C = -500 \ \mu Adc$, $V_{CE} = -5.0 \ Vdc$, f = 20 MHz)	f _T	40	_	MHz
Output Capacitance ($V_{CB} = -5.0 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz}$)	C _{obo}	-	4.0	pF
Small–Signal Current Gain (I _C = –1.0 mAdc, V _{CE} = –5.0 Vdc, f = 1.0 kHz)	h _{fe}	250	900	-
Noise Figure ($I_C = -20 \text{ mAdc}$, $V_{CE} = -5.0 \text{ Vdc}$, $R_S = 10 \text{ k}\Omega$, f = 1.0 kHz) ($I_C = -100 \mu \text{Adc}$, $V_{CE} = -5.0 \text{ Vdc}$, $R_S = 3.0 \text{ k}\Omega$, f = 1.0 kHz)	NF		2.0 2.0	dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL NOISE CHARACTERISTICS

 $(V_{CE}=-5.0 \text{ Vdc}, \text{ } \text{T}_{\text{A}}=25^{\circ}\text{C})$

NOISE FIGURE CONTOURS

 $(V_{CE} = -5.0 \text{ Vdc}, T_A = 25^{\circ}C)$

Figure 3. Narrow Band, 100 Hz

Noise Figure is Defined as:

$$NF = 20 \log_{10} \left[\frac{e_{n}^{2} + 4KTR_{S} + I_{n}^{2}R_{S}^{2}}{4KTR_{S}} \right]^{1/2}$$

e_n = Noise Voltage of the Transistor referred to the input. (Figure 3)

= Noise Current of the Transistor referred to the input. (Figure 4) I_{n}

K = Boltzman's Constant (1.38 x 10⁻²³ j/°K)

T = Temperature of the Source Resistance (°K)

R_S = Source Resistance (Ohms)

Figure 5. Wideband

TYPICAL STATIC CHARACTERISTICS

Figure 8. "On" Voltages

Figure 9. Temperature Coefficients

TYPICAL DYNAMIC CHARACTERISTICS

Figure 12. Current–Gain — Bandwidth Product

Figure 13. Capacitance

Figure 14. Thermal Response

Figure 15. Typical Collector Leakage Current

DESIGN NOTE: USE OF THERMAL RESPONSE DATA

A train of periodical power pulses can be represented by the model as shown in Figure 16. Using the model and the device thermal response the normalized effective transient thermal resistance of Figure 14 was calculated for various duty cycles.

To find $Z_{\theta JA(t)}$, multiply the value obtained from Figure 14 by the steady state value $R_{\theta JA}$.

Example:

Dissipating 2.0 watts peak under the following conditions: $t_1 = 1.0 \text{ ms}, t_2 = 5.0 \text{ ms} (D = 0.2)$

Using Figure 14 at a pulse width of 1.0 ms and D = 0.2, the reading of r(t) is 0.22.

The peak rise in junction temperature is therefore

 $\Delta T = r(t) \ge P_{(pk)} \ge R_{\theta JA} = 0.22 \ge 2.0 \ge 200 = 88^{\circ}C.$

For more information, see ON Semiconductor Application Note AN569/D, available from the Literature Distribution Center or on our website at **www.onsemi.com**.

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001