

NTE157 Silicon NPN Transistor Audio Power Amp, High Voltage Converter (Compl to NTE39)

Description:

The NTE157 is a silicon NPN transistor in a TO126 type package designed for use in line—operated equipment such as audio output amplifiers, low—current, high—voltage converters, and AC line relays.

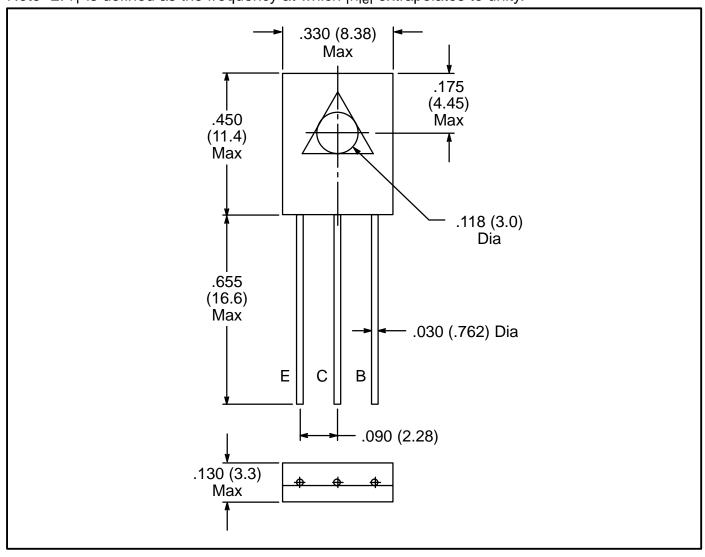
Features:

- Excellent DC Current Gain: h_{FE} = 30 to 250 @ I_C = 100mA
- Current–Gain Bandwidth Product: f_T = 10MHz (Min) @ I_C = 50mA

Absolute Maximum Ratings:

Collector–Emitter Voltage, V _{CEO})V
Collector–Base Voltage, V _{CB}	5V
Emitter–Base Voltage, V _{EB}	٥V
Collector Current, I _C	
Continuous 500m	۱A
Peak 1	lΑ
Base Current, I _B 250m	١A
Total Power Dissipation (T _C = +25°C), P _D	W
Derate Above 25°C	Ò,
Operating Junction Temperature Range, T _J	,C
Storage Temperature Range, T _{stq}	,C
Thermal Resistance, Junction to case, R $_{\Theta JC}$ $\dots \dots \dots$	W

Electrical Characteristics: (T_C = +25°C unless otherwise specified)


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit				
OFF Characteristics										
Collector–Emitter Sustaining Voltage	V _{CEO(sus)}	I _C = 100mA (Inductive), L = 50mH	300	_	_	V				
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	$I_C = 1$ mA, $I_B = 0$	300	_	_	V				
Collector Cutoff Current	I _{CEO}	$V_{CE} = 200V, I_{B} = 0$	_	_	0.1	mA				
	I _{CEX}	$V_{CE} = 300V, V_{EB(off)} = 1.5V$	_	-	0.1	mA				
		$V_{CE} = 300V, V_{EB(off)} = 1.5V, T_{C} = +100^{\circ}C$	_	_	1.0	mA				
	I _{CBO}	$V_{CB} = 325V, I_{E} = 0$	_	-	10	μА				
Emitter Cutoff Current	I _{EBO}	$V_{EB} = 6V, I_C = 0$	_	_	10	μΑ				

<u>Electrical Characteristics (Cont'd):</u> $(T_C = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit					
ON Characteristics (Note 1)											
DC Current Gain	h _{FE}	$I_C = 50 \text{mA}, V_{CE} = 10 \text{V}$	25	_	_						
		I _C = 100mA, V _{CE} = 10V	30	_	250						
		I _C = 250mA, V _{CE} = 10V	15	_	_						
		I _C = 500mA, V _{CE} = 10V	5	_	_						
Collector–Emitter Saturation Voltage	V _{CE(sat)}	I _C = 100mA, I _B = 10mA	_	_	1	V					
		I _C = 250mA, I _B = 25mA	_	_	2.5						
		I _C = 500mA, I _B = 100mA	_	_	10						
Base–Emitter Voltage	V_{BE}	I _C = 100mA, V _{CE} = 10V	_	_	1	V					
Dynamic Characteristics						•					
Current-Gain-Bandwidth Product	f _T	$I_C = 50$ mA, $V_{CE} = 10$ V, $f = 10$ MHz, Note 2	10	_	_	MHz					
Output Capacitance	C _{ob}	$V_{CB} = 10V, I_E = 0, f = 100kHz$	_	_	25	pF					
Small-Signal Current Gain	h _{fe}	$I_C = 100 \text{mA}, V_{CE} = 10 \text{V}, f = 1 \text{kHz}$	20	_	_						

Note 1. Pulse Test: Pulse Width $\leq 300\mu s$, Duty Cycle $\leq 2\%$.

Note 2. f_T is defined as the frequency at which $|h_{fe}|$ extrapolates to unity.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by NTE manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B