

NTE322 Silicon NPN Transistor RF Power Output

Description:

The NTE322 is a silicon NPN RF power transistor in a TO202N type package designed for use in Citizen–Band and other high–frequency communications equipment operating to 30MHz. Higher breakdown voltages allow a high percentage of up–modulation in AM circuits.

Features:

• Output Power: 3.5W (Min) @ V_{CC} = 13.6V

• Power Gain: 11.5dB (Min)

High Collector Emitter Breakdown Voltage: V_{(BR)CES} ≥ 65V

DC Current Gain: Linear to 500mA

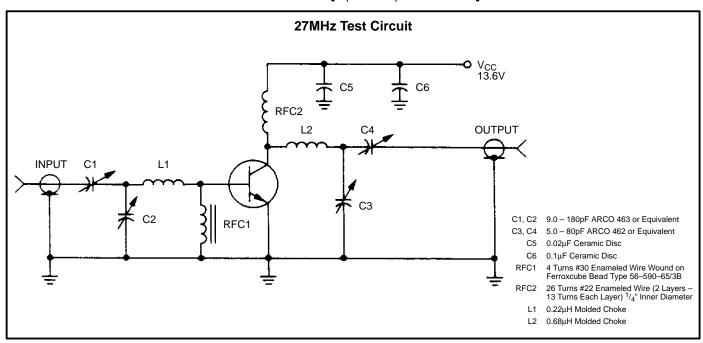
Absolute Maximum Ratings:

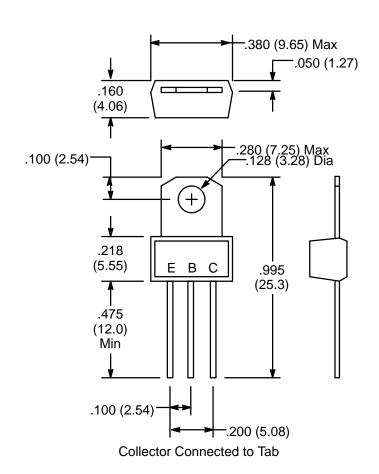
<u>- 1.0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0</u>	
Collector–Emitter Voltage, V _{CES}	65V
Emitter–Base Voltage, V _{EB}	3V
Continuous Collector Current, I _C	500mA
Total Power Dissipation ($T_A = +25^{\circ}C$), P_D	1.0W 8.0mW/°C
Total Power Dissipation ($T_C = +25^{\circ}C$), P_D	10W 80mW/°C
Operating Junction Temperature Range, T _J	–55° to +150°C
Storage Junction Temperature Range, T _{stg}	–55° to +150°C
Thermal Resistance, Junction–to–Case, R _{thJC}	12.5°C/W
Thermal Resistance, Junction to Ambient (Note 1), R _{thJA}	125°C/W

Note $\,$ 1. R_{thJA} is measured with the device soldered into a typical printed circuit board.

<u>Electrical Characteristics</u>: (T_A = +25°C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit		
OFF Characteristics								
Collector–Emitter Breakdown Voltage	V _{(BR)CES}	I _C = 150mA, V _{BE} = 0, Note 2	65	_	_	V		
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	I _E = 1mA, I _C = 0	3	_	_	V		
Collector Cutoff Current	I _{CBO}	$V_{CB} = 50V, I_E = 0$	_	_	0.01	mA		
ON Characteristics								
DC Current Gain	h _{FE}	I _C = 100mA, V _{CE} = 10V, Note 3	10	_	_			
Dynamic Characteristics								
Output Capacitance	C _{ob}	V _{CB} = 12V, I _E = 0, f = 1MHz	_	_	40	pF		
Functional Test								
Common-Emitter Amplifier Power Gain	G _{PE}	$P_O = 3.5W$, $V_{CC} = 13.6V$, $f = 27MHz$	11.5	_	_	dB		
Output Power	Po	$P_{IN} = 250 \text{mW}, V_{CC} = 13.6 \text{V}, f = 27 \text{MHz}$	3.5	_	_	W		
Collector Efficiency	η	$P_{O} = 3.5W$, $V_{CC} = 13.6V$, $f = 27MHz$, Note 4	_	70	_	%		
Percentage Up-Modulation		f = 27MHz, Note 5	_	85	_	%		


Note 2. Pulsed thru a 25mH inductor


Note 3. Pulse test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2.0%

Note 4.
$$\eta = \frac{R_F P_O}{(V_{CC}) (I_C)} \bullet 100$$

Note 5. Percentage Up–Modulation is measured by setting the Carrier Power (P_C) to 3.5 Watts with V_{CC} = 13.6V and noting the power input. Then the peak envelope power (PEP) is noted after doubling the original power input to simulate driver modulation (at a 25% duty cycle for thermal considerations) and raising the V_{CC} to 25V (to simulate the modulating voltage). Percentage Up–Modulation is then determined by the relation:

Percentage Up–Modulation =
$$\left[\left(\frac{PEP}{P_C} \right)^{-1/2} -1 \right] \bullet 100$$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by NTE manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B