# **ON Semiconductor**

# Is Now



To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

# **Hex Buffers**

The MC14049UB hex inverter/buffer is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. This complementary MOS device finds primary use where low power dissipation and/or high noise immunity is desired. This device provides logic-level conversion using only one supply voltage,  $V_{DD}$ . The input-signal high level ( $V_{IH}$ ) can exceed the  $V_{DD}$  supply voltage for logic-level conversions. Two TTL/DTL Loads can be driven when the device is used as CMOS-to-TTL/DTL converters ( $V_{DD}=5.0~V,\,V_{OL}\leq0.4~V,\,I_{OL}\geq3.2~mA$ ). Note that pins 13 and 16 are not connected internally on this device; consequently connections to these terminals will not affect circuit operation.

#### **Features**

- High Source and Sink Currents
- High-to-Low Level Converter
- Supply Voltage Range = 3.0 V to 18 V
- Meets JEDEC UB Specifications
- V<sub>IN</sub> can exceed V<sub>DD</sub>
- Improved ESD Protection on All Inputs
- These Devices are Pb-Free and are RoHS Compliant
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable

#### MAXIMUM RATINGS (Voltages Referenced to V<sub>SS</sub>)

| Symbol           | Parameter                                            | Value                           | Unit |
|------------------|------------------------------------------------------|---------------------------------|------|
| V <sub>DD</sub>  | DC Supply Voltage Range                              | -0.5 to +18.0                   | V    |
| V <sub>in</sub>  | Input Voltage Range<br>(DC or Transient)             | -0.5 to +18.0                   | V    |
| V <sub>out</sub> | Output Voltage Range<br>(DC or Transient)            | -0.5 to V <sub>DD</sub><br>+0.5 | V    |
| I <sub>in</sub>  | Input Current<br>(DC or Transient) per Pin           | ±10                             | mA   |
| l <sub>out</sub> | Output Current<br>(DC or Transient) per Pin          | +45                             | mA   |
| P <sub>D</sub>   | Power Dissipation, per Package (Note 1) Plastic SOIC | 825<br>740                      | mW   |
| T <sub>A</sub>   | Ambient Temperature Range                            | -55 to +125                     | °C   |
| T <sub>stg</sub> | Storage Temperature Range                            | -65 to +150                     | °C   |
| TL               | Lead Temperature (8–Second Soldering)                | 260                             | °C   |

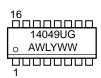
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: All Packages: See Figure 4.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields referenced to the  $V_{SS}$  pin, only. Extra precautions must be taken to avoid applications of any voltage higher than the maximum rated voltages to this high–impedance circuit. For proper operation, the ranges  $V_{SS} \leq V_{in} \leq 18 \ V$  and  $V_{SS} \leq V_{out} \leq V_{DD}$  are recommended.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either  $V_{SS}$  or  $V_{DD}$ ). Unused outputs must be left open.




## ON Semiconductor®

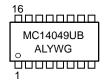
www.onsemi.com

## MARKING DIAGRAMS



SOIC-16 D SUFFIX CASE 751B






TSSOP-16 DT SUFFIX CASE 948F





SOEIAJ-16 F SUFFIX CASE 966



A = Assembly Location

WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
G or = Pb-Free Package

(Note: Microdot may be in either location)

#### ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

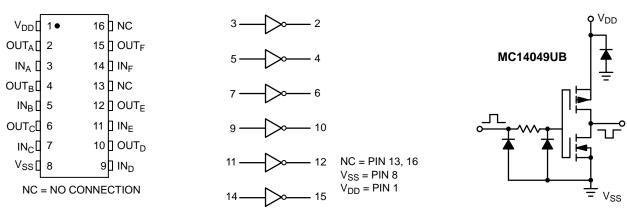



Figure 1. Pin Assignment

Figure 2. Logic Diagram MC14049UB

Figure 3. Circuit Schematic (1/6 of circuit shown)

## **ELECTRICAL CHARACTERISTICS** (Voltages Referenced to V<sub>SS</sub>)

|                                                                                                                                          |           |                 | - 55°C                 |                         | 25°C                 |                           |                                                | 125°C                |                         |                      |      |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|------------------------|-------------------------|----------------------|---------------------------|------------------------------------------------|----------------------|-------------------------|----------------------|------|
| Character                                                                                                                                | ristic    | Symbol          | V <sub>DD</sub><br>Vdc | Min                     | Max                  | Min                       | Typ<br>(Note 2)                                | Max                  | Min                     | Max                  | Unit |
| Output Voltage V <sub>in</sub> = V <sub>DD</sub> or 0                                                                                    | "0" Level | V <sub>OL</sub> | 5.0<br>10<br>15        | -<br>-<br>-             | 0.05<br>0.05<br>0.05 | -<br>-<br>-               | 0<br>0<br>0                                    | 0.05<br>0.05<br>0.05 | -<br>-<br>-             | 0.05<br>0.05<br>0.05 | Vdc  |
| V <sub>in</sub> = 0 or V <sub>DD</sub>                                                                                                   | "1" Level | V <sub>OH</sub> | 5.0<br>10<br>15        | 4.95<br>9.95<br>14.95   | -<br>-<br>-          | 4.95<br>9.95<br>14.95     | 5.0<br>10<br>15                                | -<br>-<br>-          | 4.95<br>9.95<br>14.95   | -<br>-<br>-          | Vdc  |
| Input Voltage $(V_O = 4.5 \text{ Vdc})$ $(V_O = 9.0 \text{ Vdc})$ $(V_O = 13.5 \text{ Vdc})$                                             | "0" Level | V <sub>IL</sub> | 5.0<br>10<br>15        | -<br>-<br>-             | 1.0<br>2.0<br>2.5    | -<br>-<br>-               | 2.25<br>4.50<br>6.75                           | 1.0<br>2.0<br>2.5    | -<br>-<br>-             | 1.0<br>2.0<br>2.5    | Vdc  |
| $(V_O = 0.5 \text{ Vdc})$<br>$(V_O = 1.0 \text{ Vdc})$<br>$(V_O = 1.5 \text{ Vdc})$                                                      | "1" Level | V <sub>IH</sub> | 5.0<br>10<br>15        | 4.0<br>8.0<br>12.5      | -<br>-<br>-          | 4.0<br>8.0<br>12.5        | 2.75<br>5.50<br>8.25                           | -<br>-<br>-          | 4.0<br>8.0<br>12.5      | -<br>-<br>-          | Vdc  |
| Output Drive Current<br>(V <sub>OH</sub> = 2.5 Vdc)<br>(V <sub>OH</sub> = 9.5 Vdc)<br>(V <sub>OH</sub> = 13.5 Vdc)                       | Source    | ІОН             | 5.0<br>10<br>15        | - 1.6<br>- 1.6<br>- 4.7 | -<br>-<br>-          | - 1.25<br>- 1.3<br>- 3.75 | - 2.5<br>- 2.6<br>- 10                         | -<br>-<br>-          | - 1.0<br>- 1.0<br>- 3.0 | -<br>-<br>-          | mAdc |
| $(V_{OL} = 0.4 \text{ Vdc})$<br>$(V_{OL} = 0.5 \text{ Vdc})$<br>$(V_{OL} = 1.5 \text{ Vdc})$                                             | Sink      | I <sub>OL</sub> | 5.0<br>10<br>15        | 3.75<br>10<br>30        | -<br>-<br>-          | 3.2<br>8.0<br>24          | 6.0<br>16<br>40                                | -<br>-<br>-          | 2.6<br>6.6<br>19        | -<br>-<br>-          | mAdc |
| Input Current                                                                                                                            |           | l <sub>in</sub> | 15                     | -                       | ± 0.1                | -                         | ±0.000<br>01                                   | ± 0.1                | -                       | ± 1.0                | μAdc |
| Input Capacitance (V <sub>in</sub> = 0                                                                                                   | )         | C <sub>in</sub> | -                      | -                       | -                    | -                         | 10                                             | 20                   | -                       | -                    | pF   |
| Quiescent Current (Per Pa                                                                                                                | ckage)    | I <sub>DD</sub> | 5.0<br>10<br>15        | -<br>-<br>-             | 1.0<br>2.0<br>4.0    | -<br>-<br>-               | 0.002<br>0.004<br>0.006                        | 1.0<br>2.0<br>4.0    | -<br>-<br>-             | 30<br>60<br>120      | μAdc |
| Total Supply Current (Note 3 and 4) (Dynamic plus Quiescent, Per Package) (C <sub>L</sub> = 50 pF on all outputs, all buffers switching) |           | Ι <sub>Τ</sub>  | 5.0<br>10<br>15        |                         |                      | $I_T = (3.$               | -<br>8 μΑ/kHz) f<br>5 μΑ/kHz) f<br>3 μΑ/kHz) f | + I <sub>DD</sub>    | •                       |                      | μAdc |

<sup>2.</sup> Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where:  $I_T$  is in  $\mu A$  (per package),  $C_L$  in pF,  $V = (V_{DD} - V_{SS})$  in volts, f in kHz is input frequency, and k = 0.002.

<sup>3.</sup> The formulas given are for the typical characteristics only at 25°C.

<sup>4.</sup> To calculate total supply current at loads other than 50 pF:

## **SWITCHING CHARACTERISTICS** (Note 5) ( $C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$ )

| Characteristic                                         | Symbol           | V <sub>DD</sub><br>Vdc | Min | Typ<br>(Note 6) | Max | Unit |
|--------------------------------------------------------|------------------|------------------------|-----|-----------------|-----|------|
| Output Rise Time                                       | t <sub>TLH</sub> |                        |     |                 |     | ns   |
| $t_{TLH} = (0.8 \text{ ns/pF}) C_L + 60 \text{ ns}$    |                  | 5.0                    | _   | 100             | 160 |      |
| $t_{TLH} = (0.3 \text{ ns/pF}) C_L + 35 \text{ ns}$    |                  | 10                     | _   | 50              | 100 |      |
| $t_{TLH} = (0.27 \text{ ns/pF}) C_L + 26.5 \text{ ns}$ |                  | 15                     | -   | 40              | 60  |      |
| Output Fall Time                                       | t <sub>THL</sub> |                        |     |                 |     | ns   |
| $t_{THL} = (0.3 \text{ ns/pF}) C_L + 25 \text{ ns}$    |                  | 5.0                    | _   | 40              | 60  |      |
| $t_{THL} = (0.12 \text{ ns/pF}) C_L + 14 \text{ ns}$   |                  | 10                     | _   | 20              | 40  |      |
| $t_{THL} = (0.1 \text{ ns/pF}) C_L + 10 \text{ ns}$    |                  | 15                     | _   | 15              | 30  |      |
| Propagation Delay Time                                 | t <sub>PLH</sub> |                        |     |                 |     | ns   |
| $t_{PLH} = (0.38 \text{ ns/pF}) C_L + 61 \text{ ns}$   |                  | 5.0                    | _   | 80              | 120 |      |
| $t_{PLH} = (0.20 \text{ ns/pF}) C_L + 30 \text{ ns}$   |                  | 10                     | _   | 40              | 65  |      |
| $t_{PLH} = (0.11 \text{ ns/pF}) C_L + 24.5 \text{ ns}$ |                  | 15                     | _   | 30              | 50  |      |
| Propagation Delay Time                                 | t <sub>PHL</sub> |                        |     |                 |     | ns   |
| $t_{PHL} = (0.38 \text{ ns/pF}) C_L + 11 \text{ ns}$   |                  | 5.0                    | _   | 30              | 60  |      |
| $t_{PHL} = (0.12 \text{ ns/PF}) C_L + 9 \text{ ns}$    |                  | 10                     | _   | 15              | 30  |      |
| $t_{PHL} = (0.11 \text{ ns/pF}) C_L + 4.5 \text{ ns}$  |                  | 15                     | _   | 10              | 20  |      |

## **ORDERING INFORMATION**

| Device          | Package                | Shipping <sup>†</sup> |  |  |
|-----------------|------------------------|-----------------------|--|--|
| MC14049UBDG     | SOIC-16                | 48 Units / Rail       |  |  |
| NLV14049UBDG*   | (Pb-Free)              |                       |  |  |
| MC14049UBDR2G   | SOIC-16                | 2500 / Tape & Reel    |  |  |
| NLV14049UBDR2G* | (Pb–Free)              |                       |  |  |
| MC14049UBDTR2G  | TSSOP-16<br>(Pb-Free)  | 2500 / Tape & Reel    |  |  |
| MC14049UBFELG   | SOEIAJ-16<br>(Pb-Free) | 2000 / Tape & Reel    |  |  |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

<sup>\*</sup>NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

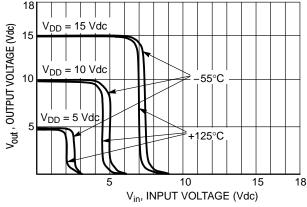



Figure 4. Typical Voltage Transfer Characteristics versus Temperature

<sup>5.</sup> The formulas given are for the typical characteristics only at 25°C.6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

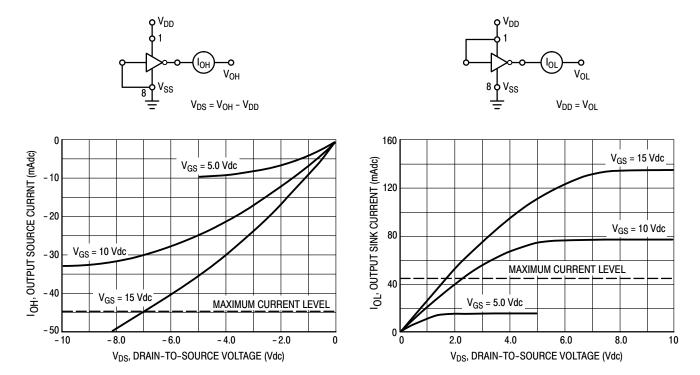



Figure 5. Typical Output Source Characteristics

Figure 6. Typical Output Sink Characteristics

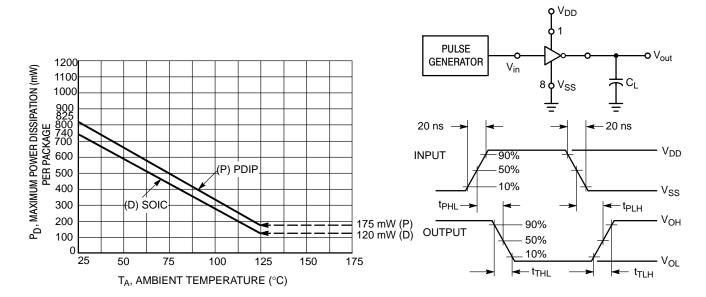
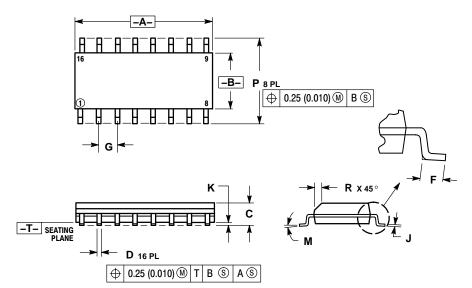




Figure 7. Ambient Temperature Power Derating

Figure 8. Switching Time Test Circuit and Waveforms

## **PACKAGE DIMENSIONS**

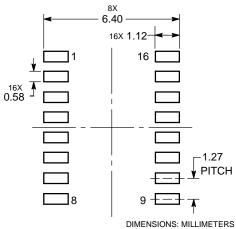
SOIC-16 **D SUFFIX** CASE 751B-05 ISSUE K



#### NOTES:

- NOTES:

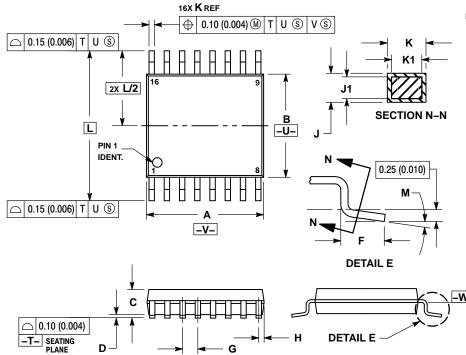
  1 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.


  2. CONTROLLING DIMENSION: MILLIMETER.

  3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.

  4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- MAXIMUM MOLD PHO HUSION 0.15 (0.006) PER SIDE DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

|     | MILLIN | IETERS | INC       | HES   |  |
|-----|--------|--------|-----------|-------|--|
| DIM | MIN    | MAX    | MIN       | MAX   |  |
| Α   | 9.80   | 10.00  | 0.386     | 0.393 |  |
| В   | 3.80   | 4.00   | 0.150     | 0.157 |  |
| C   | 1.35   | 1.75   | 0.054     | 0.068 |  |
| D   | 0.35   | 0.49   | 0.014     | 0.019 |  |
| F   | 0.40   | 1.25   | 0.016     | 0.049 |  |
| G   | 1.27   | BSC    | 0.050 BSC |       |  |
| J   | 0.19   | 0.25   | 0.008     | 0.009 |  |
| K   | 0.10   | 0.25   | 0.004     | 0.009 |  |
| M   | 0 °    | 7°     | 0 °       | 7°    |  |
| P   | 5.80   | 6.20   | 0.229     | 0.244 |  |
| R   | 0.25   | 0.50   | 0.010     | 0.019 |  |


#### **SOLDERING FOOTPRINT\***



<sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

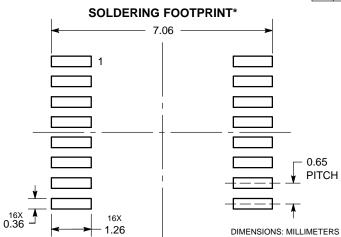
#### PACKAGE DIMENSIONS

## TSSOP-16 **DT SUFFIX** CASE 948F **ISSUE B**



D

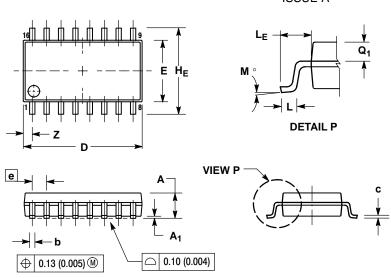
- NOTES:


  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: MILLIMETER.
  3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.06) DEP. SIDE. EXCEED 0.15 (0.006) PER SIDE.

  4. DIMENSION B DOES NOT INCLUDE

  - 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

    5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
  - 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
    7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–.


|     | MILLIN   | IETERS | INCHES    |       |  |
|-----|----------|--------|-----------|-------|--|
| DIM | MIN      | MAX    | MIN       | MAX   |  |
| Α   | 4.90     | 5.10   | 0.193     | 0.200 |  |
| В   | 4.30     | 4.50   | 0.169     | 0.177 |  |
| С   |          | 1.20   |           | 0.047 |  |
| D   | 0.05     | 0.15   | 0.002     | 0.006 |  |
| F   | 0.50     | 0.75   | 0.020     | 0.030 |  |
| G   | 0.65     | BSC    | 0.026 BSC |       |  |
| Н   | 0.18     | 0.28   | 0.007     | 0.011 |  |
| J   | 0.09     | 0.20   | 0.004     | 0.008 |  |
| J1  | 0.09     | 0.16   | 0.004     | 0.006 |  |
| Κ   | 0.19     | 0.30   | 0.007     | 0.012 |  |
| K1  | 0.19     | 0.25   | 0.007     | 0.010 |  |
| L   | 6.40 BSC |        | 0.252 BSC |       |  |
| M   | 0°       | 8°     | 0°        | 8 °   |  |



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### PACKAGE DIMENSIONS

## SOEIAJ-16 **F SUFFIX CASE 966 ISSUE A**



#### NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
  Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
  DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.

  THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 ( 0.018).

|                | MILLIN | IETERS | INC       | HES   |
|----------------|--------|--------|-----------|-------|
| DIM            | MIN    | MAX    | MIN       | MAX   |
| Α              | -      | 2.05   |           | 0.081 |
| A <sub>1</sub> | 0.05   | 0.20   | 0.002     | 0.008 |
| b              | 0.35   | 0.50   | 0.014     | 0.020 |
| C              | 0.10   | 0.20   | 0.007     | 0.011 |
| D              | 9.90   | 10.50  | 0.390     | 0.413 |
| Е              | 5.10   | 5.45   | 0.201     | 0.215 |
| е              | 1.27   | BSC    | 0.050 BSC |       |
| HE             | 7.40   | 8.20   | 0.291     | 0.323 |
| L              | 0.50   | 0.85   | 0.020     | 0.033 |
| LE             | 1.10   | 1.50   | 0.043     | 0.059 |
| M              | 0 °    | 10 °   | 0 °       | 10°   |
| Q <sub>1</sub> | 0.70   | 0.90   | 0.028     | 0.035 |
| Z              |        | 0.78   |           | 0.031 |

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Phone: 81–3–5817–1050

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B
042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 59628982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1
74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG
LE87100NQC LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC
LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NLV74VHC125DTR2G NL17SG126DFT2G