# **Dual 4-Input NAND Gate**

# **High-Performance Silicon-Gate CMOS**

The MC74HC20A is identical in pinout to the LS20. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

#### **Features**

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2 V to 6 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- These are Pb-Free Devices
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

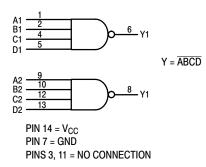
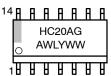



Figure 1. Logic Diagram




### ON Semiconductor®

http://onsemi.com

### MARKING DIAGRAMS



SOIC-14 D SUFFIX CASE 751A





TSSOP-14 DT SUFFIX CASE 948G



A = Assembly Location

WL, L = Wafer Lot
 YY, Y = Year
 WW, W = Work Week
 G or = Pb-Free Package

(Note: Microdot may be in either location)

### **PIN ASSIGNMENT**

| A1 [  | 1● | 14 | $\nu_{cc}$ |
|-------|----|----|------------|
| B1 [  | 2  | 13 | D2         |
| NC [  | 3  | 12 | C2         |
| C1 [  | 4  | 11 | NC         |
| D1 [  | 5  | 10 | B2         |
| Y1 [  | 6  | 9  | A2         |
| GND [ | 7  | 8  | Y2         |
|       |    |    |            |

### **FUNCTION TABLE**

| Inputs |   |   |   | Output |
|--------|---|---|---|--------|
| Α      | В | С | D | Υ      |
| L      | X | Х | Х | Н      |
| X      | L | Х | Х | Н      |
| X      | X | L | Х | Н      |
| X      | X | Х | L | Н      |
| Н      | Н | Н | Н | L      |

### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

### **MAXIMUM RATINGS\***

| Symbol           | Parameter                                                  | Value                        | Unit |
|------------------|------------------------------------------------------------|------------------------------|------|
| V <sub>CC</sub>  | DC Supply Voltage (Referenced to GND)                      | -0.5 to +7.0                 | V    |
| V <sub>in</sub>  | DC Input Voltage (Referenced to GND)                       | -0.5 to V <sub>CC</sub> +0.5 | ٧    |
| V <sub>out</sub> | DC Output Voltage (Referenced to GND)                      | -0.5 to V <sub>CC</sub> +0.5 | ٧    |
| I <sub>in</sub>  | DC Input Current, per Pin                                  | ±20                          | mA   |
| I <sub>out</sub> | DC Output Current, per Pin                                 | ±25                          | mA   |
| I <sub>CC</sub>  | DC Supply Current, V <sub>CC</sub> and GND Pins            | ±50                          | mA   |
| P <sub>D</sub>   | Power Dissipation in Still Air SOIC Packat<br>TSSOP Packat | 9                            | mW   |
| T <sub>stg</sub> | Storage Temperature                                        | -65 to +150                  | °C   |

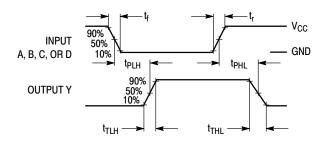
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

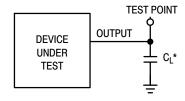
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation,  $V_{in}$  and  $V_{out}$  should be constrained to the range GND  $\leq$  ( $V_{in}$  or  $V_{out}$ )  $\leq$   $V_{CC}$ .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or  $V_{\rm CC}$ ). Unused outputs must be left open.

### RECOMMENDED OPERATING CONDITIONS

| Symbol                             | Parameter                                                                               |                | Min         | Max                       | Unit |
|------------------------------------|-----------------------------------------------------------------------------------------|----------------|-------------|---------------------------|------|
| V <sub>CC</sub>                    | DC Supply Voltage (Referenced to GND)                                                   |                | 2.0         | 6.0                       | V    |
| V <sub>in</sub> , V <sub>out</sub> | DC Input Voltage, Output Voltage (Referenced to GND)                                    |                | 0           | $V_{CC}$                  | ٧    |
| T <sub>A</sub>                     | Operating Temperature, All Package Types                                                |                | -55         | +125                      | °C   |
| t <sub>r</sub> , t <sub>f</sub>    | Input Rise and Fall Time $V_{CC} = 2$ (Figure 2) $V_{CC} = 3$ $V_{CC} = 4$ $V_{CC} = 4$ | 3.0 V<br>4.5 V | 0<br>0<br>0 | 1000<br>600<br>500<br>400 | ns   |


# DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)


|                 |                                                   |                                                                                                                                                                               |                          | Gu                        | aranteed Li               | mit                       |      |
|-----------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|---------------------------|---------------------------|------|
| Symbol          | Parameter                                         | Test Conditions                                                                                                                                                               | V <sub>CC</sub><br>V     | – 55 to<br>25°C           | ≤ <b>85</b> °C            | ≤ 125°C                   | Unit |
| V <sub>IH</sub> | Minimum High-Level Input<br>Voltage               | $V_{out}$ = 0.1 V or $V_{CC}$ – 0.1 V $ I_{out}  \le 20 \mu A$                                                                                                                | 2.0<br>3.0<br>4.5<br>6.0 | 1.5<br>2.1<br>3.15<br>4.2 | 1.5<br>2.1<br>3.15<br>4.2 | 1.5<br>2.1<br>3.15<br>4.2 | V    |
| V <sub>IL</sub> | Maximum Low-Level Input<br>Voltage                | $V_{out}$ = 0.1 V or $V_{CC}$ – 0.1 V $ I_{out}  \le 20 \mu A$                                                                                                                | 2.0<br>3.0<br>4.5<br>6.0 | 0.5<br>0.9<br>1.35<br>1.8 | 0.5<br>0.9<br>1.35<br>1.8 | 0.5<br>0.9<br>1.35<br>1.8 | V    |
| V <sub>OH</sub> | Minimum High-Level Output<br>Voltage              | $V_{in} = V_{IH} \text{ or } V_{IL}$<br>$ I_{out}  \le 20  \mu\text{A}$                                                                                                       | 2.0<br>4.5<br>6.0        | 1.9<br>4.4<br>5.9         | 1.9<br>4.4<br>5.9         | 1.9<br>4.4<br>5.9         | V    |
|                 |                                                   | $ \begin{aligned} V_{in} = V_{IH} \text{ or } V_{IL} &   I_{out}  \leq 2.4 \text{ mA} \\ &   I_{out}  \leq 4.0 \text{ mA} \\ &   I_{out}  \leq 5.2 \text{ mA} \end{aligned} $ | 3.0<br>4.5<br>6.0        | 2.48<br>3.98<br>5.48      | 2.34<br>3.84<br>5.34      | 2.20<br>3.70<br>5.20      |      |
| V <sub>OL</sub> | Maximum Low-Level Output<br>Voltage               | $V_{in} = V_{IH}$<br>$ I_{out}  \le 20 \mu A$                                                                                                                                 | 2.0<br>4.5<br>6.0        | 0.1<br>0.1<br>0.1         | 0.1<br>0.1<br>0.1         | 0.1<br>0.1<br>0.1         | V    |
|                 |                                                   | $ \begin{aligned} V_{in} = V_{IH} \text{ or } V_{IL} & &  I_{out}  \leq 2.4 \text{ mA} \\ &  I_{out}  \leq 4.0 \text{ mA} \\ &  I_{out}  \leq 5.2 \text{ mA} \end{aligned} $  | 3.0<br>4.5<br>6.0        | 0.26<br>0.26<br>0.26      | 0.33<br>0.33<br>0.33      | 0.40<br>0.40<br>0.40      |      |
| l <sub>in</sub> | Maximum Input Leakage Current                     | V <sub>in</sub> = V <sub>CC</sub> or GND                                                                                                                                      | 6.0                      | ± 0.1                     | ± 1.0                     | ± 1.0                     | μΑ   |
| I <sub>CC</sub> | Maximum Quiescent Supply<br>Current (per Package) | $V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$                                                                                                                                  | 6.0                      | 1                         | 10                        | 40                        | μΑ   |

# AC ELECTRICAL CHARACTERISTICS ( $C_L$ = 50 pF, Input $t_r$ = $t_f$ = 6 ns)

|                                        |                                                                           |                          | Gu                   | aranteed Li           | mit                   |      |
|----------------------------------------|---------------------------------------------------------------------------|--------------------------|----------------------|-----------------------|-----------------------|------|
| Symbol                                 | Parameter                                                                 | V <sub>CC</sub><br>V     | – 55 to<br>25°C      | ≤ <b>85</b> °C        | ≤ 125°C               | Unit |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Maximum Propagation Delay, Input A, B, or C to Output Y (Figures 2 and 3) | 2.0<br>3.0<br>4.5<br>6.0 | 90<br>45<br>18<br>15 | 115<br>60<br>23<br>20 | 135<br>75<br>27<br>23 | ns   |
| t <sub>TLH</sub> ,<br>t <sub>THL</sub> | Maximum Output Transition Time, Any Output (Figures 2 and 3)              | 2.0<br>3.0<br>4.5<br>6.0 | 75<br>30<br>15<br>13 | 95<br>40<br>19<br>16  | 110<br>55<br>22<br>19 | ns   |
| C <sub>in</sub>                        | Maximum Input Capacitance                                                 | _                        | 10                   | 10                    | 10                    | pF   |

|          |                                          | Typical @ 25°C, V <sub>CC</sub> = 5.0 V |    |
|----------|------------------------------------------|-----------------------------------------|----|
| $C_{PD}$ | Power Dissipation Capacitance (Per Gate) | 26                                      | pF |





\*Includes all probe and jig capacitance

Figure 3. Test Circuit

Figure 2. Switching Waveforms

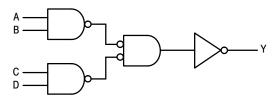
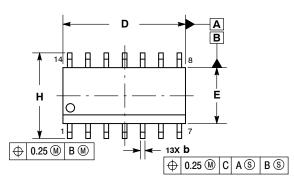
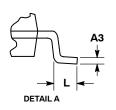


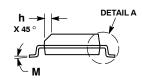

Figure 4. Expanded Logic Diagram (1/2 of the Device)

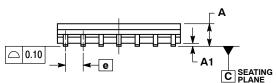
### **ORDERING INFORMATION**

| Device          | Package               | Shipping <sup>†</sup> |
|-----------------|-----------------------|-----------------------|
| MC74HC20ADG     | SOIC-14<br>(Pb-Free)  | 55 Units/Rail         |
| MC74HC20ADR2G   | SOIC-14               | OFOO(Tarra & David    |
| NLV74HC20ADR2G* | (Pb-Free)             | 2500/Tape & Reel      |
| MC74HC20ADTR2G  | TSSOP-14<br>(Pb-Free) | 2500/Tape & Reel      |


<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


<sup>\*</sup>NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.





SOIC-14 NB CASE 751A-03 ISSUE L

**DATE 03 FEB 2016** 









#### 0.25 0.50 0.010 0.019 0.40 1.25 0.016 0.049

NOTES:
1. DIMENSIONING AND TOLERANCING PER

5. MAXIMUM MOLD PROTRUSION 0.15 PER

INCHES

MIN MAX

0.050 BSC

0.25 0.004 0.010

0.25 0.008 0.010

0.49 0.014

8.75 0.337 3.80 4.00 0.150 0.157

0.068

0.019

MILLIMETERS

MIN MAX

1.27 BSC

0.19

8.55

SIDE

Α

A1 0.10

АЗ

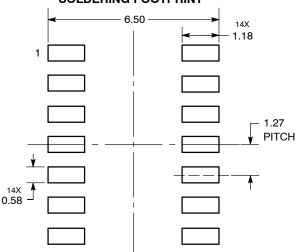
b 0.35

D E

e H h

ASME Y14.5M, 1994.
CONTROLLING DIMENSION: MILLIMETERS. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.




**GENERIC** 

XXXXX = Specific Device Code Α = Assembly Location

WL = Wafer Lot Υ = Year = Work Week WW G = Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator. "G" or microdot " ■". may or may not be present.

### **SOLDERING FOOTPRINT\***



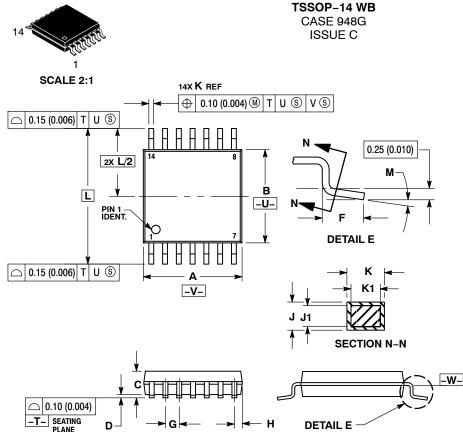
DIMENSIONS: MILLIMETERS

### **STYLES ON PAGE 2**

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repos<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | SOIC-14 NB  |                                                                                                                                                                               | PAGE 1 OF 2 |  |

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

<sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


### SOIC-14 CASE 751A-03 ISSUE L

## DATE 03 FEB 2016

| STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE | STYLE 2:<br>CANCELLED                                                                                                                                         | STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE                                                                | STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE | STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE | STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE | STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE |

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Reposit<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | SOIC-14 NB  |                                                                                                                                                                                 | PAGE 2 OF 2 |

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

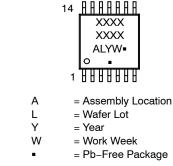


**DATE 17 FEB 2016** 

- NOTES.

  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

  2. CONTROLLING DIMENSION: MILLIMETER.


  3. DIMENSION A DOES NOT INCLUDE MOLD
- FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
  DIMENSION B DOES NOT INCLUDE
- INTERLEAD FLASH OR PROTRUSION.
  INTERLEAD FLASH OR PROTRUSION SHALL
- INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

  5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

  6. TERMINAL NUMBERS ARE SHOWN FOR DEFERENCE ONLY.
- REFERENCE ONLY.
  DIMENSION A AND B ARE TO BE
  DETERMINED AT DATUM PLANE -W-.

|     | MILLIMETERS |      | INCHES    |       |
|-----|-------------|------|-----------|-------|
| DIM | MIN         | MAX  | MIN       | MAX   |
| Α   | 4.90        | 5.10 | 0.193     | 0.200 |
| В   | 4.30        | 4.50 | 0.169     | 0.177 |
| С   | -           | 1.20 |           | 0.047 |
| D   | 0.05        | 0.15 | 0.002     | 0.006 |
| F   | 0.50        | 0.75 | 0.020     | 0.030 |
| G   | 0.65        | BSC  | 0.026     | BSC   |
| Н   | 0.50        | 0.60 | 0.020     | 0.024 |
| J   | 0.09        | 0.20 | 0.004     | 0.008 |
| J1  | 0.09        | 0.16 | 0.004     | 0.006 |
| K   | 0.19        | 0.30 | 0.007     | 0.012 |
| K1  | 0.19        | 0.25 | 0.007     | 0.010 |
| L   | 6.40        |      | 0.252 BSC |       |
| М   | ° o         | 8 °  | 0 °       | 8 °   |

### **GENERIC MARKING DIAGRAM\***



(Note: Microdot may be in either location)

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

| <b>4</b>                | 7.06                                                 |
|-------------------------|------------------------------------------------------|
| 1                       |                                                      |
|                         |                                                      |
|                         |                                                      |
|                         | <del> </del>                                         |
|                         | 0.65                                                 |
| , <u> </u>              | <b>— — — →</b> • • • • • • • • • • • • • • • • • • • |
| 14X                     | <del></del>                                          |
| 14X<br>0.36 14X<br>1.26 | DIMENSIONS: MILLIMETERS                              |

**SOLDERING FOOTPRINT** 

| DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | TSSOP-14 WB |                                                                                                                                                                                     | PAGE 1 OF 1 |

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

 74HC85N
 NLUIG32AMUTCG
 CD4068BE
 NL17SG32P5T5G
 NL17SG86DFT2G
 NLV14001UBDR2G
 NLX1G11AMUTCG

 NLX1G97MUTCG
 74LS38
 74LVC32ADTR2G
 MC74HCT20ADTR2G
 NLV17SZ00DFT2G
 NLV17SZ02DFT2G
 NLV74HC02ADR2G

 74HC32S14-13
 74LS133
 74LVC1G32Z-7
 M38510/30402BDA
 74LVC1G86Z-7
 74LVC2G08RA3-7
 NLV74HC08ADTR2G

 NLV74HC14ADR2G
 NLV74HC20ADR2G
 NLX2G86MUTCG
 5962-8973601DA
 74LVC2G02HD4-7
 NLU1G00AMUTCG

 74LVC2G32RA3-7
 74LVC2G00HD4-7
 NL17SG02P5T5G
 74LVC2G00HK3-7
 74LVC2G86HK3-7
 NLX1G99DMUTWG

 NLV7HC1G00DFT2G
 NLV1G08DFT2G
 NLV7SZ57DFT2G
 NLV74VHC04DTR2G
 NLV27WZ86USG
 NLV27WZ00USG

 NLU1G86CMUTCG
 NLU1G08CMUTCG
 NL17SZ32P5T5G
 NL17SZ00P5T5G
 NL17SH02P5T5G
 74AUP2G00RA3-7

 NLV74HC02ADTR2G
 NLX1G332CMUTCG
 NL17SG86P5T5G
 NL17SZ05P5T5G
 NLV74VHC00DTR2G