NLSF308 # **Quad 2-Input AND Gate** The NLSF308 is an advanced high speed CMOS 2–input AND gate fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7.0 V, allowing the interface of 5.0 V systems to 3.0 V systems. #### **Features** - High Speed: $t_{PD} = 4.3 \text{ ns}$ (Typ) at $V_{CC} = 5.0 \text{ V}$ - Low Power Dissipation: $I_{CC} = 2.0 \mu A$ (Max) at $T_A = 25^{\circ}C$ - High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ - Power Down Protection Provided on Inputs - Balanced Propagation Delays - Designed for 2.0 V to 5.5 V Operating Range - Low Noise: V_{OLP} = 0.8 V (Max) - Function Compatible with Other Standard Logic Families - OFN-16 Package - Latchup Performance Exceeds 300 mA - \bullet ESD Performance: Human Body Model; > 2000 V; - Machine Model; > 200 V - Chip Complexity: 24 FETs or 6 Equivalent Gates - Pb-Free Package is Available* #### **FUNCTION TABLE** | Inp | uts | Output | |-----|-----|--------| | Α | В | Υ | | L | L | L | | L | Н | L | | Н | L | L | | Н | Н | Н | ## ON Semiconductor® http://onsemi.com QFN-16 MN SUFFIX CASE 485G #### **MARKING DIAGRAM** NLSF308 = Device Code A = Assembly Location L = Wafer Lot Y = Year W = Work Week ■ Pb-Free Package (Note: Microdot may be in either location) #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |--------------|---------------------|-----------------------| | NLSF308MNR2 | QFN-16 | 3000 / Tape & Reel | | NLSF308MNR2G | QFN-16
(Pb-Free) | 3000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### NLSF308 Figure 1. LOGIC DIAGRAM Figure 2. PIN ASSIGNMENT (QFN-16) #### **MAXIMUM RATINGS** | Parameter | Symbol | Value | Unit | |---|------------------|-------------------------------|------| | DC Supply Voltage | V _{CC} | -0.5 to + 7.0 | V | | DC Input Voltage | V _{in} | -0.5 to + 7.0 | V | | DC Output Voltage | V _{out} | –0.5 to V _{CC} + 0.5 | V | | Input Diode Current | I _{IK} | -20 | mA | | Output Diode Current | I _{OK} | ±20 | mA | | DC Output Current, per Pin | l _{out} | ±25 | mA | | DC Supply Current, V _{CC} and GND Pins | Icc | ±50 | mA | | Power Dissipation in Still Air | P _D | 450 | mW | | Storage Temperature | T _{stg} | -65 to + 150 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. #### **RECOMMENDED OPERATING CONDITIONS** | Parameter | Symbol | Min | Max | Unit | | |--------------------------|--|---------------------------------|-----|-----------------|------| | DC Supply Voltage | | V _{CC} | 2.0 | 5.5 | V | | DC Input Voltage | | V _{in} | 0 | 5.5 | V | | DC Output Voltage | | V _{out} | 0 | V _{CC} | V | | Operating Temperature | | T _A | -40 | + 85 | °C | | Input Rise and Fall Time | V _{CC} = 3.3 V ±0.3 V
V _{CC} = 5.0 V ±0.5 V | t _r , t _f | 0 | 100
20 | ns/V | #### NLSF308 #### DC ELECTRICAL CHARACTERISTICS | | | | V _{CC} | T, | _A = 25° | С | T _A = - 40 to 85°C | | | |--------------------------------------|---|-----------------|-------------------|-------------------------------|--------------------|-------------------------------|-------------------------------|-------------------------------|------| | Parameter | Test Conditions | Symbol | V | Min | Тур | Max | Min | Max | Unit | | Minimum High-Level Input Voltage | | V _{IH} | 2.0
3.0 to 5.5 | 1.50
V _{CC} x 0.7 | | | 1.50
V _{CC} x 0.7 | | V | | Maximum Low–Level Input
Voltage | | V _{IL} | 2.0
3.0 to 5.5 | | | 0.50
V _{CC} x 0.3 | | 0.50
V _{CC} x 0.3 | V | | Minimum High-Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$I_{OH} = -50 \mu\text{A}$ | V _{OH} | 2.0
3.0
4.5 | 1.9
2.9
4.4 | 2.0
3.0
4.5 | | 1.9
2.9
4.4 | | V | | | $V_{in} = V_{IH} \text{ or } V_{IL}$
$I_{OH} = -4 \text{ mA},$
$I_{OH} = -8 \text{ mA}$ | - | 3.0
4.5 | 2.58
3.94 | | | 2.48
3.80 | | | | Maximum Low–Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$I_{OL} = 50 \mu\text{A}$ | V _{OL} | 2.0
3.0
4.5 | | 0.0
0.0
0.0 | 0.1
0.1
0.1 | | 0.1
0.1
0.1 | V | | | $V_{in} = V_{IH} \text{ or } V_{IL}$
$I_{OL} = 4 \text{ mA}$
$I_{OL} = 8 \text{ mA}$ | - | 3.0
4.5 | | | 0.36
0.36 | | 0.44
0.44 | | | Maximum Input Leakage Current | V _{in} = 5.5 V or GND | | 0 to 5.5 | | | ± 0.1 | | ± 1.0 | μΑ | | Maximum Quiescent Supply
Current | $V_{in} = V_{CC}$ or GND | | 5.5 | | | 2.0 | | 20.0 | μΑ | #### AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ ns}$) | | | | T | _A = 25° | С | $T_A = -40$ |) to 85°C | | |--|---|--|---|--------------------|-------------|-------------|--------------|------| | Parameter | Test Conditions | Symbol | Min | Тур | Max | Min | Max | Unit | | Maximum Propagation Delay, A or B to Y | $V_{CC} = 3.3 \pm 0.3 \text{ V}, C_L = 15 \text{ pF}, C_L = 50 \text{ pF}$ | t _{PLH} ,
t _{PHL} | | 6.2
8.7 | 8.8
12.3 | 1.0
1.0 | 10.5
14.0 | ns | | | $V_{CC} = 5.0 \pm 0.5 \text{ V}, C_L = 15 \text{ pF}, $ $C_L = 50 \text{ pF}$ | | | 4.3
5.8 | 5.9
7.9 | 1.0
1.0 | 7.0
9.0 | | | Maximum Input Capacitance | | C _{in} | | 4 | 10 | | 10 | pF | | | | | Typical @ 25°C, V _{CC} = 5.0 V | | .0 V | | | | | Power Dissipation Capacitance (Note 1) | | C _{PD} | | | 1 | 8 | | pF | ^{1.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \cdot V_{CC} \cdot f_{in} + I_{CC}/4$ (per gate). C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \cdot V_{CC}^2 \cdot f_{in} + I_{CC} \cdot V_{CC}$. ## **NOISE CHARACTERISTICS** (Input $t_r = t_f = 3.0 \text{ ns}$, $C_L = 50 \text{ pF}$, $V_{CC} = 5.0 \text{ V}$) | | | T _A = 25°C | | | |--|------------------|-----------------------|------|------| | Characteristic | Symbol | Тур | Max | Unit | | Quiet Output Maximum Dynamic V _{OL} | V _{OLP} | 0.3 | 0.8 | V | | Quiet Output Minimum Dynamic V _{OL} | V _{OLV} | -0.3 | -0.8 | V | | Minimum High Level Dynamic Input Voltage | V _{IHD} | | 3.5 | V | | Maximum Low Level Dynamic Input Voltage | V _{ILD} | | 1.5 | V | Figure 3. Switching Waveforms *Includes all probe and jig capacitance Figure 4. Test Circuit Figure 5. Input Equivalent Circuit PIN ONE LOCATION 2X 0.10 C 2X 0.10 C // 0.05 C 0.05 C **DATE 08 OCT 2021** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. - 2. CONTROLLING DIMENSION: MILLIMETERS - DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM THE TERMINAL TIP. - COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS. THE TERMINALS. DETAIL B ALTERNATE CONSTRUCTIONS DETAIL A ALTERNATE TERMINAL CONSTRUCTIONS | | MILLIME | | | | | |-----|----------|----------|------|--|--| | DIM | MIN. | N□M. | MAX. | | | | Α | 0.80 | 0.90 | 1.00 | | | | A1 | 0.00 | 0.03 | 0.05 | | | | A3 | | 0.20 REF | | | | | b | 0.18 | 0.24 | 0.30 | | | | D | 3.00 BSC | | | | | | D2 | 1.65 | 1.75 | 1.85 | | | | E | | 3.00 BSC | ; | | | | ES. | 1.65 | 1.75 | 1.85 | | | | e | 0.50 BSC | | | | | | k | 0.18 TYP | | | | | | L | 0.30 | 0.40 | 0.50 | | | | L1 | 0.00 | 0.08 | 0.15 | | | | | | | | | | #### MOUNTING FOOTPRINT | DETAIL A | |---| | ⊕ 0.10 CAB 9 E2 10 16X b ⊕ 0.10 CAB NOTE 3 | BOTTOM VIEW TOP VIEW □(□)□ SIDE VIEW DETAIL B SEATING PLANE Ċ # GENERIC MARKING DIAGRAM* XXXXX = Specific Device Code A = Assembly Location L = Wafer Lot Y = Year W = Work Week ■ Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98AON04795D | Electronic versions are uncontrolled except when accessed directly from the Document Repos
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | | |------------------|-----------------|---|-------------|--|--|--| | DESCRIPTION: | QFN16 3X3, 0.5P | | PAGE 1 OF 1 | | | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Logic Gates category: Click to view products by ON Semiconductor manufacturer: Other Similar products are found below: 74HC85N NLU1G32AMUTCG NLV7SZ58DFT2G CD4068BE NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC32ADTR2G MC74HCT20ADTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV74HC02ADR2G 74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 NLV74HC08ADTR2G NLV74HC14ADR2G NLV74HC20ADR2G NLX2G86MUTCG 5962-8973601DA 74LVC2G02HD4-7 NLU1G00AMUTCG 74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G00HK3-7 74LVC2G86HK3-7 NLX1G99DMUTWG NLVVHC1G00DFT2G NLVHC1G08DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ86USG NLV27WZ00USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7 NLV74HC02ADTR2G NLX1G332CMUTCG NL17SG86P5T5G NL17SZ05P5T5G