74F112 Dual JK Negative Edge-Triggered Flip-Flop

74F112 Dual JK Negative Edge-Triggered Flip-Flop

General Description

FAIRCHILD

SEMICONDUCTOR

The 74F112 contains two independent, high-speed JK flipflops with Direct Set and Clear inputs. Synchronous state changes are initiated by the falling edge of the clock. Triggering occurs at a voltage level of the clock and is not directly related to the transition time. The J and K inputs can change when the clock is in either state without affecting the flip-flop, provided that they are in the desired state during the recommended setup and hold times relative to the falling edge of the clock. A LOW signal on \overline{S}_D or \overline{C}_D prevents clocking and forces Q or \overline{Q} HIGH, respectively. Simultaneous LOW signals on \overline{S}_D and \overline{C}_D force both Q and \overline{Q} HIGH.

Asynchronous Inputs:

LOW input to \overline{S}_{D} sets Q to HIGH level

LOW input to \overline{C}_{D} sets Q to LOW level

Clear and Set are independent of clock

Simultaneous LOW on \overline{C}_D and \overline{S}_D makes both Q and \overline{Q} HIGH

Ordering Code:

Order Number	Package Number	Package Description
74F112SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74F112SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F112PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

© 2000 Fairchild Semiconductor Corporation DS009472

74F112

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}	
	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
J ₁ , J ₂ , K ₁ , K ₂	Data Inputs	1.0/1.0	20 µA/-0.6 mA	
$\overline{CP}_1, \overline{CP}_2$	Clock Pulse Inputs (Active Falling Edge)	1.0/4.0	20 µA/–2.4 mA	
$\overline{C}_{D1}, \overline{C}_{D2}$	Direct Clear Inputs (Active LOW)	1.0/5.0	20 µA/–3.0 mA	
$\overline{S}_{D1}, \overline{S}_{D2}$	Direct Set Inputs (Active LOW)	1.0/5.0	20 µA/–3.0 mA	
$Q_1, Q_2, \overline{Q}_1, \overline{Q}_2$	Outputs	50/33.3	-1 mA/20 mA	

Truth Table

		Outputs				
SD	¯c _D	СР	J	к	Q	Q
L	Н	Х	Х	Х	Н	L
н	L	Х	Х	Х	L	н
L	L	Х	Х	Х	н	н
Н	Н	~	h	h	\overline{Q}_0	Q_0
н	н	~	T	h	L	н
Н	Н	~	h	Ι	н	L
н	Н	~	Ι	I	Q_0	\overline{Q}_0

H (h) = HIGH Voltage Level L (l) = LOW Voltage Level X = Immaterial

 $\begin{array}{l} \sim \quad = \text{HIGH-to-LOW Clock Transition} \\ Q_0(\overline{Q}_0) = \text{Before HIGH-to-LOW Transition of Clock} \end{array}$

Lower case letters indicate the state of the referenced input or output one setup time prior to the HIGH-to-LOW clock transition.

Logic Diagram

Absolute Maximum Ratings(Note 1)

Storage Temperature Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2) Input Current (Note 2) Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$) Standard Output 3-STATE Output Current Applied to Output in LOW State (Max) twice the rated I_{OL} (mA)

-65°C to +150°C $-55^{\circ}C$ to $+125^{\circ}C$ $-55^{\circ}C$ to $+150^{\circ}C$ -0.5V to +7.0V -0.5V to +7.0V -30 mA to +5.0 mA

-0.5V to V_{CC}

-0.5V to +5.5V

Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage

 $0^{\circ}C$ to $+70^{\circ}C$ +4.5V to +5.5V 74F112

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Symbol	Parameter		Min	Тур	Max	Units	Vcc	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signa
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA
	Voltage	$5\% V_{CC}$	2.7					$I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	L 20 m A
	Voltage				0.5	v	IVIIII	I _{OL} = 20 mA
I _{IH}	Input HIGH				5.0		Max	V _{IN} = 2.7V
	Current				5.0	μA	IVIAX	$v_{IN} = 2.7 v$
I _{BVI}	Input HIGH Current				7.0	μA	Max	V _{IN} = 7.0V
	Breakdown Test				7.0	μΑ	IVIAX	v _{IN} = 7.0v
ICEX	Output HIGH				50	۵	Мах	V V
	Leakage Current				50	μA	IVIAX	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA
	Test		4.75			v	0.0	All other pins grounded
I _{OD}	Output Leakage				3.75	μA	0.0	$V_{IOD} = 150 \text{ mV}$
	Circuit Current				3.75	μΑ	0.0	All other pins grounded
IIL	Input LOW Current				-0.6			$V_{IN} = 0.5V (J_n, K_n)$
					-2.4	mA	Max	$V_{IN} = 0.5V (\overline{CP}_n)$
					-3.0			$V_{IN} = 0.5V (\overline{C}_{Dn}, \overline{S}_{Dn})$
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$
ICCH	Power Supply Current			12	19	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			12	19	mA	Max	$V_{O} = LOW$

DC Electrical Characteristics

Symbol		T _A = +25°C V _{CC} = +5.0V			$T_A = 0^\circ C \text{ to } +70^\circ C$ $V_{CC} = +5.0V$		Units	
	Parameter		C _L = 50 pF			C _L = 50 pF		
		Min	Тур	Max	Min	Max		
f _{MAX}	Maximum Clock Frequency	85	105		80		MHz	
t _{PLH}	Propagation Delay	2.0	5.0	6.5	2.0	7.5		
t _{PHL}	CP _n to Q _n or Q _n	2.0	5.0	6.5	2.0	7.5	ns	
t _{PLH}	Propagation Delay	2.0	4.5	6.5	2.0	7.5		
PLH							ns	

AC Operating Requirements

Symbol	Parameter	T _A = +25°C V _{CC} = +5.0V		$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$		Units	
		Min	Max	Min	Max		
t _S (H)	Setup Time, HIGH or LOW	4.0		5.0			
t _S (L)	J _n or K _n to \overline{CP}_n	3.0		3.5		ns	
t _H (H)	Hold Time, HIGH or LOW	0		0			
t _H (L)	J _n or K _n to CP _n	0		0			
t _W (H)	CP Pulse Width	4.5		5.0			
t _W (L)	HIGH or LOW	4.5		5.0		ns	
t _W (L)	Pulse Width, LOW \overline{C}_{Dn} or \overline{S}_{Dn}	4.5		5.0		ns	
t _{REC}	Recovery Time S _{Dn} , C _{Dn} to CP	4.0		5.0		ns	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:

Other Similar products are found below :

1.5SMC82AT3G 74LCX574WM FST3126MX MC78L08ACP MMBTA42 FDD8424H_F085A NTZD3154NT1H KSA1015GRTA BAT42XV2 007851X 702607H MC33079DG MC34072DR2G MC34151P MC78L08ACDG 74VHC14MX 74VHC541MTCX FAN3111ESX FDMC86262P FDMD8530 FEBFL7733A_L53U021A FEBFOD8333 MM74HC138MX MMBZ5233B FOD3120SD FPAB30BH60B FQP2N80 1.5KE16AG MT9V115EBKSTCH-GEVB NB6L295MNGEVB NB7L1008MNGEVB NC7WZ126K8X NCL30000LED2GEVB NCN9252MUGEVB NCP1075PSRGEVB NCV4274CDT33RKG NCV887100D1R2G NDT2955 1N5339B NSIC2030JBT3G NV890231MWTXGEVB CAT4101AEVB KA7818ETU S3JB 2SC5569-TD-E FEBFL7734_L55L008A 1V5KE39CA FNB33060T AMIS30422DBGEVB AMIS3062XGEVK