30 V, 2 A, Low V_{CE(sat)} PNP Transistor ON Semiconductor's e^2 PowerEdge family of low $V_{CE(sat)}$ transistors are miniature surface mount devices featuring ultra low saturation voltage ($V_{CE(sat)}$) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important. Typical application are DC–DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers. - NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant #### **MAXIMUM RATINGS** $(T_A = 25^{\circ}C)$ | Rating | Symbol | Max | Unit | |--------------------------------|------------------|------|------| | Collector-Emitter Voltage | V_{CEO} | -30 | Vdc | | Collector-Base Voltage | V _{CBO} | -50 | Vdc | | Emitter-Base Voltage | V_{EBO} | -5.0 | Vdc | | Collector Current - Continuous | I _C | -1.0 | Α | | Collector Current – Peak | I _{CM} | -2.0 | Α | #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | | |--|-----------------------------------|----------------|-------------|--| | Total Device Dissipation T _A = 25°C | P _D (Note 1) | 310 | mW | | | Derate above 25°C | | 2.5 | mW/°C | | | Thermal Resistance,
Junction to Ambient | R _{θJA} (Note 1) | 403 | °C/W | | | Total Device Dissipation T _A = 25°C Derate above 25°C | P _D (Note 2) | 710
5.7 | mW
mW/°C | | | Derate above 25 C | | 5.7 | | | | Thermal Resistance, Junction to Ambient | $R_{\theta JA}$ (Note 2) | 176 | °C/W | | | Total Device Dissipation
(Single Pulse < 10 sec.) | P _{Dsingle}
(Note 3) | 575 | mW | | | Junction and Storage
Temperature Range | T _J , T _{stg} | –55 to
+150 | °C | | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. FR-4 @ Minimum Pad. - 2. FR-4 @ 1.0 X 1.0 inch Pad. - 3. Refer to Figure 8. #### ON Semiconductor® www.onsemi.com # $\begin{array}{c} 30 \text{ VOLTS} \\ 2.0 \text{ AMPS} \\ \text{PNP LOW V}_{\text{CE(sat)}} \text{ TRANSISTOR} \\ \text{EQUIVALENT R}_{\text{DS(on)}} \text{ 200 m} \Omega \end{array}$ SOT-23 (TO-236) CASE 318 STYLE 6 #### MARKING DIAGRAM VS4 = Specific Device Code M = Date Code* ■ = Pb-Free Package (Note: Microdot may be in either location) *Date Code orientation and/or overbar may vary depending upon manufacturing location. #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | | | |-------------------------------|---------------------|-----------------------|--|--| | NSS30100LT1G,
NSV30100LT1G | SOT-23
(Pb-Free) | 3000/Tape & Reel | | | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. ### **ELECTRICAL CHARACTERISTICS** ($T_A = 25$ °C unless otherwise noted) | Characteristic | Symbol | Min | Max | Unit | |--|----------------------|------------------------|-------------------------|------| | OFF CHARACTERISTICS | | | | | | Collector – Emitter Breakdown Voltage (I _C = -10 mAdc, I _B = 0) | V _{(BR)CEO} | -30 | _ | Vdc | | Collector – Base Breakdown Voltage
(I _C = -0.1 mAdc, I _E = 0) | V _{(BR)CBO} | -50 | _ | Vdc | | Emitter-Base Breakdown Voltage (I _E = -0.1 mAdc, I _C = 0) | V _{(BR)EBO} | -5.0 | _ | Vdc | | Collector Cutoff Current (V _{CB} = -30 Vdc, I _E = 0) | I _{CBO} | - | -0.1 | μAdc | | Collector–Emitter Cutoff Current (V _{CES} = -30 Vdc) | I _{CES} | _ | -0.1 | μAdc | | Emitter Cutoff Current (V _{EB} = -4.0 Vdc) | I _{EBO} | ı | -0.1 | μAdc | | ON CHARACTERISTICS | | | | | | DC Current Gain (Note 4) (Figure 1) $ (I_C = -1.0 \text{ mA}, V_{CE} = -2.0 \text{ V}) $ $ (I_C = -500 \text{ mA}, V_{CE} = -2.0 \text{ V}) $ $ (I_C = -1.0 \text{ A}, V_{CE} = -2.0 \text{ V}) $ $ (I_C = 2.0 \text{ A}, V_{CE} = -2.0 \text{ V}) $ | h _{FE} | 100
100
80
40 | -
300
-
- | | | Collector – Emitter Saturation Voltage (Note 4) (Figure 3) $ \begin{aligned} &(I_C=-0.5 \text{ A}, I_B=-0.05 \text{ A}) \\ &(I_C=-1.0 \text{ A}, I_B=0.1 \text{ A}) \\ &(I_C=-2.0 \text{ A}, I_B=-0.2 \text{ A}) \end{aligned} $ | V _{CE(sat)} | -
-
- | -0.25
-0.30
-0.65 | V | | Base – Emitter Saturation Voltage (Note 4) (Figure 2) (I _C = -1.0 A, I _B = -0.1 A) | V _{BE(sat)} | - | -1.2 | V | | Base – Emitter Turn–on Voltage (Note 4)
(I _C = -1.0 A, V _{CE} = -2.0 V) | V _{BE(on)} | - | -1.1 | V | | Cutoff Frequency ($I_C = -100 \text{ mA}$, $V_{CE} = -5.0 \text{ V}$, $f = 100 \text{ MHz}$) | f _T | 100 | - | MHz | | Output Capacitance (f = 1.0 MHz) | Cobo | _ | 15 | pF | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulsed Condition: Pulse Width = 300 msec, Duty Cycle ≤ 2%. #### TYPICAL CHARACTERISTICS Figure 1. DC Current Gain versus Collector Current Figure 2. DC Current Gain versus Collector Current 1000 Figure 3. "On" Voltages Figure 4. Base Emitter Saturation Voltage versus Collector Current Figure 5. Collector Emitter Saturation Voltage versus Base Current Figure 6. Collector Emitter Saturation Voltage versus Collector Current #### **TYPICAL CHARACTERISTICS** Figure 7. Safe Operating Area Figure 8. Normalized Thermal Response SOT-23 (TO-236) CASE 318-08 **ISSUE AS** **DATE 30 JAN 2018** # SCALE 4:1 D - 3X b **TOP VIEW** #### **RECOMMENDED SOLDERING FOOTPRINT** DIMENSIONS: MILLIMETERS 3. ANODE #### NOTES: - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL - 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. | | MILLIMETERS | | | INCHES | | | |-----|-------------|------|------|--------|-------|-------| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | Α | 0.89 | 1.00 | 1.11 | 0.035 | 0.039 | 0.044 | | A1 | 0.01 | 0.06 | 0.10 | 0.000 | 0.002 | 0.004 | | b | 0.37 | 0.44 | 0.50 | 0.015 | 0.017 | 0.020 | | С | 0.08 | 0.14 | 0.20 | 0.003 | 0.006 | 0.008 | | D | 2.80 | 2.90 | 3.04 | 0.110 | 0.114 | 0.120 | | E | 1.20 | 1.30 | 1.40 | 0.047 | 0.051 | 0.055 | | е | 1.78 | 1.90 | 2.04 | 0.070 | 0.075 | 0.080 | | L | 0.30 | 0.43 | 0.55 | 0.012 | 0.017 | 0.022 | | L1 | 0.35 | 0.54 | 0.69 | 0.014 | 0.021 | 0.027 | | HE | 2.10 | 2.40 | 2.64 | 0.083 | 0.094 | 0.104 | | Т | O٥ | | 10° | O۰ | | 10° | #### **GENERIC MARKING DIAGRAM*** XXX = Specific Device Code = Date Code = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | STYLE 1 THRU 5:
CANCELLED | STYLE 6:
PIN 1. BASE
2. EMITTER
3. COLLECTOR | STYLE 7:
PIN 1. EMITTER
2. BASE
3. COLLECTOR | STYLE 8:
PIN 1. ANODE
2. NO CONNECTION
3. CATHODE | ı | | |---|---|---|--|------------------|------------------| | STYLE 9: | STYLE 10: | STYLE 11: PIN 1. ANODE 2. CATHODE 3. CATHODE-ANODE | STYLE 12: | STYLE 13: | STYLE 14: | | PIN 1. ANODE | PIN 1. DRAIN | | PIN 1. CATHODE | PIN 1. SOURCE | PIN 1. CATHODE | | 2. ANODE | 2. SOURCE | | 2. CATHODE | 2. DRAIN | 2. GATE | | 3. CATHODE | 3. GATE | | 3. ANODE | 3. GATE | 3. ANODE | | STYLE 15: | STYLE 16: | STYLE 17: PIN 1. NO CONNECTION 2. ANODE 3. CATHODE | STYLE 18: | STYLE 19: | STYLE 20: | | PIN 1. GATE | PIN 1. ANODE | | PIN 1. NO CONNECTION | I PIN 1. CATHODE | PIN 1. CATHODE | | 2. CATHODE | 2. CATHODE | | 2. CATHODE | 2. ANODE | 2. ANODE | | 3. ANODE | 3. CATHODE | | 3. ANODE | 3. CATHODE-ANODE | 3. GATE | | STYLE 21: | STYLE 22: | STYLE 23: | STYLE 24: | STYLE 25: | STYLE 26: | | PIN 1. GATE | PIN 1. RETURN | PIN 1. ANODE | PIN 1. GATE | PIN 1. ANODE | PIN 1. CATHODE | | 2. SOURCE | 2. OUTPUT | 2. ANODE | 2. DRAIN | 2. CATHODE | 2. ANODE | | 3. DRAIN | 3. INPUT | 3. CATHODE | 3. SOURCE | 3. GATE | 3. NO CONNECTION | | STYLE 27:
PIN 1. CATHODE
2. CATHODE | STYLE 28:
PIN 1. ANODE
2. ANODE | | | | | | DOCUMENT NUMBER: | 98ASB42226B | Electronic versions are uncontrolled except when accessed directly from the Document Reposito
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-----------------|--|-------------|--| | DESCRIPTION: | SOT-23 (TO-236) | | PAGE 1 OF 1 | | ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. 3. CATHODE onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Bipolar Transistors - BJT category: Click to view products by ON Semiconductor manufacturer: Other Similar products are found below: 619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15