

8-bit I²C-bus and SMBus I/O port with 5-bit multiplexed/1-bit latched 6-bit I²C-bus EEPROM DIP switch and 2-kbit EEPROM

Rev. 5 — 25 June 2012

Product data sheet

1. General description

The PCA9558 is a highly integrated, multi-function device that is composed of a 5-bit multiplexed/1-bit latched 6-bit I²C-bus/SMBus EEPROM DIP switch, an 8-bit I/O expander and a 2-kbit serial EEPROM with write protect. The PCA9558 integrates these commonly used components into a single chip to reduce component count and board space requirements and is useful in computer, server and telecom/networking applications.

- Multiplexed/latched EEPROM DIP switch used to select digital information between a set of 5 bits of default hardware inputs and an alternative set of inputs provided by the I²C-bus/SMBus interface and stored in the EEPROM. Examples of this type of selection include processor voltage configuration or processor vendor identification (VID). The multiplexed/latched EEPROM can also be used to replace DIP switches or jumpers, since the settings can be easily changed via I²C-bus/SMBus without having to power down the equipment to open the cabinet. The non-volatile memory retains the most current setting selected before the power is turned off.
- 8-bit I/O expander used to control, monitor or collect remote information or power LEDs. Monitored or collected information can be read through the I²C-bus/SMBus or can be stored in the internal EEPROM.
- 2-kbit serial EEPROM used to store information such as card identification or revision/maintenance history on every motherboard/line card and can be read or written via l²C-bus/SMBus when required.

The PCA9558 has one address pin, allowing up to two devices to be placed on the same I^2C -bus or SMBus.

2. Features and benefits

- 5-bit 2-to-1 multiplexer, 1-bit latch DIP switch
- 6-bit MUX_OUTx and NON_MUXED_OUT EEPROM programmable and readable via I²C-bus
- 5 V tolerant open-drain MUX_OUTx and NON_MUXED_OUT outputs
- Active LOW override input forces all MUX_OUTx outputs to logic 0
- I²C-bus readable MUX_INx inputs
- 5 V tolerant open-drain IOx pins, power-up default as outputs
- One address pin, allowing up to two devices on the I²C-bus
- Active LOW reset input with internal pull-up for the eight I/O pins
- 2048-bit EEPROM programmable and readable via the I²C-bus or I/Os
- Operating power supply voltage range of 3.0 V to 3.6 V
- SMBus compliance with fixed 3.3 V levels

- 2.5 V to 5 V tolerant inputs
- ESD protection exceeds 2000 V HBM per JESD22-A114 and 1000 V CDM per JESD22-C101
- Latch-up testing is done to JEDEC Standard JESD78 which exceeds 100 mA

3. Applications

- Board version tracking and configuration
- Board health monitoring and status reporting
- Multi-card systems in telecom, networking and base station infrastructure equipment
- Field recall and troubleshooting functions for installed boards
- General-purpose integrated I/O with DIP switch and memory

4. Ordering information

Table 1. Orde										
Type number	Topside mark	Temperature	Package							
		range	Name	Description	Version					
PCA9558PW	PCA9558DH	0 °C to 70 °C	TSSOP28	plastic thin shrink small outline package; 28 leads; body width 4.4 mm	SOT361-1					

8-bit I²C-bus/SMBus I/O port

5. Block diagram

8-bit I²C-bus/SMBus I/O port

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin descrip	otion	
Symbol	Pin	Description
SCL	1	serial I ² C-bus clock
SDA	2	serial bidirectional I ² C-bus data
IO_OUT_LOW	3	active LOW control forces all GPIO to logic 0 outputs
A0	4	A0 address
MUX_INA	5	external input A to multiplexer
MUX_INB	6	external input B to multiplexer
MUX_INC	7	external input C to multiplexer
MUX_IND	8	external input D to multiplexer
MUX_INE	9	external input E to multiplexer
V _{SS}	10	ground
100	11	general purpose input/output 0 (open-drain output)
IO1	12	general purpose input/output 1 (open-drain output)
IO2	13	general purpose input/output 2 (open-drain output)
IO3	14	general purpose input/output 3 (open-drain output)
IO4	15	general purpose input/output 4 (open-drain output)
IO5	16	general purpose input/output 5 (open-drain output)
IO6	17	general purpose input/output 6 (open-drain output)
107	18	general purpose input/output 7 (open-drain output)

Product data sheet

8-bit I²C-bus/SMBus I/O port

Table 2. Pin descrip	otioncontir	nued
Symbol	Pin	Description
MUX_SELECT	19	active LOW select of MUX_INx inputs or EEPROM contents for MUX_OUTx outputs
MUX_OUTE	20	open-drain multiplexed output E
MUX_OUTD	21	open-drain multiplexed output D
MUX_OUTC	22	open-drain multiplexed output C
MUX_OUTB	23	open-drain multiplexed output B
MUX_OUTA	24	open-drain multiplexed output A
NON_MUXED_OUT	25	open-drain outputs from non-volatile memory
MUX_OUT_LOW	26	active LOW control forces all MUX outputs to logic 0
WP	27	active HIGH EEPROM write protect
V _{DD}	28	power supply (3.0 V to 3.6 V)

7. Functional description

Refer to Figure 1 "Block diagram of PCA9558".

7.1 I²C-bus interface

Communicating with this device is initiated by sending a valid address on the I^2 C-bus. The address format (see Figure 3) has 6 fixed bits and one user-programmable bit followed by a 1-bit read/write value which determines the direction of the data transfer.

Following the address and acknowledge bit are 8 data bits which, depending on the read/write bit in the address, will read data from or write data to the EEPROM. Data will be written to the register if the read/write bit is logic 0 and the WP input is logic 0. Data will be read from the register if the bit is logic 1. The four high-order bits are latched outputs, while the four low order bits are multiplexed outputs (Figure 5).

Remark: To ensure data integrity, the EEPROM must be internally write protected when V_{DD} to the I²C-bus is powered down or V_{DD} to the component is dropped below normal operating levels.

8-bit I²C-bus/SMBus I/O port

Table 3.		Com	mand	byte				
D7	D6	D5	D4	D3	D2	D1	D0	Command
0	0	0	0	0	0	0	1	write to 256-byte EEPROM via I ² C-bus
0	0	0	0	0	0	1	1	read from 256-byte EEPROM via I ² C-bus
0	0	0	0	0	1	0	0	write to 6-bit EEPROM via I ² C-bus
0	0	0	0	0	1	1	0	read from 6-bit EEPROM via I ² C-bus
0	0	0	0	0	1	1	1	read Input Port (IP) register via I ² C-bus
0	0	0	0	1	0	0	0	read/write Output Port (OP) register via I ² C-bus
0	0	0	0	1	0	0	1	read/write Polarity Inversion (PI) register via I ² C-bus
0	0	0	0	1	0	1	0	read/write Input/Output Configuration (IOC) register via I ² C-bus
0	0	0	0	1	0	1	1	read/write MUX Control (MUXCNTRL) register via I ² C-bus
0	0	0	0	1	1	0	0	read MUX_INx values via I ² C-bus
0	0	0	0	1	1	0	1	reserved
0	0	0	0	1	1	1	0	reserved
0	0	0	0	1	1	1	1	read 256-byte EEPROM and write OP register
0	0	0	1	0	0	0	0	read 256-byte EEPROM and write PI register
0	0	0	1	0	0	0	1	read 256-byte EEPROM and write IOC register
0	0	0	1	0	0	1	0	read IP register and write to 256-byte EEPROM
0	0	0	1	0	0	1	1	reserved
:	:	:	:	:	:	:	:	
1	1	1	1	1	1	1	1	reserved

7.1.1 Multiplexer

PCA9558 Product data sheet The Multiplexer function controls the six open-drain outputs, MUX_OUTx and NON_MUXED_OUT. This control is affected by the input pins MUX_SELECT (pin 19), MUX_OUT_LOW (pin 26), and/or an internal register programmed via the l²C-bus.

Upon power-up, the multiplex function is controlled by the MUX_SELECT and MUX_OUT_LOW pins. When the MUX_SELECT signal is a logic 0, the multiplexer will select the data from the 6-bit EEPROM to drive on the MUX_OUTx and NON_MUXED_OUT pins. When the MUX_SELECT signal is a logic 1, the multiplexer will select the MUX_INx pins to drive on the MUX_OUTx pins.

The NON_MUXED_OUT output is latched from the 6-bit EEPROM on a rising edge of the MUX_SELECT signal. This latch is transparent while the MUX_SELECT signal is a logic 0. An internal control register, written via the I²C-bus, can also control the multiplexer function. When this register is written, the MUX_SELECT function can change from the external pin to an internal register. In this register a bit will act in a similar fashion to the MUX_SELECT input, i.e., a logic 1 will cause the multiplexer to select data from the 6-bit EEPROM to drive on the MUX_OUTx and NON_MUXED_OUT pins. In this configuration, the NON_MUXED_OUT will latch data when the PCA9558 acknowledges the I²C-bus. The MUX_SELECT pin will have no effect on the MUX_OUTx or NON_MUXED_OUT while in this mode.

When the MUX_OUT_LOW signal is a logic 0 and the multiplexer is configured so that the MUX_OUTx pins are being driven by the 6-bit EEPROM, the MUX_OUTx pins will be driven to a logic 0. This information is summarized in Table 4.

Regist	Register Input			Output			
B1[1]	B0[1]	MUX_OUT_LOW MUX_SELECT		MUX_OUTx	NON_MUXED_OUT		
х	0	0	1	MUX_INx inputs	latched from EEPROM ^[2]		
х	0	0	0	0	0		
х	0	1	1	MUX_INx inputs	latched from EEPROM ^[2]		
х	0	1	0	from EEPROM	from EEPROM		
0	1	0	х	MUX_INx inputs	latched from EEPROM[3]		
1	1	0	х	0	0		
0	1	1	х	MUX_INx inputs	latched from EEPROM[3]		
1	1	1	х	from EEPROM	from EEPROM		

Table 4.Multiplexer function table

[1] These are the 2 LSBs of the MUX Control (MUXCNTRL) register.

[2] NON_MUXED_OUT value will be the value present in the 6-bit EEPROM at the time of the rising edge of the MUX_SELECT input.

[3] NON_MUXED_OUT value will be the value present in the 6-bit EEPROM at the time of the slave ACK when bit 1 has changed from logic 0 to logic 1.

If the MUX_OUTx outputs are being driven by the 6-bit EEPROM and this EEPROM is programmed, the outputs will remain stable and change to the new values after the EEPROM program cycle completes.

Examples of read/write for MUX control can be found in Figure 7.

NXP Semiconductors

PCA9558

8-bit I²C-bus/SMBus I/O port

7.1.2 Registers

The GPIOs are controlled by a set of 4 internal registers: Input Port (IP) register; Output Port (OP) register; Polarity Inversion (PI) register; and the Input/Output Configuration (IOC) register. Each register is read/write via the I²C-bus or 256-byte EEPROM, with the exception of the Input Port register, which is read only, one at a time. The read/write takes place on the slave Acknowledge. The control of which register is currently available to the I²C-bus is set by bits in the control register. See Section 7.1.2.1 through Section 7.1.2.4 for details.

7.1.2.1 IP - Input Port register

This register is an input-only port. It reflects the logic value present on the GPIO pins regardless of whether they are configured as inputs or outputs (IOC register). Writes to this register have no effect.

Table 5.	r - input Port register description								
Bit	7	6	5	4	3	2	1	0	
Symbol	17	16	15	14	13	12	l1	10	
Default	0	0	0	0	0	0	0	0	

Table 5.	IP -	Input	Port	register	description
----------	------	-------	------	----------	-------------

PCA9558 Product data sheet

7.1.2.2 OP - Output Port register

This register is an output-only port. It reflects the outgoing logic levels of the GPIO defined as outputs in the IOC register. Bit values in this register have no effect on GPIO defined as inputs. In turn, reads from this register reflect the value stored in the flip-flop controlling the output, **not** the actual output value.

Table 6. OP - Output Port register description

	e. eutput entregiene decemption								
Bit	7	6	5	4	3	2	1	0	
Symbol	07	O6	O5	O4	O3	02	O1	00	
Default	0	0	0	0	0	0	0	0	

7.1.2.3 PI - Polarity Inversion register

This register enables polarity inversion of GPIO defined as inputs by the IOC register. If a bit in this register is set to a logic 1, the corresponding GPIO input port is inverted. If a bit in this register is set to a logic 0, the corresponding GPIO input port is not inverted.

Table 7. PI - Polarity Inversion register description

		-	-					
Bit	7	6	5	4	3	2	1	0
Symbol	P7	P6	P5	P4	P3	P2	P1	P0
Default	1	1	1	1	0	0	0	0

7.1.2.4 IOC - Input/Output Configuration register

This register configures the direction of the GPIO pins (IOx). If a bit is set to a logic 1, the corresponding port pin is enabled as an input with a high-impedance output driver. If a bit is set to a logic 0, the corresponding port pin is enabled as an output.

Table 8. IOC - Input/Output Configuration register description

Bit	7	6	5	4	3	2	1	0
Symbol	C7	C6	C5	C4	C3	C2	C1	C0
Default	0	0	0	0	0	0	0	0

Examples of read/write to these registers can be found in <u>Figure 9</u>, <u>Figure 10</u>, <u>Figure 15</u>, and <u>Figure 16</u>.

The $\overline{IO_OUT_LOW}$ input, when held LOW longer than the time $T_{cy(W)}$, will reset the GPIO registers to their default (power-up) values.

A read of the present value of the inputs MUX_INx can be done via the l^2 C-bus. This is done by addressing the PCA9558 in a write mode and entering the correct command code. The preset value on the MUX_INx inputs is latched at the command code Acknowledge. A REPEATED START is then sent with the R/W bit set to a logic 1, read, and this latched data is read out on the l^2 C-bus. See Figure 11.

NXP Semiconductors

8-bit I²C-bus/SMBus I/O port

PCA9558

7.1.3 EEPROM write operation

7.1.3.1 6-bit write operation

A write operation to the 6-bit EEPROM requires that an address byte be written after the command byte. This address points to the 6-bit address space in the EEPROM array. Upon receipt of this address, the PCA9558 waits for the next byte that will be written to the EEPROM. The master then ends the transaction with a STOP condition on the I²C-bus. See Figure 12.

After the STOP condition, the E/W cycle starts, and the parts will not respond to any request to access the EEPROM array until the cycle finishes, approximately 4 ms.

7.1.3.2 6-bit read operation

A read operation is initiated in the same manner as a write operation, with the exception that after the word address has been written a REPEATED START condition is placed on the l^2 C-bus and the direction of communication is reversed (see Figure 13).

PCA9558 Product data sheet

7.1.3.3 256-byte write operation (I²C-bus)

A write operation to the 256-byte EEPROM requires that an address byte be written after the command byte. This address points to the starting address in the EEPROM array. The four LSBs of this address select a position on a 16-byte page register, the four MSBs select which page register. The four LSBs will be auto-incremented after receipt of each byte of data; in this manner, the entire page register can be written starting at any point. Up to 16 bytes of data may be sent to the PCA9558, followed by a STOP condition on the I²C-bus. If the master sends more than 16 bytes of data prior to generating a STOP condition, data within the address page will be overwritten and unpredictable results may occur. See Figure 14.

After the STOP condition, the E/W cycle starts, and the parts will not respond to any request to access the EEPROM array until the cycle finishes, approximately 4 ms.

12 of 29

7.1.3.4 256-byte read operation (I²C-bus)

A read operation is initiated in the same manner as a write operation, with the exception that after the word address has been written, a REPEATED START condition is placed on the I²C-bus, and the direction of communication is reversed. For a read operation, the entire address is incremented after the transmission of each byte, meaning that the entire 256-byte EEPROM array can be read at one time. See Figure 15.

256-byte EEPROM write to GPIO 7.1.3.5

A mode is available whereby a byte of data in the 256-byte EEPROM array can be written to the GPIO (OP register). This is initiated by the I²C-bus. In this mode, a control word indicating a read from the 256-byte EEPROM and write to the GPIO is sent, followed by the word address of the data within the EEPROM array. Upon Acknowledge from the slave, the data is sent to the GPIO. See Figure 16.

PCA9558

13 of 29

7.1.3.6 256-byte EEPROM write from GPIO

A mode is available whereby data in the GPIO (IP register) can be written to the 256-byte EEPROM. This is initiated by the I²C-bus. In this mode, a control word indicating a read from the GPIO and write to the 256-byte EEPROM is sent, followed by the word address for the data to be written. Once the slave has sent an Acknowledge, the master must send a STOP condition. See Figure 17.

After the STOP condition, the E/W cycle starts, and the parts will not respond to any request to access the EEPROM array until the cycle finishes, approximately 4 ms.

When the Write Protect (WP) input is a logic 0 it allows writes to both EEPROM arrays. When it is a logic 1, it prevents any writes to the EEPROM arrays.

7.1.4 Reset

7.1.4.1 Power-on reset

When power is applied to V_{DD} , an internal Power-On Reset (POR) holds the PCA9558 in a reset state until V_{DD} has reached V_{POR} . At that point, the reset condition is released and the PCA9558 volatile registers and SMBus state machine will initialize to their default states.

The GPIO outputs (IOx) will be selected as outputs.

The DIP switch MUX_OUTx and NON_MUXED_OUT pin values depend on:

- The MUX_OUT_LOW and MUX_SELECT logic levels
- The previously stored values in the EEPROM register/current MUX_INx pin values as shown in Table 4

7.1.4.2 External reset

A reset of the GPIO registers can be accomplished by holding the $\overline{IO_OUT_LOW}$ pin LOW for a minimum of $T_{cy(W)}$. These GPIO registers return to their default states until the $\overline{IO_OUT_LOW}$ input is once again HIGH.

7.2 Using the PCA9558 on the SMBus

It is possible to use Intel chip sets to communicate with the PCA9558. There are no limitations when the SMBus controller is communicating with the MUX or the GPIO; however, there are limitations with the 2-kbit serial EEPROM. Because of being able to address any location in the EEPROM block using the second command byte, the designer using the PCA9558 on the SMBus will have to program around it, an easy thing to do. The device designers had to deal with the specifics of addressing the EEPROM and chose the I²C-bus specification and use the second command byte to address any location in the EEPROM block.

In order to write to the EEPROM, write the EEPROM address byte in the Data0 byte and the data to be sent should be placed in the Data1 byte. The Intel chip set's Word Data instruction would then send the address, followed by the command register then Data0 (EEPROM address), and then the Data1 (data byte). A read from the EEPROM would be a two-step process. The first step would be to do a 'Write Byte' with the EEPROM address in the Data0 register. The second step would be to do a 'Receive Byte' where the data is stored in the command register.

Other differences from the SMBus specification:

- Paragraph 5.5.5 Read Byte/Word in figure 5-11: The PCA9558 follows this same command code with one exception, the PCA9558 requires 2 bytes of command before the repeated START.
- Paragraph 5.5.6 Process call in figure 5-15: The PCA9558 read operation is very similar to the SMBus process call. In the PCA9558 read operation you send a START condition slave address with a write bit 2 bytes of command code repeated START slave address with a read bit then read data.

PCA9558

15 of 29

8. Application design-in information

A central processor/controller typically located on the system main board can use the 400 kHz I²C-bus/SMBus to poll the PCA9558 devices located on the system cards for status or version control type of information. The PCA9558 may be programmed at manufacturing to store information regarding board build, firmware version, manufacturer identification, configuration option data, etc. Alternately, these devices can be used as convenient interface for board configuration, thereby utilizing the I²C-bus/SMBus as an intra-system communication bus.

16 of 29

9. Limiting values

Table 9. Limiting values^[1]

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to V_{SS} (0 V).

-					
Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		2.5	4.6	V
VI	input voltage		[2] -0.5	V _{DD} + 0.5	V
Vo	output voltage		[2] -0.5	V _{DD} + 0.5	V
T _{stg}	storage temperature		-60	+150	°C

[1] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C.

[2] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

10. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DD}	supply voltage		3	-	3.6	V
V _{IL}	LOW-level input voltage	SCL, SDA; I _{OL} = 3 mA	-0.5	-	0.9	V
		MUX_OUT_LOW, MUX_INx, MUX_SELECT	-0.5	-	0.8	V
VIH	HIGH-level input voltage	SCL, SDA; I _{OL} = 3 mA	2.7	-	4.0	V
		MUX_OUT_LOW, MUX_INx, MUX_SELECT	2.0	-	4.0	V
V _{OL}	LOW-level output voltage	SCL, SDA; I _{OL} = 3 mA	-	-	0.4	V
		SCL, SDA; I _{OL} = 6 mA	-	-	3.6 0.9 0.8 4.0 4.0	V
I _{OL}	LOW-level output current	MUX_OUTx, NON_MUXED_OUT; V _{OL} = 0.4 V	-	-	4	mA
I _{OH}	HIGH-level output current	MUX_OUTx, NON_MUXED_OUT	-	-	100	μA
$\Delta t/\Delta V$	input transition rise and fall rate		0	-	10	ns/V
T _{amb}	ambient temperature	operating	0	-	70	°C

Table 10. Operating conditions

11. Static characteristics

Table 11.	Static characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply						
V_{DD}	supply voltage		3.0	-	3.6	V
I _{CCL}	LOW-level supply current	operating mode; all inputs = 0 V	-	-	10	mA
I _{CCH}	HIGH-level supply current	operating mode; all inputs = V_{DD}	-	-	10	mA
V _{POR}	power-on reset voltage	no load; $V_I = V_{DD}$ or V_{SS}	-	2.3	2.6	V
Input SCL	.; input/output SDA					
V _{IL}	LOW-level input voltage		-0.5	-	+0.8	V
V _{IH}	HIGH-level input voltage		2	-	V_{DD} + 0.5	V
I _{OL}	LOW-level output current	$V_{OL} = 0.4 V$	3	-	-	mA
		V _{OL} = 0.6 V	6	-	-	mA
I _{LH}	HIGH-level leakage current	$V_I = V_{DD}$	–1	-	+1	μΑ
ILL	LOW-level leakage current	$V_I = V_{SS}$	–1	-	+1	μΑ
Ci	input capacitance		-	-	10	pF
MUX_OU	T_LOW, WP, MUX_SELECT					
I _{LH}	HIGH-level leakage current	$V_{I} = V_{DD}$	-	-	1	μΑ
ILL	LOW-level leakage current	$V_{I} = V_{SS}$	-	-	-100	μΑ
Ci	input capacitance		-	-	10	pF
MUX_INx						
I _{LH}	HIGH-level leakage current	$V_{I} = V_{DD}$	-	-	1	μΑ
ILL	LOW-level leakage current	$V_{I} = V_{SS}$	-	-	-100	μΑ
Ci	input capacitance		-	-	10	pF
A0 input						
I _{LH}	HIGH-level leakage current	$V_{I} = V_{DD}$	-	-	1	μΑ
ILL	LOW-level leakage current	$V_{I} = V_{SS}$	-	-	-100	μΑ
Ci	input capacitance		-	-	10	pF
MUX_OU	Гх					
V _{OL}	LOW-level output voltage	I _{OL} = 100 μA	-	-	0.4	V
		I _{OL} = 4 mA	-	-	0.7	V
I _{OH}	HIGH-level output current	$V_{OH} = V_{DD}$	-	-	100	μΑ
NON_MU	XED_OUT					
V _{OL}	LOW-level output voltage	I _{OL} = 100 μA	-	-	0.4	V
		I _{OL} = 4 mA	-	-	0.7	V
I _{OH}	HIGH-level output current	$V_{OH} = V_{DD}$	-	-	100	μΑ
GPIO (IO>	()					
V _{OL}	LOW-level output voltage	I _{OL} = 100 μA	-	-	0.4	V
		I _{OL} = 4 mA	-	-	0.7	V
I _{OH}	HIGH-level output current	$V_{OH} = V_{DD}$	-	-	100	μΑ

8-bit I²C-bus/SMBus I/O port

12. Dynamic characteristics

Table 12.	Dynamic characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
MUX_INx	to MUX_OUTx					
t _{PLH}	LOW to HIGH propagation delay		-	21	28	ns
t _{PHL}	HIGH to LOW propagation delay		-	7	10	ns
MUX_SEL	ECT to MUX_OUTx					
t _{PLH}	LOW to HIGH propagation delay		-	20	28	ns
t _{PHL}	HIGH to LOW propagation delay		-	8	12	ns
MUX_OU	F_LOW to NON_MUXED_OUT					
t _{PLH}	LOW to HIGH propagation delay		-	20	26	ns
t _{PHL}	HIGH to LOW propagation delay		-	8	15	ns
MUX_OU	Γ_LOW to MUX_OUTx					
t _{PLH}	LOW to HIGH propagation delay		-	20	28	ns
t _{PHL}	HIGH to LOW propagation delay		-	7.0	15	ns
t _r	rise time	output	1.0	-	10	ns/V
t _f	fall time	output	1.0	-	5	ns/V
CL	load capacitance	test load on outputs	-	-	10	pF
l ² C-bus						
f _{SCL}	SCL clock frequency		10	-	400	kHz
t _{BUF}	bus free time between a STOP and START condition		1.3	-	-	μs
t _{HD;STA}	hold time (repeated) START condition		<u>[1]</u> 600	-	-	ns
t _{LOW}	LOW period of the SCL clock		1.3	-	-	μs
t _{HIGH}	HIGH period of the SCL clock		600	-	-12	ns
t _{SU;STA}	set-up time for a repeated START condition		600	-	-32	ns
t _{HD;DAT}	data hold time		0	-	10	ns
t _{SU;DAT}	data set-up time		100	-	-100	ns
t _{SP}	pulse width of spikes that must be suppressed by the input filter		0	-	50	ns
t _{SU;STO}	set-up time for STOP condition		600	-	10	ns
t _r	rise time of both SDA and SCL signals	10 pF to 400 pF bus	20	-	300	ns
t _f	fall time of both SDA and SCL signals	10 pF to 400 pF bus	20	-	300	ns
C _b	capacitive load for each bus line		-	-	400	pF
T _{cy(W)}	write cycle time		[2]	15	-	ms

[1] After this period, the first clock pulse is generated.

[2] Write cycle time can only be measured indirectly during the write cycle. During this time, the device will not acknowledge its I²C-bus address.

NXP Semiconductors

8-bit I²C-bus/SMBus I/O port

PCA9558

13. Non-volatile storage specifications

Table 13. Non-volatile storage specifications

Parameter	Specification
memory cell data retention	10 years (minimum)
number of memory cell write cycles	100,000 cycles (minimum)

8-bit I²C-bus/SMBus I/O port

14. Test information

8-bit I²C-bus/SMBus I/O port

15. Package outline

Fig 22. Package outline SOT361-1 (TSSOP28)

All information provided in this document is subject to legal disclaimers.

16. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

16.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

16.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- Board specifications, including the board finish, solder masks and vias
- Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

16.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

16.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 23</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with <u>Table 14</u> and <u>15</u>

Table 14. SnPb eutectic process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)		
	Volume (mm ³)		
	< 350	≥ 350	
< 2.5	235	220	
≥ 2.5	220	220	

Table 15. Lead-free process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)			
	Volume (mm ³)	(mm ³)		
	< 350	350 to 2000	> 2000	
< 1.6	260	260	260	
1.6 to 2.5	260	250	245	
> 2.5	250	245	245	

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 23.

8-bit I²C-bus/SMBus I/O port

PCA9558

For further information on temperature profiles, refer to Application Note AN10365 "Surface mount reflow soldering description".

17. Abbreviations

Table 16.	Abbreviations
Acronym	Description
ASIC	Application Specific Integrated Circuit
CDM	Charged Device Model
CPU	Central Processing Unit
DIP	Dual In-line Package
DUT	Device Under Test
EEPROM	Electrically-Erasable Programmable Read-Only Memory
ESD	ElectroStatic Discharge
GPIO	General Purpose Input/Output
HBM	Human Body Model
I/O	Input/Output
I ² C-bus	Inter-Integrated Circuit bus
LED	Light Emitting Diode
LSB	Least Significant Bit
MSB	Most Significant Bit
POR	Power-On Reset
SMBus	System Management Bus
μC	microcontroller

18. Revision history

Table 17. Revisio	on history			
Document ID	Release date	Data sheet status	Change notice	Supersedes
PCA9558 v.5	20120625	Product data sheet	-	PCA9558 v.4
Modifications:	Section 2 "Fe	eatures and benefits", 13th bu	Illet: deleted "200 V MM per J	IESD22-A115"
		 <u>Input/Output Configuration</u> "(documentation correction 		
	 Table 16 "Ab 	breviations": deleted row "MM	I, Machine Model"	
PCA9558 v.4	20090414	Product data sheet	-	PCA9558 v.3
PCA9558 v.3 (9397 750 11674)	20030627	Product data	ECN 853-2235 29936 of 19 May 2003	PCA9558 v.2
PCA9558 v.2 (9397 750 09889)	20020524	Product data	ECN 853-2235 28310 of 24 May 2002	PCA9558 v.1
PCA9558 v.1	20001204	Product specification	-	-

19. Legal information

19.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

19.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

19.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

© NXP B.V. 2012. All rights reserved.

8-bit I²C-bus/SMBus I/O port

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's standard warranty and NXP Semiconductors' product specifications. **Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

own risk, and (c) customer fully indemnifies NXP Semiconductors for any

liability, damages or failed product claims resulting from customer design and

use of the product for automotive applications beyond NXP Semiconductors'

19.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

 l^2C -bus — logo is a trademark of NXP B.V.

20. Contact information

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

8-bit I²C-bus/SMBus I/O port

21. Contents

1	General description 1
2	Features and benefits 1
3	Applications 2
4	Ordering information 2
5	Block diagram 3
6	Pinning information
6.1	Pinning
6.2	Pin description 4
7	Functional description 5
7.1	I ² C-bus interface
7.1.1	Multiplexer 6
7.1.2	Registers 8
7.1.2.1	IP - Input Port register 8
7.1.2.2	OP - Output Port register
7.1.2.3	PI - Polarity Inversion register 9
7.1.2.4	IOC - Input/Output Configuration register 9
7.1.3 7.1.3.1	EEPROM write operation
7.1.3.1	6-bit write operation
7.1.3.2	256-byte write operation (I ² C-bus)
7.1.3.4	256-byte read operation (I^2 C-bus)
7.1.3.5	256-byte EEPROM write to GPIO 13
7.1.3.6	256-byte EEPROM write from GPIO 14
7.1.4	Reset
7.1.4.1	Power-on reset 14
7.1.4.2	External reset 14
7.2	Using the PCA9558 on the SMBus 15
8	Application design-in information 16
9	Limiting values 17
10	Recommended operating conditions 17
11	Static characteristics 18
12	Dynamic characteristics 19
13	Non-volatile storage specifications 20
14	Test information 21
15	Package outline 22
16	Soldering of SMD packages 23
16.1	Introduction to soldering 23
16.2	Wave and reflow soldering 23
16.3	Wave soldering 23
16.4	Reflow soldering
17	Abbreviations 25
18	Revision history 26
19	Legal information 27
19.1	Data sheet status 27

19.2	Definitions	27
19.3	Disclaimers	27
19.4	Trademarks	28
20	Contact information	28
21	Contents	29

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2012.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

baddresses@nxp.com Date of release: 25 June 2012 Document identifier: PCA9558

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Interface - I/O Expanders category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

PCA9654EDR2G LC709006V-E LC709006V-TLM-E PM8004C-F3EI PM8005C-F3EI PI4IOE5V9554LEX PI4IOE5V9555LEX PI4IOE5V6534Q2ZLWEX PI4IOE5V6416Q2LEX 41700-100 MCP25050-E/P PCA9554PW.112 PCA9555PW.112 MIC74YQS ADP5585ACBZ-00-R7 ADP5585ACBZ-04-R7 EM4095HMSO16A HTRC11001T/02EE ADP5587ACPZ-1-R7 ADP5587ACPZ-R7 ADP5585ACPZ-01-R7 ADP5586ACBZ-00-R7 PCF8574P XD8574AP XD8574P XD8255-2 XD82C55-5 XD71055 EM4095HMSO16B KTS1620EWA-TR MAX7329AWE+T MAX7311AWG+ MCP25025-ISL MCP25020-I/SL MAX7329AWE+ MAX7328AWE+ MAX7314ATG+T PI4IOE5V9555ZDEX MAX7300ATL+ MAX7300ATL+T MAX7310ATE+T MAX7323AEE+ MCP23009T-E/SS MCP23009-E/SS MAX7313ATG+T MAX7325ATG+T MAX7310AEE+T MAX7321AEE+T MAX7319AEE+T MCP23016-I/SO